
1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

International Journal of Foundations of Computer Science

Vol. 29, No. 5 (2018) 911–933
c© World Scientific Publishing Company

DOI: 10.1142/S012905411842011X

On the Strength of Unambiguous Tree Automata

Henryk Michalewski

Institute of Mathematics, University of Warsaw, Banacha 2
Warsaw 02-097, Poland

h.michalewski@mimuw.edu.pl

Micha l Skrzypczak∗

Institute of Informatics, University of Warsaw, Banacha 2
Warsaw 02-097, Poland

mskrzypczak@mimuw.edu.pl

Received 10 February 2017

Accepted 30 March 2018
Communicated by Srečko Brlek

This work is a study of the class of non-deterministic automata on infinite trees that are

unambiguous i.e. have at most one accepting run on every tree. The motivating question
asks if the fact that an automaton is unambiguous implies some drop in the descriptive

complexity of the language recognised by the automaton. As it turns out, such a drop

occurs for the parity index and does not occur for the weak parity index.
More precisely, given an unambiguous parity automaton A of index (i, 2j), we show

how to construct an alternating automaton Transformation(A) which accepts the same

language, but is simpler in terms of the acceptance condition. In particular, ifA is a Büchi
automaton (i = 0, j = 1) then Transformation(A) is a weak alternating automa-

ton. In general, Transformation(A) belongs to the class Comp(i+ 1, 2j), what implies

that it is simultaneously of alternating index (i, 2j) and of the dual index (i+1, 2j+1).
The transformation algorithm is based on a separation procedure of Arnold and Santo-

canale (2005).

In the case of non-deterministic automata with the weak parity condition, we provide
a separation procedure analogous to the one used above. However, as illustrated by

examples, this separation procedure cannot be used to prove a complexity drop in the

weak case, as there is no such drop.

Keywords: Infinite trees; unambiguity; Rabin–Mostowski index.

1. Introduction

Non-determinism is a very powerful concept that allows a given machine to guess

some choices or witnesses during a computation. The cost of this ability is that

∗Corresponding author.

911

http://dx.doi.org/10.1142/S012905411842011X

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

912 H. Michalewski & M. Skrzypczak

in many cases non-deterministic machines are much less tractable than determin-

istic ones. Thus, people seek for ways of limiting the power of non-deterministic

machines while still preserving some of their nice properties. One of the most impor-

tant among such restricted forms of non-determinism is the notion of unambiguity :

a non-deterministic machine is unambiguous if it admits at most one successful

computation on every input.

In the case of regular languages of finite and infinite words, each automaton can

be determinised (and thus made unambiguous) at an exponential cost. However, in

the case of infinite trees there are automata for which one cannot find an equivalent

unambiguous one [16] (see also [5]). Thus, the assumption of unambiguity limits the

expressive power of automata over infinite trees.

In this work we try to understand whether this limitations in the expressive

power are also translated into the descriptive complexity of the languages. To deter-

mine descriptive complexity of languages we use the standard measure i.e. the parity

index hierarchy. A parity automaton A has index (i, j) if the priorities of the states

of the automaton belong to the set {i, i+ 1, . . . , j}. In particular, the Büchi accep-

tance condition can be translated to the index (1, 2). Comp(i, j) stands for the

class of alternating automata where each strongly-connected component is of index

(i, j) or (i + 1, j + 1), see page 915. The hierarchy induced by parity indices is

strict [1, 4] in the sense that there exist languages requiring big indices: for every

pair (i, j) there exists a regular language of infinite trees that is of index (i, j) and

cannot be recognised by any alternating nor non-deterministic automaton of a lower

index.

The main result of this work states that the fact that a given automaton A is

unambiguous allows to effectively find another equivalent automaton with a simpler

acceptance condition. This implies that L(A) is descriptively simpler than generic

languages recognised by non-deterministic automata of the same index as A. More

precisely, in Sec. 4 we propose an algorithm Transformation, based on a sep-

aration procedure of Arnold and Santocanale [3]. The properties of the algorithm

Transformation are expressed by the following theorem.

Theorem 1. If A is an unambiguous automaton of index (i, 2j) then

Transformation(A) accepts the same language as A and belongs to the class

Comp(i+ 1, 2j), in particular it is simultaneously of alternating index (i, 2j) and of

the dual index (i+ 1, 2j+ 1). In the specific case of an unambiguous Büchi automa-

ton A, Transformation(A) is weak.

Additionally, the number of states of Transformation(A) is polynomial in the

number of states of A.

The above theorem is the main result presented in the conference paper [13].

To make the picture more complete, the present work additionally provides a

study of the descriptive complexity drop for unambiguous automata with the weak

parity acceptance condition (i.e. parity automata where each transition does not

decrease the priorities of the states). Contrary to the case of the general parity

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 913

acceptance condition; in the weak case there is no drop in the descriptive complexity

of the recognised language, as expressed by the following theorem.

Theorem 2. For every n ≥ 0 there exist weak unambiguous automata An and Bn
such that:

• An has index (0, n+ 1) and Bn has index (1, n+ 2),

• L(An) = L(Bn)c, i.e. they recognise complementary languages,

• L(An) cannot be recognised by any weak alternating automaton of index (1, n+2),

dually for Bn.

This is a bit surprising since the separation result still holds in the weak case,

as shown in Theorem 2.

1.1. Related work

This paper is an extended journal version of [13]. The new results, that were not

presented before, are: a simple proof of Theorem 1 for the case of Büchi automata

that is based on the results of [19] and [9]; a procedure for separation of weak non-

deterministic automata; and a proof that weak unambiguous automata admit no

complexity collapse. The initial part of this paper (i.e. Secs. 2, 3, 4, and 5) is based

on the content of [13], in particular Figs. 1 and 2 come from that paper.

Although unambiguous automata on infinite trees are still not well-understood,

there is already a number of results estimating their expressive power.

The first and most fundamental of these results is the observation of Niwiński

and Walukiewicz [16] (see also [5]) that not all regular tree languages can be recog-

nised by unambiguous automata. The example of a regular language that cannot be

recognised by any unambiguous automaton provided in [16] is the language of trees

labelled {a, b} such that the letter a appears at least once in the tree. The extreme

simplicity of that language suggests that unambiguous automata over infinite trees

are not very expressive.

As it turned out, this impression was not entirely correct. Firstly, Hummel

in [10] proved that unambiguous languages are topologically harder than deter-

ministic ones. Further improvements from [7] provided examples of unambiguous

tree languages reaching high into the second level of the index hierarchy. This line

of research culminates in a recent unpublished work [18] which shows that there

are unambiguous languages lying arbitrarily high in the index hierarchy. The con-

struction given in [18] provides an unambiguous automaton of index (0, 2j+2) to

recognise a language hard for the level (0, 2j) of the index hierarchy. Thus, the drop

in the descriptive complexity from Theorem 1 does not affect these examples.

The above mentioned constructions show that unambiguous automata can recog-

nise very complex languages. However, they do not explain whether the condition

of unambiguity comes at some cost (e.g. increase in the index of the considered

automaton comparing to the language recognised by it). The first result of that

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

914 H. Michalewski & M. Skrzypczak

form is a result of Finkel and Simonnet [9] who provided a simple proof based

on the Lusin-Souslin Theorem [11, Theorem 15.1], that any language recognised

by an unambiguous Büchi automaton must be Borel. Thus, although both Büchi

automata and unambiguous automata can recognise non-Borel sets; combining these

two assumptions implies that the language is topologically simple.

The construction of this paper can be seen as an extension of the result of

Finkel and Simmonet by providing not only a set-theoretical argument but also an

automata construction encapsulated by the algorithm Transformation. Another

advantage of this approach is the fact that the algorithm works for arbitrarily high

levels of the index hierarchy, and not only for the Büchi case.

The combination of all the above mentioned results provides a quite complete

picture, with unambiguous automata being able to recognise arbitrarily complex

languages; and this complexity coming at the cost of having higher index than an

alternating automaton for the same language.

1.2. Outline of the paper

Section 2 provides basic notions used throughout the paper. In Sec. 3 we show that

in a certain sense transitions of an unambiguous automaton must induce disjoint

languages. Based on that observation and the separation procedure of Arnold and

Santocanale, an algorithm Partition is designed. This algorithm is used in Sec. 4

to construct the automaton Transformation(A). Section 5 concludes the proof

of Theorem 1 by showing correctness of Transformation.

Section 6 derives Theorem 1 in the case of Büchi automata from the results

of [19] and [9]. This can be seen as an alternative proof of this specific case, with

worse complexity of the resulting automaton.

In Sec. 7 we prove a modification of the separation result of Arnold and San-

tocanale for the case of weak non-deterministic automata. However, it turns out

that this separation result cannot be used to build a variant of Transformation

algorithm to prove a complexity collapse for weak unambiguous automata. The

reason is that weak unambiguous automata admit no such collapse — they can

recognise languages that are as hard as possible in the respective weak alternating

index classes, see Theorem 2 proved in Subsec. 7.2.

2. Basic Notions

In this section we introduce basic notions used in the rest of the paper. A good

survey of the relations between deterministic, unambiguous, and non-deterministic

automata is [6]. A general background on automata and logic over infinite trees can

be found in [21].

Our models are infinite, labelled, full binary trees. The labels come from a non-

empty finite set A called alphabet. A tree t is a function t : {L, R}∗ → A. The set

of all such trees is TrA. Vertices of a tree are denoted u, v, w ∈ {L, R}∗. The prefix-

order on vertices is �, the minimal element of this order is the root ε ∈ {L, R}∗.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 915

The label of a tree t ∈ TrA in a vertex u ∈ {L, R}∗ is t(u) ∈ A. t�u. stands for the

subtree of a tree t rooted in a vertex u. Infinite branches of a tree are denoted as

α, β ∈ {L, R}ω. We extend the prefix order to them, thus u ≺ α if u is a prefix of α.

For an infinite branch α ∈ {L, R}ω and k ∈ ω by α�k we denote the prefix of α of

length k (e.g. α�0 = ε).

A non-deterministic tree automaton A is a tuple 〈Q,A, q0,∆,Ω〉 where: Q is a

finite set of states; A is an alphabet; qI ∈ Q is an initial state; ∆ ⊆ Q×A×Q×Q
is a transition relation; Ω: Q→ N is a priority function.

If the automaton A is not known from the context we explicitly put it in the

superscript, i.e. QA is the set of states of A.

A run of an automaton A on a tree t is a tree ρ ∈ TrQ such that for every

vertex u we have
(
ρ(u), t(u), ρ(uL), ρ(uR)

)
∈ ∆. A run ρ is parity-accepting if on

every branch α of the tree we have

lim sup
n→∞

Ω
(
ρ(α�n)

)
≡ 0 mod 2. (4)

We say that a run ρ starts from the state ρ(ε). A run ρ is accepting if it is parity-

accepting and starts from qI. The language recognised by A (denoted L(A)) is the

set of all trees t such that there is an accepting run ρ of A on t.

A non-deterministic automaton A is unambiguous if for every tree t there is at

most one accepting run of A on t.

An alternating tree automaton C is a tuple 〈Q,A,Q∃, Q∀, q0,∆,Ω〉 where: Q is

a finite set of states; A is an alphabet; Q∃ t Q∀ is a partition of Q into sets of

positions of the players ∃ and ∀; qI ∈ Q is an initial state; ∆ ⊆ Q×A×{ε, L, R}×Q
is a transition relation; Ω: Q → N is a priority function. For technical reasons we

assume that for every q ∈ Q and a ∈ A there is at least one transition (q, a, d, q′) ∈ ∆

for some q′ ∈ Q and d ∈ {ε, L, R}.
An alternating tree automaton C induces, for every tree t ∈ TrA, a parity game

G(C, t). The positions of this game are of the form (u, q) ∈ {L, R}∗ × Q. The initial

position is (ε, qI). A position (u, q) belongs to the player ∃ if q ∈ Q∃, otherwise (u, q)

belongs to ∀. The priority of a position (u, q) is Ω(q). There is an edge between (u, q)

and (ud, q′) whenever (q, t(u), d, q′) ∈ δ. An infinite play π in G(C, t) is winning for

∃ if the highest priority occurring infinitely often on π is even, as in condition (4).

We say that an alternating tree automaton C accepts a tree t if the player ∃ has

a winning strategy in G(C, t). The language of trees accepted by C is denoted by

L(C).
A non-deterministic or alternating automaton A has index (i, j) if the priorities

of A are among {i, i+1, . . . , j}. Such an automaton is weak if the priorities of states

are non-decreasing along transitions, see [12]. An automaton of index (1, 2) is called

a Büchi automaton. Every alternating tree automaton can be naturally seen as a

graph — the set of nodes is Q and there is an edge (q, q′) if (q, a, d, q′) ∈ ∆ for

some a ∈ A and d ∈ {ε, L, R}. We say that an alternating tree automaton D is a

Comp(i, j) automaton if every strongly-connected component of the graph of D is

of index (i, j) or (i+ 1, j + 1), see [3].

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

916 H. Michalewski & M. Skrzypczak

Note that an alternating automaton C is Comp(0, 0) if and only if C is a weak.

The following fact gives a connection between these automata and weak mso (the

variant of monadic second-order logic where set quantifiers are restricted to finite

sets).

Theorem 3 (Rabin [17], also Kupferman Vardi [12]). If C is an alternating

Comp(0, 0) automaton then L(C) is definable in weak mso. Similarly, if L ⊆ TrA
is definable in weak mso then there exists a Comp(0, 0) automaton recognising L.

The crucial technical tool in our proof is the Separation algorithm by Arnold

and Santocanale [3]. A particular case of this algorithm for i = j = 1 is the clas-

sical Rabin separation construction (see [17]): if L1, L2 are two disjoint languages

recognisable by Büchi alternating tree automata then one can effectively construct

a weak mso-definable language LS that separates them.

Algorithm 1: Separation

Input: Two non-deterministic automata A, B of index (i, 2j) such that

L(A) ∩ L(B) = ∅.
Output: An alternating Comp(i+1, 2j) automaton S such that

L(A) ⊆ L(S) and L(B) ∩ L(S) = ∅.

3. Partition Property

In this section we will prove Lemma 4 stating that if an automatonA is unambiguous

then the transitions of A need to induce disjoint languages. This will be important

in the algorithm Partition which for a given unambiguous automaton of index

(i, 2j), constructs a family of Comp(i+1, 2j) automata that split the set of all trees

into disjoint sets corresponding to the respective transitions of A. Partition will

be used in Transformation.

Let us fix an unambiguous automaton A of index (i, 2j). Let Q be the set of

states of A and A be its working alphabet. We say that a transition δ = (q, a, qL, qR)

of A starts from (q, a); let ∆q,a be the set of such transitions.

A pair (q, a) ∈ Q × A is productive if it appears in some accepting run: there

exists a tree t ∈ TrA and an accepting run ρ of A on t such that for some vertex

u we have ρ(u) = q and t(u) = a. This definition combines two requirements: that

there exists an accepting run that leads to the pair (q, a) and that some tree can

be parity-accepted starting from (q, a). Note that if (q, a) is productive then there

exists at least one transition starting from (q, a). Without changing the language

L(A) we can assume that if a pair is not productive then there is no transition

starting from this pair.

For every transition δ = (q, a, qL, qR) of A we define Lδ as the language of trees

such that there exists a run ρ of A on t that is parity-accepting and uses δ in the

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 917

root of t ρ(ε) = q, t(ε) = a, ρ(L) = qL, and ρ(R) = qR. Clearly the language Lδ can be

recognised by an unambiguous automaton of index (i, 2j). If (q, a) is not productive

then L(q,a,qL,qR) = ∅. The following lemma is a simple consequence of unambiguity

of the given automaton A.

Lemma 4. If δ1 6= δ2 are two transitions starting from the same pair (q, a) then

the languages Lδ1 , Lδ2 are disjoint.

Proof. First, if (q, a) is not productive then by our assumption Lδ1 = Lδ2 = ∅.
Assume contrary that (q, a) is productive and there exists a tree r ∈ Lδ1 ∩Lδ2 with

two respective parity-accepting runs ρ1, ρ2. Since (q, a) is productive so there exists

a tree t and an accepting run ρ on t such that ρ(u) = q and t(u) = a for some

vertex u. Consider the tree t′ = t[u← r] — the tree obtained from t by substituting

r as the subtree under u. Since ρ(u) = q and both ρ1, ρ2 start from (q, a), we

can construct two accepting runs ρ[u ← ρ1] and ρ[u ← ρ2] on t′. Since these runs

differ on the transition used in u, we obtain a contradiction to the fact that A is

unambiguous.

The above lemma will be important in the algorithm Partition, because it uses

the Seperation algorithm which in turn requires disjointness of the languages.

Algorithm 2: Partition

Input: An unambiguous automaton A of index (i, 2j)

Output: for every δ ∈ ∆ an automaton Cδ
1 foreach (q, a) ∈ Q×A, productive do

2 foreach δ ∈ ∆q,a do

3 Eδ ← non-det. (i, 2j) automaton recognising Lδ
4 Fδ ← non-det. (i, 2j) automaton recognising

⋃
η∈∆q,a,η 6=δ Lη

5 foreach δ ∈ ∆q,a do

6 Dδ ← Separation(Eδ, Fδ)

7 foreach δ ∈ ∆q,a do

8 Cδ ← Comp(i+1, 2j) automaton recognising L(Dδ) \
⋃
η 6=δ L(Dη).

9 foreach δ = (q, a, qL, qR) ∈ ∆q,a with (q, a) non-productive do

10 Cδ ← Comp(0, 0) automaton recognising the empty language.

The following lemma summarizes properties of the algorithm Partition.

Lemma 5. Assume that A is an unambiguous automaton of index (i, 2j) and let

(q, a) ∈ Q × A. Take the automata
(
Cδ
)
δ∈∆q,a

constructed by Parition(A). Then

the languages L(Cδ) for δ ∈ ∆q,a are pairwise disjoint and Lδ ⊆ L(Cδ).

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

918 H. Michalewski & M. Skrzypczak

TrA

Lδ1
Lδ2

Lδ3

L(Cδ1)

L(Cδ2)

L(Cδ3)

Fig. 1. An illustration of the output of the algorithm Partition. The three circles are the lan-
guages Lδi for the transitions starting in a fixed pair (q, a). Each straight line represents the

language L(Dδi) that separates the respective language Lδi from the others. Our construction
provides the automata Cδi recognising the dotted regions.

A proof of this lemma follows directly from the definition of the respective automata,

see Fig. 1 for an illustration of this construction.

4. Construction of the Automaton

In this and the following section we will describe the algorithm Transformation

and prove Theorem 1 which states correctness and properties of this algorithm.

Given an automaton A of index (i, 2j), the algorithm Transformation constructs

an alternating Comp(i+1, 2j) automaton R recognising L(A). It will consist of two

sub-automata running in parallel:

(1) In the first sub-automaton the role of ∃ will be to propose a partial run

ρ : {L, R}∗ ⇀ Q on a given tree t. She will be forced to propose certain unique

run ρt that depends only on the tree t, see Definition 7. At any moment ∀
can challenge the currently proposed transition and check if it agrees with the

definition of ρt (namely Condition (�)).
(2) In the second sub-automaton the role of ∀ will be to prove that the partial run

ρt is not parity-accepting. That is, he will find a leaf in ρt or an infinite branch

of ρt that does not satisfy the parity condition. Since the run ρt is unique, ∀
can declare in advance what will be the odd priority n that is the limes superior

(i.e. lim sup) of priorities of ρt on the selected branch.

The automaton R consists of an initial component I and of the union of the

automata Cδ constructed by the procedure Partition.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 919

Algorithm 3: Transformation

Input: An unambiguous automaton A of index (i, 2j)

Output: An automaton R
1 N ← {?} ∪

{
n ∈ {i, . . . , 2j} | n is odd

}
2 QI,∃ ← QA ×N t {⊥,>}
3 QI,∀ ← ∆A ×N
4 ∆I ←

{
(⊥, a, ε,⊥), (>, a, ε,>) | a ∈ AA

}
5 qRI ← (qAI , ?)

6
(
Cδ
)
δ∈∆
← Partition(A)

7 foreach a ∈ A, q ∈ QA, n ∈ N do

8 if n 6= ? and ΩA(q) > n then

9 ∆I ← ∆I ∪ {((q, n), a, ε,>)}
10 else

11 ∆I ← ∆I ∪
{(

(q, n), a, ε, (δ, n)
)
| δ ∈ ∆Aq,a

}
12 foreach a ∈ A, δ = (q, a, qL, qR) ∈ ∆A, n ∈ N do

13 ∆I ← ∆I ∪
{

(δ, a, ε, qCδI)
}

/* such a transition is a challenge

*/

14 if n 6= ? then

15 ∆I ← ∆I ∪
{

(δ, a, d, (qd, n)) | d ∈ {L, R}
}

16 else

17 ∆I ← ∆I ∪
{

(δ, a, d, (qd, n
′)) | d ∈ {L, R}, n′ ∈ N

}
18 QR∃ ← QI,∃ t

⊔
δ∈∆A Q

Cδ
∃

19 QR∀ ← QI,∀ t
⊔
δ∈∆A Q

Cδ
∀

20 ∆R ← ∆I t
⊔
δ∈∆A ∆Cδ

21 foreach q ∈ QA do

22 ΩR(q, ?) = 0

23 foreach n ∈ N \ {?} do

24 if ΩA(q) ≥ n then

25 ΩR(q, n) = 1

26 else

27 ΩR(q, n) = 0

28 foreach δ = (q, a, qL, qR) ∈ QA do

29 ΩR(δ, ?) = 0

30 foreach n ∈ N \ {?} do

31 if ΩA(q) ≥ n then

32 ΩR(δ, n) = 1

33 else

34 ΩR(δ, n) = 0

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

920 H. Michalewski & M. Skrzypczak

· · ·

Q× {?},
∆× {?}I0 of index (0, 0)

Q×
(
N \ {?}

)
,

∆×
(
N \ {?}

)I1 of index (0, 1)

((0, 0) if i+ 1 = 2j)

automata CδiComp(i+1, 2j) automata · · ·Cδ1 Cδn

Fig. 2. The structure of the automaton R.

The idea of the automaton R is to simulate the following behaviour. Assume

that the label of the current vertex is a and the current state is (q, n) ∈ QI,∃:

• if n 6= ? and ΩA(q) > n then ∀ loses, see line 9;

• ∃ declares a transition δ = (q, a, qL, qR) of A, see line 11;

• ∀ can decide to challenge this transition, see line 13;

• if n 6= ? then ∀ chooses a direction and the game proceeds, see line 15;

• if n = ? then ∀ chooses a direction and a new value n′ ∈ N , see line 17.

Figure 2 depicts the structure of the automaton R. The initial component I is

split into two parts: I0 where n = ? and I1 where n 6= ?.

We will now proceed with proving properties of the procedure Transforma-

tion.

Lemma 6. If A is unambiguous and of index (i, 2j) then R is in Comp(i+1, 2j).

Proof. We first argue that if i+1 < 2j thenR is a Comp(i+1, 2j) automaton. Note

every strongly-connected component in the graph of R is either a component of I0,

I1, or of Cδ for δ ∈ ∆A. Recall that all the components Aδ are by the construction

Comp(i + 1, 2j)-automata. By the definition, I0 and I1 are Comp(1, 2)-automata,

so the whole automaton R is also Comp(i+ 1, 2n).

Consider the opposite case: i + 1 = 2j. By shifting all the priorities we can

assume that i = j = 1 (i.e. A is Büchi). Observe that the only possible odd value

n between i and 2j is n = 1. It means that if ∀ declares a value n 6= ? then always

Ω(q) ≥ n holds. It means that there are no states in I1 with priority 1. Therefore,

both I0 and I1 are Comp(0, 0) automata and R is a Comp(0, 0) automaton.

5. Correctness of the Construction

In this section we prove that the automatonR constructed by the algorithm Trans-

formation recognises the same language as the given unambiguous automaton A.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 921

This way we conclude the proof of Theorem 1. Let A be an unambiguous automaton

of index (i, 2j).

Definition 7. Let t ∈ TrA be a tree. We define ρt as the unique maximal partial

run ρt of A on t, i.e. a partial function ρt : {L, R}∗ ⇀ QA such that:

• ρt(ε) = qAI ;

• if u ∈ dom(ρt) and t�u ∈ L(Cδ) for some δ ∈ ∆A thena

δ =
(
ρt(u), t(u), ρt(uL), ρt(uR)

)
; (�)

• if u ∈ dom(ρt) and t�u /∈ L(Cδ) for any δ ∈ ∆A then uL, uR /∈ dom(ρt).

Lemma 8. t ∈ L(A) if and only if ρt is total and accepting.

Proof. If ρt is accepting then it is a witness that t ∈ L(A). Let ρ be an accepting

run of A on t. We inductively prove that ρ = ρt. Take a node u of t and define

q = ρ(u), a = t(u), qL = ρt(uL), and qR = ρt(uR). Observe that ρ is a witness that

(q, a) is productive and for δ = (q, a, qL, qR) we have

t ∈ Lδ ⊆ L(Cδ).

Therefore, ρt(uL) = ρ(uL) and ρt(uR) = ρ(uR).

5.1. L(A) = L(R)

Lemma 9. If t ∈ L(A) then t ∈ L(R).

Proof. Assume that t ∈ L(A). By Lemma 8 we know that ρt is the unique accept-

ing run of A on t. Consider the following strategy σ∃ for ∃ in the initial com-

ponent I of the automaton R: always declare δ consistent with ρt. Extend it to

the winning strategies in Cδ whenever they exist. That is, if the current vertex is

u and the state of R is of the form (q, n) ∈ I then move to the state (δ, n) for

δ = (ρt(u), t(u), ρt(uL), ρt(uR)). Whenever the game moves from the initial compo-

nent I into one of the automata Cδ in a vertex u, fix some winning strategy in

G(Cδ, t�u) (if exists) and play according to this strategy; if there is no such strategy,

play using any strategy. Take a play consistent with σ∃ in G(R, t). There are the

following cases:

• ∀ loses in a finite time according to the transition from line 9 in the algorithm

Transformation.

• ∀ stays forever in the initial component I never changing the value of n = ? and

loses by the parity criterion.

• In some vertex u of the tree ∀ challenges the transition δ given by ∃ and the

game proceeds to the state qCδI . In that case t�u ∈ Lδ by the definition of Lδ (the

aBy Lemma 5 there is at most one such δ.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

922 H. Michalewski & M. Skrzypczak

run ρt�u is a witness) and therefore t�u ∈ L(Cδ). So ∃ has a winning strategy in

G(Cδ, t�u) and ∃ wins the rest of the game.

• ∀ declares a value n 6= ? at some point and then never challenges ∃. In that

case the game follows an infinite branch α of t. Since ρt is accepting so we know

that k
def
= lim supi→∞ ΩA(ρt(α�i)) is even. If k > n then ∀ loses at some point

according to the transition from line 9. Otherwise k < n and from some point on

all the states of R visited during the game have priority 0, thus ∀ loses by the

parity criterion in I1.

Lemma 10. If t /∈ L(A) then t /∈ L(R).

Proof. We assume that t /∈ L(A) and define a winning strategy for ∀ in the game

G(R, t). Let us fix the run ρt as in Definition 7.

Note that either ρt is a partial run: there is a vertex u such that ρt(u) = q and

(q, t(u)) is not productive; or ρt is a total run. Since t /∈ L(A), ρt cannot be a total

accepting run. Let α be a finite or infinite branch: either α ∈ {L, R}∗ and α is a leaf

of ρt or α is an infinite branch such that k
def
= lim supi→∞ ΩA(ρt(α�i)) is odd. If

α is finite let us put any odd value between i and 2j as k. Consider the following

strategy for ∀:

• ∀ keeps n = ? until there are no more states of priority greater than k along α in

ρt. Then he declares n′ = k.

• ∀ challenges a transition δ given by ∃ in a vertex u if and only if t�u /∈ Cδ.
• ∀ always follows α: in a vertex u ∈ {L, R}∗ he chooses the direction d in such a

way that ud � α.

As in the proof of Lemma 9, we extend this strategy to strategies in the com-

ponents Cδ whenever such strategies exist: if the game moves from the component

I into one of the component Cδ in a vertex u then ∀ uses some winning strategy

in the game G(Cδ, t�u) (if it exists); if there is no such strategy, ∀ plays using any

strategy.

Consider any play π consistent with σ∀. Note that if α is a finite word and the

play π reaches the vertex α in a state (δ, n) in I then by the definition of ρt we know

that t�u /∈ Cδ and thus ∀ challenges this transition and wins in the game G(Cδ, t�u).

By the definition of the strategy σ∀, ∀ never loses according to the transition from

line 9 in the algorithm Transformation — if ∀ declared n 6= ? then the play will

never reach a state of priority greater than n.

Let us consider the remaining cases. First assume that at some vertex u player

∀ challenged a transition δ declared by ∃. It means that t�u /∈ L(Cδ) and ∀ has a

winning strategy in G(Cδ, t�u) and wins in that case.

The last case is that ∀ did not challenge any transition declared by ∃ and the

play followed the branch α. Then, for every i ∈ N the game reached the vertex α�i
in a state (q, n) satisfying q = ρt(α�i). In that case there is some vertex u along α

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 923

where ∀ declared n = k. Therefore, infinitely many times Ω(q) = n in π so ∀ wins

that play by the parity criterion.

The two above lemmas imply that L(A) = L(R) = Transformation(A), what

concludes the proof of Theorem 1.

6. The Special Case of Büchi Automata

In this section we show how to derive the following special case of Theorem 1 from

the results of [19] and [9]. For that we need to recall the following two results of the

cited papers.

Corollary 11 ([9, Corollary 4.14]). If A is an unambiguous Büchi automaton

then L(A) is Borel.

Theorem 12 ([19, Theorem 1]). If A is a non-deterministic Büchi automaton

over infinite trees then the language L(A) is Borel if and only if it can be recognised

by a Comp(0, 0) automaton. If the language is not Borel then it is Σ1
1-complete.

Moreover, this dichotomy is effective.

Using these two results, we obtain immediately the following theorem.

Theorem 13. If A is an unambiguous Büchi automaton then L(A) can be recog-

nised by a weak alternating automaton (i.e. Comp(0, 0) automaton).

Proof. By Corollary 11, the language recognised by an unambiguous Büchi

automaton is Borel. Theorem 12 implies that if a Büchi automaton A recog-

nises a Borel language then L(A) can (effectively) be recognised by a Comp(0, 0)

automaton.

Comparing to the construction presented in this paper, the above proof pro-

vides much worse complexity — the construction from [19] of the weak alternating

automaton is exponential in the size of the original Büchi automaton.

7. The Case of Weak Unambiguous Automata

In this section we discuss the complexity of unambiguous automata with weak

parity conditions. First, we observe that weak non-deterministic automata admit a

separation result similar to the algorithm Separation. This is formalised as the

algorithm WeakSeparation, see Subsec. 7.1. However, this algorithm cannot be

used in a variant of the algorithm Transformation, as illustrated by Theorem 2.

The languages L(An) are the ones used by Skurczyński [20] to prove that there

are regular tree languages arbitrarily high in the finite levels of the Borel hierarchy.

This theorem is proved in Subsec. 7.2.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

924 H. Michalewski & M. Skrzypczak

Throughout this section we use the basic notions of descriptive set theory

(i.e. completeness for finite levels of the Borel hierarchy). For a simple introduction

to this subject, see [22] or [15].

Before we move to the technical part of the section, we want to recall that from

the point of view of single branches, weak non-deterministic automata are weaker

than the alternating ones.

Remark 14. The language of infinite trees that contain infinitely many letters a on

the leftmost branch cannot be recognised by a weak non-deterministic automaton.

Proof. If A is a weak non-deterministic automaton over ω-words then A can be

turned into an equivalent non-deterministic co-Büchi automaton B. The construc-

tion of [14] allows us to turn B into an equivalent deterministic co-Büchi automaton

B′. Therefore, L(A) ∈ Σ0
2 what contradicts the fact that the set of ω-words con-

taining infinitely many letters a is known to be Π0
2-complete.

7.1. Separation for weak automata

For the sake of completeness, we state in this section an analogue of the algorithm

Separation working for weak non-deterministic automata.

Algorithm 4: WeakSeparation

Input: Two weak non-deterministic automata A, B of index (0, j) such that

L(A) ∩ L(B) = ∅.
Output: Two weak alternating automata R, S of index (0, j) such that

L(A) ⊆ L(R) and L(R) = L(S)c and L(S) ⊇ L(B).

Notice that in general we cannot take R = A and S recognising the complement

of L(A) because the complement of the language L(A) may itself require weak

index (1, j + 1).

Outline of the construction. The construction follows the same lines as the one

from Sec. 2.2 of [3]: we start from constructing a pathfinder out of the game for

deciding non-emptiness; then we construct a product automaton of A, B, and the

pathfinder. Finally, we need to define the acceptance condition for the new automa-

ton — instead of constructing a Comp(i, 2j) automaton, we aim at constructing a

pair of weak alternating automata that both have index (0, j). This is achieved by

following the construction of Theorem 9 from [2].

Details of the construction. We start by formalising the construction of a

pathfinder, described in Sec. 2.2.1 of [3]. We call this algorithm Pathfinder.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 925

Algorithm 5: Pathfinder

Input: Two non-deterministic automata A, B such that L(A) ∩ L(B) = ∅.
Output: A finite set M , an element mI ∈M , and a function

σ : M ×A×∆A ×∆B →M × {L, R}. Elements of M are called

memory states, mI is the initial memory state, and σ is a memory

update function.

The crucial feature of the algorithm Pathfinder is expressed by Fact 15. Intu-

itively it says, that given two runs of the automata A and B respectively, the

pathfinder is able to find an infinite branch on which at least one of the runs is

rejecting (see Lemma 2.9 in [3]).

Fact 15. Fix two non-deterministic automata A, B that recognise disjoint lan-

guages. Let (M,mI, σ) = Pathfinder(A,B). Consider arbitrary four sequences:

• δ0, δ1, . . . ∈ ∆A of transitions of A,

• δ′0, δ′1, . . . ∈ ∆B of transitions of B,

• a0, a1, . . . ∈ A of letters,

• m0,m1, . . . ∈M of memory states.

such that they form a run of σ, that is:

• δ0 = (qAI , a0, q0,L, q0,R); δ
′
0 = (qBI , a0, q

′
0,L, q

′
0,R); and m0 = mI;

• for every n the transitions δn and δ′n are of the form δn = (qn, an, qn,L, qn,R) and

δ′n = (q′n, an, q
′
n,L, q

′
n,R) with the same letter an;

• for every n, we have σ(mn, an, δn, δ
′
n) = (mn+1, dn) with dn ∈ {L, R} such that

qn+1 = qn,dn and q′n+1 = q′n,dn .

Then at most one of the sequences
(
ΩA(qn)

)
n∈N,

(
ΩB(q′n)

)
n∈N satisfies the parity

condition.

Let A and B be two weak non-deterministic automata recognising separate

languages. Let (M,mI, σ) = Pathfinder(A,B) be the pathfinder constructed for

them. Our aim is to combine the automata A and B together with the pathfinder

(M,mI, σ) to construct a pair R, S of weak alternating automata such that the

language L(R) is the complement of L(S) and they separate L(A) from L(B). The

automata R and S will have almost the same structure, the only difference will be

in the transitions and the acceptance condition. The set of states of R and S will

essentiallyb be QA×QB×M . The initial state of both automata will be (qAI , q
B
I ,mI).

In the automaton R the role of ∃ (resp. ∀) will be to propose a run of A (resp. B)

over the given tree. The roles in the automaton S will be swapped. The directions in

which the automata proceed will be chosen according to the pathfinder (M,mI, σ).

bWe will also use an additional memory structure T to define priorities of R and S. This structure

will be discussed later.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

926 H. Michalewski & M. Skrzypczak

We present the transitions of R and S as Boolean combinations of successive direc-

tions and states following the presentation of [3], formally we should present them

using intermediate states that allow players resolve the Boolean operators: ∨ corre-

sponds to choices of ∃ and ∧ to choices of ∀.

δR
(
(q, q′,m), a

) def
=

∨
δ=
(
q,a,qL,qR

)
∈∆A

∧
δ′=
(
q′,a,q′L,q

′
R

)
∈∆B

(
d, (qd, q

′
d,m

′)
)
,

where σ(m, a, δ, δ′) = (m′, d).

δS
(
(q, q′,m), a

) def
=

∧
δ=
(
q,a,qL,qR

)
∈∆A

∨
δ′=
(
q′,a,q′L,q

′
R

)
∈∆B

(
d, (qd, q

′
d,m

′)
)
,

where σ(m, a, δ, δ′) = (m′, d).

The priorities of the states of these automata will be computed by a memory

structure T in such a way to guarantee the following invariants. Consider an infinite

play π of the acceptance game for the constructed automata in which the sequence

of states of A was q0, q1, . . . and the sequence of states of B was q′0, q
′
1, The

invariants say that:(
(qn)n∈N is accepting in A

)
=⇒

(
π is accepting in R

)
(7.1)(

(q′n)n∈N is accepting in B
)

=⇒
(
π is accepting in S

)
(7.2)(

π is accepting in R
)
⇐⇒

(
π is rejecting in S

)
(7.3)

If both sequences (qn)n∈N and (q′n)n∈N are rejecting in A and B respectively, then

the play π can be either accepting or rejecting in R, but Invariant (7.3) still needs

to hold. Fact 15 implies that it is never the case that both sequences (qn)n∈N and

(q′n)n∈N are accepting in A and B respectively.

Lemma 16. If Invariants (7.1), (7.2), and (7.3) are satisfied by automata R and

S then the following holds

L(A) ⊆ L(R) and L(R) = L(S)c and L(S) ⊇ L(B).

Proof. The proof is the same as in [3]. Consider a tree t ∈ TrΣ.

If t ∈ L(A) then ∃ has a strategy in the game G(R, t) in which she plays a fixed

accepting run of A over t. This strategy is winning by Invariant 7.1 and therefore

t ∈ L(R).

If t ∈ L(B) then ∃ has a strategy in the game G(S, t) in which she plays a fixed

accepting run of B over t. This strategy is winning by Invariant 7.2 and therefore

t ∈ L(S).

Since the sets of accepting plays of R and S are complementary (Invariant 7.3)

and the players in charge of the transitions are swapped, ∃ wins G(R, t) if and only

if she loses G(S, t). Therefore, the language L(R) is the complement of L(S).

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 927

What remains is to define priorities in R and S in a way which guarantees the

above invariants. This is achieved by a variant of construction in Lemma 8 of [2].

We define a memory structure (i.e. transducer) T that reads two non-decreasing

sequences of priorities o0, o1, . . . ∈ {0, 1, . . . , j} and p0, p1, . . . ∈ {0, 1, . . . , j}. T
will construct two new non-decreasing sequences of priorities that will be used by

the automata R and S respectively. Formally, we will have on
def
= ΩA(qn) and

pn
def
= ΩB(q′n) for n = 0, 1,

To simplify the presentation, we will encode the given non-decreasing sequences

(on)n∈N and (pn)n∈N by one sequence of increases (In)n∈N over the alphabet

{0, IA, IB}: without loss of generality we assume that the initial pair (o0, p0) is

(0, 0); and encode each successive pair (on+1, pn+1) as the non-empty word

wn
def
= 0 I

on+1−on
A I

pn+1−pn
B ∈ {0, IA, IB}∗.

Then define the infinite sequence (In)n∈N that encodes 〈(on)n∈N, (pn)n∈N〉 as

(In)n∈N
def
= w0 ·w1 ·w2 · · · . We call a sequence over the alphabet {0, IA, IB} correct if

it contains at most j occurrences of IA and at most j occurrences of IB . Notice that

the sequence (In)n∈N is correct because each on, pn ≤ j. We restrict our attention

to correct sequences (In)n∈N. We call such a sequence IA-accepting if the number of

IA is even; IB-accepting if the number of IB is even; and IAIB-accepting if both the

numbers are even. Fact 15 implies that we will never encounter an IAIB-accepting

sequence in our construction.

The set of states of T , to which we refer as the memory structure, is H =

{0, 1, . . . , j}4 with the initial memory state (0, 0, 0, 0). Consider a memory state

(o, p, r, s) ∈ H. The coordinates o and p count the number of letters IA and IB
that were seen so far (i.e. they decode the sequences on and pn on the fly). The

coordinates r and s will indicate the expected priorities of the automata R and S.

Consider the pseudo-code Transition presented in Algorithm 6 for updating the

memory state δT
(
(o, p, r, s), a)

def
= Transition(o, p, r, s, a).

Now automata R and S are defined as the product of A, B, M , and T , where

the priorities of R are defined as the r component of the current memory state of T
and the priorities of S are defined as the s component of the current memory state

of T . What remains is to argue that δT actually produces values inside {0, 1, . . . , j}4
and Invariants (7.1), (7.2), and (7.3) are satisfied. This aim is explained on Fig. 3.

Lemma 17. The transitions of T are well defined, i.e. if (In)n∈N is a correct

sequence then T
(
(In)n∈N

)
never reaches a value greater than j.

Proof. This lemma follows inductively from an invariant stating that

r, s ≤ o+ p+ 1

2
.

The next two lemmas imply Invariants (7.1), (7.2), and (7.3). Consider a cor-

rect sequence (In)n∈N ∈ {0, IA, IB}ω and assume that it is not IAIB-accepting. Let

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

928 H. Michalewski & M. Skrzypczak

IA-accepting

IA-rejecting

IB-rejecting IB-accepting

IAIB-accepting

(excluded by pathfinder)

Fig. 3. The big square represents all the correct sequences (In)n∈N. The IAIB-accepting

sequences (right-bottom square) are excluded by the properties of the pathfinder. Our aim is to

separate the left-bottom square from the right-top one, using two sets: the red set corresponds to
the acceptance of R; the green set corresponds to the acceptance by S. The constructed sets need

to complement each other in the left-upper square. Their behaviour in the right-bottom square

does not matter.(
(on, pn, rn, sn)

)
n∈N = T

(
(In)n∈N

)
be the sequence of memory states of T when

reading (In)n∈N. Assume that rmax, and smax are the maximal values of the respec-

tive coordinates in the sequence.

Lemma 18. If (In)n∈N is IA-accepting then rmax is even. If (In)n∈N is IB-accepting

then smax is even.

Proof. Assume that (In)n∈N is IA-accepting. By the assumption we know that

(In)n∈N is not IB-accepting. It means that from some point on we have on even

and pn odd. Therefore, we define rn+1 to be even as well (lines 13 to 16 of the

algorithm). The dual case is symmetric.

The next lemma implies Invariant (7.3) and concludes the proof of correctness

of the presented construction.

Lemma 19. Exactly one of rmax and smax is even.

Proof. Let N be the greatest number such that in the execution of

Transition(oN , pN , rN , sN) the line 13 was reached (i.e. the algorithm did not

return in lines 2 nor 12). Such N must exist because the sequence (In)n∈N contains

at least one symbol IA or IB and is ultimately constant 0.

Therefore, oN+1 + pN+1 = 1 mod 2; rN+1 + oN+1 = 0 mod 2; and sN+1 +

pN+1 = 0 mod 2, what implies that rN+1 + sN+1 = 1 mod 2. In the executions

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 929

Algorithm 6: Transition

Input: A state (o, p, r, s) ∈ H and a letter a ∈ {0, IA, IB}
Output: A state (o′, p′, r′, s′) ∈ H

1 if a = 0 then

2 return (o, p, r, s)

3 if a = IA then

4 o′ ← o′ + 1

5 else

6 o′ ← o′

7 if a = IB then

8 p′ ← p′ + 1

9 else

10 p′ ← p′

11 if o′ + p′ = 0 mod 2 then

12 return (o′, p′, r, s)

/* We know at this point that o′ + p′ = 1 mod 2. In other words

exactly one of the automata A and B seems to accept. */

13 if r + o′ = 1 mod 2 then

14 r′ ← r + 1

15 else

16 r′ ← r

17 if s+ p′ = 1 mod 2 then

18 s′ ← s+ 1

19 else

20 s′ ← s

/* We know at this point that r′ + o′ = 0 mod 2 and s′ + p′ = 0

mod 2. */

21 return (o′, p′, r′, s′)

of Transition(on, pn, rn, sn) for n > N the values of r and s are not modified

because line 13 is not reached there. It means that rmax = rN+1 and smax = sN+1

so rmax + smax = 1 mod 2. Thus, exactly one of these numbers is even.

7.2. Hardness for weak unambiguous automata

In this section we prove Theorem 2. We take A = {a, b} as the alphabet. The

construction will be inductive. We start from a pair of automata A0 and B0 defined

by the following procedure.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

930 H. Michalewski & M. Skrzypczak

Algorithm 7: BaseCase

Output: A pair of weak non-det. automata R and S
1 QR ← {?,>,⊥}
2 QS ← {?,>}
3 ∆R ← {(?, a, ?,>), (?, b,⊥,⊥), (>, ,>,>), (⊥, ,⊥,⊥)}
4 ∆S ← {(?, a, ?,>), (?, b,>,>), (>, ,>,>)}
5 qRI ← ?

6 qSI ← ?

7 ΩR(?)← 0

8 ΩR(>)← 0

9 ΩR(⊥)← 1

10 ΩS(?)← 1

11 ΩS(>)← 2

Fact 20. Let (A0,B0) = BaseCase(). Then both automata A0 and B0 are weak

and unambiguous, they recognise complementary languages, the index of A0 is (0, 1)

and the index of B0 is (1, 2).

Now, starting from this base case we construct inductively our sequence of

automata using the following algorithm.

Algorithm 8: Increase

Input: A pair of weak non-det. automata: A of index (0, j) and B of index

(1, j + 1)

Output: A pair of weak non-det. automata R and S
1 QR ← QB t {?} /* the union is disjoint: we add a fresh state

? /∈ QB */

2 QS ← QA tQB t {?,>}/* the same holds here for ? and > */

3 ∆R ← ∆B t {(?, , ?, qBI)}
4 ∆S ← ∆A t∆B ∪ {(?, , ?, qBI), (?, ,>, qAI), (>, ,>,>)}
5 qRI ← ?

6 qSI ← ?

7 ΩR(?)← 0

8 ΩS(?)← 1

9 ΩS(>)← 2

10 foreach q ∈ QB do

11 ΩR(q)← ΩB(q)

12 ΩS(q)← ΩB(q)

13 foreach q ∈ QA do

14 ΩS(q)← ΩA(q) + 2

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 931

Lemma 21. Let A, B be two weak non-deterministic automata over the same alpha-

bet A. Assume that A has index (0, j) and B has index (1, j + 1); and additionally

L(A) is the complement of L(B). Let (R,S) = Increase(A,B). Then:

L(R) =
{
t ∈ TrA | ∀n∈N t�LnR ∈ L(B)

}
,

L(S) =
{
t ∈ TrA | ∃n∈N t�LnR ∈ L(A)

}
.

In particular, L(R) is the complement of L(S). Additionally, if A and B unambigu-

ous then so are R and S.

The automaton R has index (0, j+ 1) and the automaton S has index (1, j+ 2).

Proof. The only non-trivial statement is the one about unambiguity of S. Consider

a tree t ∈ TrA. There is at most one N such that:

• t�LNR ∈ L(A),

• for all n < N we have t�LnR /∈ L(A).

Since the language L(A) is the complement of L(B), the second item above implies

that for all n < N we have t�LnR ∈ L(B).

The initial state of S is ? and the only transitions from ? are (?, , ?, qBI) and

(?, ,>, qAI). Thus, the state ? appears only in the nodes of the form L
n for n ∈ N.

For each such node, the states qAI and qBI verify if the subtree t�LnR for n ∈ N belongs

to L(A) and L(B) respectively. Since A and B are unambiguous, there is at most

one accepting run of the respective automaton over the considered subtree t�LnR.
Therefore, there is at most one accepting run of S over t. In this run the state ?

appears exactly in the nodes L
n for n ≤ N .

Definition 22. Let

(A0,B0)
def
= BaseCase()

(An+1,Bn+1)
def
= Increase(An,Bn) for n = 0, 1, 2, . . .

Lemma 23. For every n = 0, . . . the automata An and Bn are weak, unambiguous,

recognise complementary languages, and their indices are respectively (0, n+ 1) and

(1, n+ 2).

Proof. Easy induction using Lemma 21.

To prove that the languages of the automata An and Bn do not admit any

complexity collapse, we will use topological methods, see for instance [8] or [15].

Theorem 24 ([8]). If L is recognizable by a weak alternating automaton of index

(0, j) then L ∈ Π0
j . Dually, for index (1, j + 1), we have L ∈ Σ0

j .

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

932 H. Michalewski & M. Skrzypczak

Therefore, it is enough to observe the following lemma. The reasoning is very

similar to Lemma 3.2 in [20].

Lemma 25. For every n = 0, . . . the language L(An) is Π0
n+1-complete and the lan-

guage L(Bn) is Σ0
n+1-complete. In particular, L(An) /∈ Σ0

n+1 and L(Bn) /∈ Π0
n+1.

Proof. Induction on n using Exercise 23.3 in [11].

This concludes the proof of Theorem 2 — the automata An and Bn are weak

unambiguous of appropriate indices. Additionally, if a weak alternating automaton

C recognises the same language as An (resp. Bn) then the index of C is at least as

high as the index of An (resp. Bn).

8. Conclusion

This work studies the question how to use the fact that a given automaton A is

unambiguous to provide an upper bound for the complexity of the language recog-

nised by A. The answer to that question depends on the acceptance condition of

the automaton. In the case of general parity automata, the paper provides an algo-

rithm Transformation which, for a given unambiguous automaton A of index

(i, 2j), outputs an automaton Transformation(A) accepting the same language

and belonging to the class Comp(i+ 1, 2j). The core of this algorithm is a separa-

tion procedure by Arnold and Santocanale [3]. The algorithm Transformation

provides an effective drop in the descriptive complexity of the language using its

unambiguity. The construction can be considered as an automata-theoretic coun-

terpart of the Lusin-Souslin Theorem [11, Theorem 15.1].

The situation is different in the case of automata with the weak parity accep-

tance condition. In that case, a similar separation result holds, see Algorithm 4.

However, as Theorem 2 shows, unambiguous automata with the weak parity accep-

tance condition admit no drop in the descriptive complexity of their languages.

Acknowledgments

This work has been supported by Polish National Science Centre grant no. 2014-

13/B/ST6/03595.

References

[1] A. Arnold, The µ-calculus alternation-depth hierarchy is strict on binary trees, ITA
33(4/5) (1999) 329–340.

[2] A. Arnold, H. Michalewski and D. Niwiński, On the separation question for tree
languages, in STACS (Leibniz, 2012), pp. 396–407.

[3] A. Arnold and L. Santocanale, Ambiguous classes in µ-calculi hierarchies, TCS
333(1–2) (2005) 265–296.

[4] J. Bradfield, Simplifying the modal µ-calculus alternation hierarchy, in STACS
(Springer, 1998), pp. 39–49.

1st Reading

July 31, 2018 6:25 112-IJFCS 1842011

On the Strength of Unambiguous Tree Automata 933

[5] A. Carayol, C. Löding, D. Niwiński and I. Walukiewicz, Choice functions and well-
orderings over the infinite binary tree, Cent. Europ. J. of Math. 8 (2010) 662–682.

[6] T. Colcombet, Forms of determinism for automata (invited talk), in STACS (Leibniz,
2012), pp. 1–23.

[7] J. Duparc, K. Fournier and S. Hummel, On unambiguous regular tree languages of
index (0, 2), in CSL (Leibniz, 2015), pp. 534–548.

[8] J. Duparc and F. Murlak, On the topological complexity of weakly recognizable tree
languages, in FCT (Springer, 2007), pp. 261–273.

[9] O. Finkel and P. Simonnet, On recognizable tree languages beyond the Borel hierar-
chy, Fundam. Inform. 95(2–3) (2009) 287–303.

[10] S. Hummel, Unambiguous tree languages are topologically harder than deterministic
ones, in GandALF (2012), pp. 247–260; arXiv: 1210.2028.

[11] A. Kechris, Classical Descriptive Set Theory (Springer-Verlag, New York, 1995).
[12] O. Kupferman and M. Y. Vardi, The weakness of self-complementation, in STACS

(Springer, 1999), pp. 455–466.
[13] H. Michalewski and M. Skrzypczak, Unambiguous büchi is weak, in DLT (2016),

pp. 319–331, abs/1401.4025.
[14] S. Miyano and T. Hayashi, Alternating finite automata on omega-words, Theor. Com-

put. Sci. 32 (1984) 321–330.
[15] F. Murlak, Effective Topological Hierarchies of Recognizable Tree Languages, PhD

thesis, University of Warsaw (2008).
[16] D. Niwiński and I. Walukiewicz, Ambiguity problem for automata on infinite trees,

unpublished (1996).
[17] M. O. Rabin, Weakly definable relations and special automata, in Proceedings of the

Symposium on Mathematical Logic and Foundations of Set Theory (North-Holland,
1970), pp. 1–23.

[18] M. Skrzypczak, Unambiguous languages exhaust the index hierarchy, CoRR (2018),
abs/1803.06163.

[19] M. Skrzypczak and I. Walukiewicz, Deciding the topological complexity of Büchi
languages, in ICALP (2) (Leibniz, 2016), pp. 99:1–99:13.

[20] J. Skurczyński, The Borel hierarchy is infinite in the class of regular sets of trees,
Theoretical Computer Science 112(2) (1993) 413–418.

[21] W. Thomas, Languages, automata, and logic, in Handbook of Formal Languages
(Springer, 1996), pp. 389–455.

[22] W. Thomas and H. Lescow, Logical specifications of infinite computations, in REX
School/Symposium (Springer, 1993), pp. 583–621.

