Games and complexity:
 from Banach-Mazur to automata theory

Michał Skrzypczak

Workshop on Wadge Theory and Automata II
Torino 08.06.2018

Foundation for Polish Science

NATIONAL SCIENCE CENTRE POLAND

Part 1

Generic objects

How to prove that there exists a four-legged elephant?

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Option 3.: Go contrapositive, etc. . .

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

Example Probabilistic approach:

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P)=1$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P)=1$

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P)=1$

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P)=1$

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

But:

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.
Generic sets should form a σ-filter:

- If P is generic then $P \neq \varnothing$.
- If $P \subseteq P^{\prime}$ is generic then P^{\prime} is generic.
- If $\left(P_{n}\right)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_{n}$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P)=1$

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

But: limitations of quantitativity

Topological genericness: comeagre sets

Topological genericness: comeagre sets

$G \subseteq X$ is comeagre
 iff

Topological genericness: comeagre sets

$G \subseteq X$ is comeagre

iff

$$
G \supseteq \bigcap_{i \in \omega} U_{i}
$$

Topological genericness: comeagre sets

$G \subseteq X$ is comeagre
 iff

$$
\begin{aligned}
& G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \text { all } U_{i} \text { are dense and open }
\end{aligned}
$$

Topological genericness: comeagre sets

$$
\begin{array}{ll}
G \subseteq X \text { is comeagre } \quad \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \text { all } U_{i} \text { are dense and open }
\end{array}
$$

$$
\forall_{n \in \omega}^{\forall}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow \quad\left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
$$

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\text { all }^{\forall} U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) & \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$.

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\text { all }_{i} U_{i} \text { are dense and open } \\
\forall & \left(G_{n} \text { is comeagre }\right) & \Longrightarrow
\end{array}\left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) & \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
& \\
\text { all }_{n \in \omega} U_{i} \text { are dense and open } \\
& \left(G_{n} \text { is comeagre }\right) & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
\leadsto the complement of a comeagre set is not comeagre

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) & \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) & \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
{ }_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable
- a linear partial differential equation with no solutions

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable
- a linear partial differential equation with no solutions
- . . .

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire [1899])
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence) forcing

- a continuous function nowhere differentiable
- a linear partial differential equation with no solutions
- . . .

Which sets are comeagre?

Which sets are comeagre? (Banach-Mazur game)

Which sets are comeagre? (Banach-Mazur game)
 (take $W \subseteq[0,1]$)

$\mathrm{BM}(W)$ is the infinite game:

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0,
(II):

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$
(II):

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$
(II): $\underline{19743}$

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$ 13
(II): 19743

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$
13
(II):
19743

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{43226} & \underline{13743} & \underline{8723466}\end{array}$

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:

| (I): $0, \underline{43226}$ | $\underline{13}$ | $\underline{8723466}$ |
| :--- | :--- | :--- | :--- | :--- |
| (II): | $\underline{19743}$ | $\underline{54326}$ |

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:

| (I): $0, \underline{43226}$ | $\underline{19743}$ | $\underline{8723466}$ | |
| :--- | :--- | :--- | :--- | :--- |
| (II): | $\underline{54326}$ | | |

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:

$$
\begin{aligned}
& \text { (I): 0, } \underline{43226}^{\underline{19743}} \underline{-}^{\underline{13}} \underline{8723466} \\
& \underline{54326} \\
& \\
& \text { (II): }
\end{aligned}
$$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} & \underline{54326} \\ & \cdots \sim \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} & \underline{54326} \\ -\cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\left[W \supseteq \bigcap_{i \in \omega} U_{i} \text {-open, dense }\right]
$$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } 0, \underline{43226} \\ \text { (II): } & \underline{19743} & \underline{13} \underline{8723466} & \underline{54326} \\ & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

Proof

$$
\text { [} W \supseteq \underbrace{U_{i}}_{i \in \omega} \text {-open, dense] }
$$

(\Rightarrow)

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:

$$
\begin{aligned}
& \text { (I): 0, } \underline{43226}^{\underline{19743}} \begin{array}{l}
\underline{13} \underline{8723466} \\
(\mathrm{II}):
\end{array} \underline{\underline{54326}} \cdots \cdots \leadsto \pi \in[0,1]
\end{aligned}
$$

Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [WЭ } \underbrace{}_{\left.i \in \omega U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i}

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$

Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [} W \supseteq \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$

Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [} W \supseteq \underbrace{}_{\left.\bigcap_{i \epsilon \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow)

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$

Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [} W \supseteq \underbrace{}_{\left.\bigcap_{i \epsilon \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}.

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } 0, \underline{43226} \\ \text { (II): } & \underline{19743} & \underline{8723466} & \underline{54326} \\ & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
[W \supseteq \underbrace{}_{\left.\bigcap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is $\underbrace{\text { comeagre. }}$

$$
[W \supseteq \underbrace{}_{i \in \omega} U_{i} \text {-open, dense }]
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
$\begin{array}{llll}\text { (I): } 0, \underline{43226} \\ \text { (II): } & \underline{19743} & \underline{8723466} & \underline{54326} \\ & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [WЭ } \underbrace{}_{\left.i \in \omega U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Corollary

Player (I) has a winning strategy in $\mathrm{BM}(W)$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
$\begin{array}{llll}\text { (I): } 0, \underline{43226} \\ \text { (II): } & \underline{19743} & \underline{8723466} & \underline{54326} \\ & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur [1935], Oxtoby [1957])
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

Proof

$$
\text { [WЭ } \underbrace{}_{\left.i \in \omega U_{i} \text {-open, dense }\right]}
$$

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Corollary

Player (I) has a winning strategy in $\mathrm{BM}(W)$ iff

$$
([0,1]-W) \text { is comeagre on some interval. }
$$

Part 2

Determinacy

A game is determined if either (I) or (II) has a winning strategy.

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

$$
\begin{aligned}
& \text { Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...)) } \\
& \qquad \begin{aligned}
& \text { Let } \mathrm{XOR} \subseteq\{0,1\}^{\omega} \text { satisfy } 011001110101111011110101 \cdots \in \mathrm{XOR} \\
& \text { iff } \\
& 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{aligned}
\end{aligned}
$$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
[hidden axiom of choice...]
$011001110101111011110101 \cdots \in$ XOR
iff
$011001110101011011110101 \cdots \notin$ XOR

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
$011001110101111011110101 \cdots \in$ XOR
iff
[hidden axiom of choice...] $011001110101011011110101 \cdots \notin$ XOR
Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

$$
\begin{array}{cc}
\text { Let XOR } \subseteq\{0,1\}^{\omega} \text { satisfy } & 011001110101111011110101 \cdots \in \mathrm{XOR} \\
\text { [hidden axiom of choice...] } & 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{array}
$$

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined !

$$
\begin{array}{ccc}
\text { (I): } & \underline{01100} \\
\text { (II): } & \underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011}
\end{array} \cdots \leadsto \pi \in\{0,1\}^{\omega}
$$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

$$
\begin{array}{cc}
\text { Let XOR } \subseteq\{0,1\}^{\omega} \text { satisfy } & 011001110101111011110101 \cdots \in \mathrm{XOR} \\
\text { [hidden axiom of choice...] } & 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{array}
$$

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011} \underline{\underline{00}} \underline{110010} \underline{00011} \cdots \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \mathrm{XOR}
\end{aligned}
$$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

$$
\begin{array}{cc}
\text { Let XOR } \subseteq\{0,1\}^{\omega} \text { satisfy } & 011001110101111011110101 \cdots \in \mathrm{XOR} \\
\text { [hidden axiom of choice...] } & 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{array}
$$

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1} \underline{110010} \quad \underline{00011} \cdots \cdots \pi\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \mathrm{XOR}
\end{aligned}
$$

1. ((II) has a w.s.) $\Longrightarrow((\mathrm{I})$ has a w.s. $)$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
[hidden axiom of choice...] $011001110101011011110101 \ldots \notin$ XOR
Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{array}{llll}
\text { (I): } \quad \underline{01100} \\
\text { (II): } & \underline{11011} \underline{00} \underline{110010} \\
& \underline{00011} & \cdots \sim \pi \in\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \text { XOR }
\end{array}
$$

1. ((II) has a w.s.) \Longrightarrow ((I) has a w.s.)
2. ((I) has a w.s.) \Longrightarrow ((II) has a w.s.)

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
[hidden axiom of choice...] $011001110101011011110101 \cdots \notin$ XOR

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{array}{llll}
\text { (I): } \quad \underline{01100} \\
\text { (II): } & \underline{11011} \underline{00} \underline{110010} \\
& \underline{00011} & \cdots \sim \pi \in\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \text { XOR }
\end{array}
$$

1. ((II) has a w.s.) \Longrightarrow ((I) has a w.s.)
2. ((I) has a w.s.) \Longrightarrow ((II) has a w.s.)

$\mathrm{BM}(\mathrm{XOR})$ is non-determined !

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

$\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"

$\mathrm{BM}(\mathrm{XOR})$ is non-determined !

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-\mathrm{a}$ w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\sigma_{1}:
$$

(II):

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\sigma_{\mathrm{I}}:
$$

(II):
(I):
$\sigma_{\text {II }}$:

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take σ_{I} — a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)
σ_{I} :
(II):
(I): $\quad \underline{r_{0}}$
$\sigma_{\text {II }}$:

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take σ_{I} — a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\sigma_{\mathrm{I}}: \quad \underline{s_{0}}
$$

(II):
(I): $\quad \underline{r_{0}}$
$\sigma_{\text {II }}:$

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$$
\begin{aligned}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{1}^{\underline{00}} \underline{110010} \\
& \underline{00011} \\
& \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& (\mathrm{I}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$\sigma_{\mathrm{I}}:$	$\underline{s_{0}}$
$(\mathrm{II}):$	$\underline{s_{1}}$
$(\mathrm{I}):$	$\underline{r_{0} 0}$
$\sigma_{\mathrm{II}}:$	

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \pi \in\{0,1\}^{\omega}} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (I): } \quad \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \cdots \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$$
\begin{aligned}
\text { (I): } \begin{aligned}
& \underline{01100} \\
& \text { (II): } \underline{00} \underline{110010} \\
& \underline{11011} \underline{00011} \\
& \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
&((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$\leadsto \sigma_{\text {II }}$ is a winning strategy of (II)

$$
\begin{aligned}
\text { (I): } \begin{aligned}
& \underline{01100} \\
& \text { (II): } \underline{00} \underline{110010} \\
& \underline{11011} \underline{00011} \\
& \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
&((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$\mathrm{XOR} \cong \neg \mathrm{XOR}$

$\leadsto \sigma_{\text {II }}$ is a winning strategy of (II)

Theorem (Martin ['75])

Determined are games which are:

Theorem (Martin ['75])

Determined are games which are:

- played by two players,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,
when the winning condition is Borel.

Corollary

All Borel sets have:

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,
when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,
- Ramsey-style dichotomies, ...

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,

when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,
- Ramsey-style dichotomies, ...

Part 3

Effectiveness

Regular languages

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{FO}[\leqslant, A]+\exists X$,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{FO}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{FO}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{FO}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family REG that:

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{FO}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family REG that:

- contains some basic languages,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts:

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel, $\operatorname{proj}($ REG $) \subseteq$ REG,

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel, $\quad \operatorname{proj}($ REG $) \subseteq$ REG, $\operatorname{proj}($ Borel $) ~ \varsubsetneqq$ Borel.

Regular languages

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- defined in Monadic Second-order logic: $\mathrm{Fo}[\leqslant, A]+\exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,
-...

Regular sets is the smallest family REG that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel, $\quad \operatorname{proj}($ REG $) \subseteq$ REG, $\operatorname{proj}($ Borel $) ~ \varsubsetneqq$ Borel.
Theorem (Büchi ['62])
Given (a represenation of) $L \in \mathrm{REG}$ it is decidable if $L \neq \varnothing$.

Theorem (Büchi, Landweber ['69])

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{array}{rlll}
\text { (I) }: & a_{0} \\
\text { (II) }: & \underline{a_{1}} & \underline{a_{2}} & \underline{a_{4}} \\
\underline{a_{5}} & \underline{a_{6}} & \underline{a_{7}} & \underline{a_{8}}
\end{array} \cdots \leadsto \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}
$$

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \underline{a}_{0} \underline{a}_{1}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}} \frac{a_{5}}{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \underline{a}_{0} \underline{a}_{1}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}} \frac{a_{5}}{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values, initial memory $m_{0} \in M$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values, initial memory $m_{0} \in M$, and update function $\delta: M \times A \rightarrow M$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}} \underline{a}_{7}^{\underline{a_{8}}} \cdots \sim \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values,
initial memory $m_{0} \in M$, and update function $\delta: M \times A \rightarrow M$,
such that for $m_{i+1} \stackrel{\text { def }}{=} \delta\left(m_{i}, a_{i}\right)$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

$$
\begin{gathered}
\text { (I): } \frac{a_{0}}{\text { (II): }_{\underline{a_{1}}}^{\underline{a_{2}}}{ }_{\underline{a_{3}}}^{\underline{a_{4}}}{ }_{\underline{a_{5}}}^{\underline{a_{6}}}{ }_{\underline{a_{7}}}^{\underline{a_{8}}} \cdots \cdots \leadsto \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}} \\
\text { (II) wins } \pi \text { iff } \pi \in W
\end{gathered}
$$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values,
initial memory $m_{0} \in M$, and update function $\delta: M \times A \rightarrow M$,
such that for $m_{i+1} \stackrel{\text { def }}{=} \delta\left(m_{i}, a_{i}\right)$,
the choice of a_{i} depends only on m_{i}.

Part 4

Applications

Synthesis

Synthesis

Synthesis

Trace $\tau=\left(i_{0}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0}\right.$

Synthesis

Trace $\tau=\left(\begin{array}{lll}i_{0} & o_{0} & i_{1}\end{array}\right.$

Synthesis

Trace $\tau=\left(\begin{array}{llllllll}i_{0} & o_{0} & i_{1} & o_{1}\end{array}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification

Synthesis

φ over $I \sqcup O$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.:
Impl.:

Specification φ over $I \sqcup O$

Env.: $\quad i_{0}$
Impl.:

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.: $\quad i_{0}$
Impl.: $\quad \underline{o}$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.: $\quad \underline{i_{0}}$
Impl.: $\quad \underline{o_{0}}$

Specification φ over $I \sqcup O$

Env.: $\underline{i_{0}}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.: $\quad \underline{i_{0}} \quad \underline{i_{1}}$
Impl.: $\quad \underline{o_{0}} \quad \underline{O_{1}}$

Specification φ over $I \sqcup O$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
$[\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
$[\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Specification φ over $I \sqcup O$

Specification φ over $I \sqcup O$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{lllllll}\text { Env.: } & \underline{i_{0}} & & \underline{i_{1}} & & \underline{i_{2}} & \\ \text { Impl.: } & & \underline{o_{0}} & & \underline{o_{1}} & & \underline{o_{2}} \\ & & & \cdots\end{array}$

Specification φ over $I \sqcup O$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{rllllll}\text { Env.: } & \underline{i_{0}} & & \underline{i_{1}} & & \underline{i_{2}} & \\ \text { Impl.: } & & \underline{o_{0}} & & \underline{o_{1}} & & \underline{o_{2}} \\ & & & \cdots\end{array}$

Specification φ over $I \sqcup O$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.: $\underline{i_{0}} \quad \underline{i_{1}} \quad \underline{i_{2}} \quad \cdots \quad \underline{i_{n}}$ Impl.: $\quad \underline{o_{0}} \quad \underline{o_{1}} \quad \underline{O_{2}} \quad \cdots$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.: $\underline{i_{0}} \quad \underline{i_{1}} \quad \underline{i_{2}} \quad \cdots \quad \underline{i_{n}}$ $\begin{array}{llllll}\text { Impl.: } & \underline{o_{0}} & \underline{o_{1}} & \underline{o_{2}} & \cdots & \underline{o_{n}}\end{array}$

Specification φ over $I \sqcup O$

$$
\text { Solve } \mathcal{G}(\mathrm{L}(\varphi))
$$

$$
\text { Solve } \mathcal{G}(\mathrm{L}(\varphi))
$$

Env wins

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Deciding if $G \in \mathrm{REG}$ is comeagre

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}$:

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}:\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$
(I):
(II):

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$
(I): $\quad \underline{a_{0}}$
(II):

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}:\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{cll}
\text { (I): } & \underline{a_{0}} & \\
\text { (II): } & & \underline{b}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$
$\begin{array}{rlll}\text { (I) }: & \underline{a_{0}} & & \underline{a_{1}} \\ \text { (II): } & & \underline{b} & \end{array}$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$
$\begin{array}{lllll}\text { (I): } & \underline{a_{0}} & \underline{a_{1}} & \\ \text { (II): } & \underline{b} & \underline{b}\end{array}$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{lllll}
\text { (I): } & a_{0} \\
\text { (II): } & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{cllllll}
\text { (I): } & \underline{a_{0}} & & \underline{a_{1}} & \underline{b} & \\
\text { (II): } & & \underline{b} & & \underline{b} & & \underline{a_{2}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\quad\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{llllllll}
\text { (I): } & \underline{a_{0}} & & \underline{a_{1}} & \underline{b} & \underline{b} \\
\text { (II): } & & \underline{b} & & \underline{a_{2}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\quad\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{cllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & & \underline{a_{2}} \\
\underline{a_{3}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\quad\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllll}
\text { (I) : } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{b} & \underline{a_{3}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllll}
\text { (I): } & \underline{a_{0}} & & \underline{a_{1}} & \underline{b} & & \underline{b} & \underline{b} \\
\text { (II): } & & \underline{b} & & \underline{b} & & \underline{a_{2}} & & \underline{a_{3}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{lllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{a_{3}} & \underline{b} & \underline{a_{4}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & & \underline{a_{1}} & \underline{b} & & \underline{b} & & \underline{a_{2}} & \\
a_{3} & \underline{a_{4}} & \underline{a_{5}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{lllllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{b} & \underline{a_{3}} & \underline{a_{4}} & \underline{b} \\
\underline{a_{5}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllllllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{a_{3}} & \underline{a_{4}} & \underline{a_{5}} & \underline{b}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & & \underline{a_{2}} & \underline{a_{3}} & \underline{b} & \underline{a_{4}} & \underline{a_{5}} & \underline{b} \\
\underline{a_{6}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$. $\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]$
Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& \text { (I): } \underline{a}_{0} \underline{b}^{\underline{a_{1}}} \underline{\underline{b}} \quad \underline{b} \underline{a}_{2} \underline{\underline{b}} \underline{a}_{3} \underline{\underline{b}} \underline{a}_{4} \underline{\underline{b}} \underline{a}_{5}^{\underline{b}} \quad \underline{b} \quad \underline{a_{6}} \\
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Deciding if $G \in$ REG is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}:\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Similarly with other game-characterised properties for regular sets:

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}:\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Similarly with other game-characterised properties for regular sets:

- countability,

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0 ,

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0 ,
- Wadge reductions (in a moment), ...

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0 ,
- Wadge reductions (in a moment), ...

Sometimes works even for infinite trees:

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\mathcal{A}_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\mathcal{A}_{G} \mapsto \mathcal{A}_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\mathcal{A}_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0 ,
- Wadge reductions (in a moment), ...

Sometimes works even for infinite trees:
Theorem (Michalewski, Mio, S. ['17])
It is decidable if $\mathrm{L}(\mathcal{A})$ is comeagre for game-automata \mathcal{A}.

Wadge order for regular languages

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{w} L$?

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{~W} L$?

Wadge game $\mathcal{W}(K, L)$:

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{~W} L$?

Wadge game $\mathcal{W}(K, L)$:
(I):
(II):

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{~W} L$?

Wadge game $\mathcal{W}(K, L)$:
$\begin{aligned} \text { (I): } & a_{0} \\ \text { (II): } & \end{aligned}$

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{w} L$?

Wadge game $\mathcal{W}(K, L)$:
ε^{A}
(I):
a_{0}
(II):

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{w} L$?

Wadge game $\mathcal{W}(K, L)$:
ϵ^{A}
(I):
a_{0}
(II): $\quad b_{0}$

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{w} L$?

Wadge game $\mathcal{W}(K, L)$:

$$
\begin{aligned}
& \iota^{A} \\
& a_{0} \\
& b_{0} \\
& \stackrel{\leftarrow}{ } B \sqcup\{\epsilon\}
\end{aligned}
$$

(I):
(II): $\quad b_{0}$

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{w} L$?

Wadge game $\mathcal{W}(K, L)$:

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{w} L$?

Wadge game $\mathcal{W}(K, L)$:

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant{ }_{\mathrm{W}} L$?

Wadge game $\mathcal{W}(K, L)$:

$<^{A}$					
(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}
(II):	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}
© $B \sqcup\{\epsilon\}$					

Wadge order for regular languages
Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{~W} L$?

Wadge game $\mathcal{W}(K, L)$:

(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\cdots	$\cdots \rightarrow \alpha \in A^{\omega}$
(II):	b_{0}	b_{1}	b_{2}	b_{3}	b_{4}	\cdots	$\cdots \rightarrow \beta \in B^{\leqslant \omega}$
	$\curvearrowleft B \sqcup\{\epsilon\}$						

Wadge order for regular languages
Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant \mathrm{~W} L$?

Wadge game $\mathcal{W}(K, L)$:

\measuredangle^{A}							
(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	-•	$m \sim \alpha \in A^{\omega}$
(II):	b_{0}		b_{2}	b_{3}	b_{4}	-•	$\cdots \beta \in B^{\leqslant \omega}$
© $B \sqcup\{\epsilon\}$							

Wadge order for regular languages
Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant{ }_{\mathrm{W}} L$?

Wadge game $\mathcal{W}(K, L)$:

Wadge order for regular languages
Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$
Output: Does $K \leqslant{ }_{\mathrm{W}} L$?

Wadge game $\mathcal{W}(K, L)$:

$<^{A}$							
(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	-•	$m \alpha \in A^{\omega}$
(II):			b_{2}	b_{3}	b_{4}	-	$\leadsto \beta \in B^{\leqslant \omega}$
	$W \equiv \beta \underbrace{\beta \in B^{\omega} \wedge(\alpha \in L \Leftrightarrow \beta \in K)}$						
	regular property over $A \cup B \sqcup\{\epsilon\}$						

Effectively solve $\mathcal{W}(K, L)$ to know if $K \leqslant \mathrm{w} L$.

Parity index

Parity index

Fix a pair $i \leqslant j$.

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}^{\Omega: Q \rightarrow\{i, \ldots, j\}}$ automaton

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant \begin{gathered} \\ P_{i, j}\end{gathered}$.

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\underbrace{\Omega: Q \rightarrow\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant \mathrm{~W} P_{i, j}$.

Proof

\mathcal{A} reads $\alpha=a_{0} a_{1} \cdots$ and produces $\rho=q_{0} q_{1} \cdots$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\underbrace{\Omega: Q \rightarrow\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proof

\mathcal{A} reads $\alpha=a_{0} a_{1} \cdots$ and produces $\rho=q_{0} q_{1} \cdots$
$\alpha=\quad \begin{array}{lllllll}a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}\end{array}$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\underbrace{\Omega: Q \rightarrow\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proof

\mathcal{A} reads $\alpha=a_{0} a_{1} \cdots$ and produces $\rho=q_{0} q_{1} \cdots$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proof

\mathcal{A} reads $\alpha=a_{0} a_{1} \cdots$ and produces $\rho=q_{0} q_{1} \cdots$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\underbrace{\Omega: Q \rightarrow\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proof

\mathcal{A} reads $\alpha=a_{0} a_{1} \cdots$ and produces $\rho=q_{0} q_{1} \cdots$

$$
\alpha \in \mathrm{L}(\mathcal{A}) \text { iff } \tau \in P_{i, j}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant \begin{gathered} \\ P_{i, j}\end{gathered}$.

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{\underbrace{\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant \begin{gathered} \\ P_{i, j}\end{gathered}$.

Proposition

If $L \leqslant{ }_{\mathrm{W}} P_{i, j}$ and $L \in \mathbf{R E G}$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\overbrace{}^{\Omega: Q \rightarrow\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{~W} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant \mathrm{~W} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

(I):
(II):

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

(I):

$$
\begin{equation*}
a_{0} \tag{II}
\end{equation*}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.
Proof - game:

$$
๕^{A}
$$

(I):
a_{0}
(II):

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.
Proof - game:
(I):
(II):

$$
\begin{gathered}
๕^{A} \\
a_{0} \\
p_{0}
\end{gathered}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.
Proof - game:
(I):
(II):

$$
\begin{aligned}
& \iota^{a_{0}} \\
& p_{0} \\
& { }^{\approx}\{i, \ldots, j\}
\end{aligned}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

$$
๕^{A}
$$

(I):

$$
\begin{array}{lll}
a_{0} & a_{1} \\
p_{0} & &
\end{array}
$$

(II):

$$
\mathfrak{\circledast}\{i, \ldots, j\}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant \mathrm{~W} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

$$
๕^{A}
$$

(I):

$$
\begin{array}{lll}
a_{0} & a_{1} \\
p_{0} & & p_{1}
\end{array}
$$

(II):

$$
\mathfrak{\approx}\{i, \ldots, j\}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\overbrace{}^{\Omega: Q \rightarrow\{i, \ldots, j\}}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

$$
๕^{A}
$$

(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}
(II):	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}

$$
\mathfrak{\approx}\{i, \ldots, j\}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

$$
๕^{A}
$$

(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	$\bullet \cdot$	$\sim \alpha \in A^{\omega}$
(II):	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	$\bullet \cdot$	$\sim \tau \in\{i, \ldots, j\}^{\omega}$

$$
\mathfrak{\approx}\{i, \ldots, j\}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant{ }_{\mathrm{w}} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

$$
๕^{A}
$$

(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	$\bullet \cdot$	$\sim \alpha \in A^{\omega}$
(II):	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	$\bullet \cdot$	$\sim \tau \in\{i, \ldots, j\}^{\omega}$

$$
\begin{aligned}
& \curvearrowright\{i, \ldots, j\} \\
& \qquad W \equiv \alpha \in L \Leftrightarrow \tau \in P_{i, j}
\end{aligned}
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof - game:

$$
๕^{A}
$$

(I):	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	$\bullet \cdot$	$\sim \alpha \in A^{\omega}$
(II):	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	$\bullet \cdot$	$\sim \tau \in\{i, \ldots, j\}^{\omega}$

$$
\mathfrak{\approx}\{i, \ldots, j\}
$$

$$
W \equiv \alpha \in L \Leftrightarrow \tau \in P_{i, j} \text { - regular condition }
$$

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.
Proof - game:

$$
\begin{aligned}
& \measuredangle^{A} \\
& \text { (I): } \begin{array}{llllllll}
& a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots & m \alpha \in A^{\omega}
\end{array} \\
& \text { (II): } p_{0} \quad p_{1} \quad p_{2} \quad p_{3} \quad p_{4} \quad \cdots \quad \leadsto \leadsto \tau \in\{i, \ldots, j\}^{\omega} \\
& \approx\{i, \ldots, j\} \\
& W \equiv \alpha \in L \Leftrightarrow \tau \in P_{i, j} \text { - regular condition }
\end{aligned}
$$

1. (II) wins the game (because $L \leqslant \mathrm{w} P_{i, j}$).

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant \mathrm{w} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.
Proof - game:

$$
\begin{aligned}
& \measuredangle^{A} \\
& \text { (I): } \begin{array}{lllllll}
& a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots
\end{array} m \alpha \in A^{\omega} \\
& \text { (II): } \quad p_{0} \quad p_{1} \quad p_{2} \quad p_{3} \quad p_{4} \quad \cdots \quad \leadsto \leadsto \tau \in\{i, \ldots, j\}^{\omega} \\
& \approx\{i, \ldots, j\} \\
& W \equiv \alpha \in L \Leftrightarrow \tau \in P_{i, j} \text { - regular condition }
\end{aligned}
$$

1. (II) wins the game (because $L \leqslant{ }_{\mathrm{W}} P_{i, j}$).
2. So (II) wins using finite memory

Parity index

Fix a pair $i \leqslant j$.

$$
P_{i, j} \stackrel{\text { def }}{=}\left\{\tau \in\{i, \ldots, j\}^{\omega} \mid \lim \sup _{n \rightarrow \infty} \tau(n) \equiv 0(\bmod 2)\right\}
$$

Fact

$$
\Omega: Q \rightarrow\{i, \ldots, j\}
$$

If $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. $\overbrace{(i, j) \text {-parity }}$ automaton then $L \leqslant{ }_{\mathrm{W}} P_{i, j}$.

Proposition

If $L \leqslant{ }_{\mathrm{w}} P_{i, j}$ and $L \in \mathrm{REG}$ then $L=\mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.
Proof - game:

$$
\begin{aligned}
& \measuredangle^{A} \\
& \text { (I): } \begin{array}{lllllll}
& a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & \cdots
\end{array} m \alpha \in A^{\omega} \\
& \text { (II): } p_{0} \quad p_{1} \quad p_{2} \quad p_{3} \quad p_{4} \quad \cdots \quad \leadsto \leadsto \tau \in\{i, \ldots, j\}^{\omega} \\
& \approx\{i, \ldots, j\} \\
& W \equiv \alpha \in L \Leftrightarrow \tau \in P_{i, j} \text { - regular condition }
\end{aligned}
$$

1. (II) wins the game (because $L \leqslant \mathrm{w} P_{i, j}$).
2. So (II) wins using finite memory $\leadsto \rightarrow$ det. (i, j)-parity aut. for L. \square

Michał Skrzypczak Games and complexity: from
-games to automata
$13 / 22$

Trivia: $\quad P_{i, j} \leqslant \mathrm{~W} P_{i, j+1}$,

Trivia: $\quad P_{i, j} \leqslant \mathrm{~W} P_{i, j+1}, \quad P_{i, j} \equiv{ }_{\mathrm{W}} P_{i+2, j+2}$,

Trivia: $\quad P_{i, j} \leqslant \mathrm{~W} P_{i, j+1}, \quad P_{i, j} \equiv{ }_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv{ }_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv{ }_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv{ }_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

Theorem $P_{i, j} \not{ }_{\mathrm{W}} P_{i+1, j+1}$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

Theorem $P_{i, j} \not{ }_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{~W} P_{i+1, j+1}$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w}<\mathrm{w}
\end{aligned}
$$

Theorem $P_{i, j} \leqslant_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \begin{array}{rlll}
P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3}
\end{array} P_{0,4} \\
& \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{10 \ldots} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \leqslant_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

$$
\begin{aligned}
\alpha & = \\
\rho & =q_{0}
\end{aligned}
$$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{0.1} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \leqslant_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

$$
\begin{array}{cc}
\alpha= & \\
\rho= & q_{0} \\
\Omega: & I \\
\tau= & 1
\end{array}
$$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{0.1} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \not{ }_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

$$
\begin{array}{rcc}
\alpha= & & 0 \\
\rho= & q_{0} & \\
\Omega: & I & \\
\tau= & 1 &
\end{array}
$$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{0, \ldots} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \not{ }_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

$$
\begin{array}{rll}
\alpha= & 0 \\
\rho= & q_{0} \\
\Omega: & I \\
\tau= & 1
\end{array}
$$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{0, \ldots} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \not{ }_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

\[

\]

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \left.\begin{array}{lllllllllll}
P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} & P_{0,4} & P_{0,5} & P_{0,6} & P_{0,7} & h_{0} & \text { mon } & n m
\end{array}\right) \\
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{0, \ldots} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \not{ }_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

$$
\begin{array}{rccc}
\alpha= & 0 & 2 \\
\rho= & q_{0} & & q_{1} \\
\Omega: & I & I & \\
\tau= & 1 & & 3
\end{array}
$$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \leqslant \mathrm{w} \\
& \begin{array}{lllllllllll}
P_{1,0+1} & P_{1,1+1} & P_{1,2+1} & P_{1,3+1} & P_{1,4+1} & P_{1,5+1} & P_{1,5+1} & P_{1, t+1} & n_{1, \ldots} & n_{0, \ldots} & n+m
\end{array}
\end{aligned}
$$

Theorem $P_{i, j} \star_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

$$
\begin{aligned}
& \alpha=0 \quad 0 \\
& \rho=q_{0} \int q_{1} \smile q_{2} \\
& \Omega \text { : I I } \\
& \tau=1 \quad 3
\end{aligned}
$$

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{~W} \quad \leqslant \mathrm{w} \leqslant \mathrm{v}<w
\end{aligned}
$$

Theorem $P_{i, j} \star_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{gathered}
P_{0,0}
\end{gathered} P_{0,1} \quad P_{0,2} \quad P_{0,3} \quad P_{0,4} \quad P_{0,5} \quad P_{0,0} P_{0, c}
$$

Theorem $P_{i, j} \leqslant_{W} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

Trivia: $\quad P_{i, j} \leqslant{ }_{\mathrm{W}} P_{i, j+1}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+2, j+2}, \quad P_{i, j} \equiv_{\mathrm{W}} P_{i+1, j+1}^{\mathrm{c}}$

$$
\begin{aligned}
& \leqslant \mathrm{W} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w} \quad \leqslant \mathrm{w}
\end{aligned}
$$

Theorem $P_{i, j} \star_{\mathrm{W}} P_{i+1, j+1}$
Proof Assume that $P_{i, j} \leqslant \mathrm{w} P_{i+1, j+1}$
$\leadsto \mathrm{L}(\mathcal{A})=P_{i, j}$ with \mathcal{A} det. $(i+1, j+1)$-parity automaton

Part 5

Effective characterisations

Task: understand which $L \in R E G$ are simple.

Task: understand which $L \in R E G$ are simple.

Procedure:
Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

Task: understand which $L \in R E G$ are simple.
Procedure:

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

Task: understand which $L \in R E G$ are simple.
Procedure:
Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

Task: understand which $L \in R E G$ are simple.

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

Task: understand which $L \in$ REG are simple.

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

Task: understand which $L \in \mathrm{REG}$ are simple.

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

\longrightarrow finite / countable / meagre / . .
\longrightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in$ REG is First-order (i.e. FO) definable.

Task: understand which $L \in R E G$ are simple.

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

\rightarrow finite / countable / meagre / ...
topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in$ REG is First-order (i.e. FO) definable.

Theorem (Bojańczyk, Walukiewicz ['04])
It is decidable if a regular language of finite trees is EF definable.

Task: understand which $L \in R E G$ are simple.

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

\rightarrow finite / countable / meagre / ... \longrightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in$ REG is First-order (i.e. FO) definable.

Theorem (Bojańczyk, Walukiewicz ['04])
It is decidable if a regular language of finite trees is EF definable.
Theorem (Murlak ['06])
Topological complexity is dec. for deterministic languages of inf. trees.

Task: understand which $L \in R E G$ are simple.

Input: \mathcal{A}
Output: Is $\mathrm{L}(\mathcal{A})$ simple?

\rightarrow finite / countable / meagre / ...
\longrightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79])
It is decidable if $L \in$ REG is First-order (i.e. FO) definable.
Theorem (Bojańczyk, Walukiewicz ['04])
It is decidable if a regular language of finite trees is EF definable.
Theorem (Murlak ['06])
Topological complexity is dec. for deterministic languages of inf. trees.
[Bárány, Bojańczyk, Colcombet, Duparc, Facchini, Idziaszek, Kuperberg,
Michalewski, Murlak, Niwiński, Place, Sreejith, Walukiewicz, ...

Pattern method for rigid representations

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)$
$\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
$\varphi \equiv(\varphi \wedge \Psi) \vee(\varphi \wedge \neg \Psi)$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple Limitations:

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple Limitations:

- 3.a uses complexity in \mathcal{A}_{L} to prove complexity of L

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple

Limitations:

- 3.a uses complexity in \mathcal{A}_{L} to prove complexity of L \leadsto requires rigid representations

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple

Limitations:

- 3.a uses complexity in \mathcal{A}_{L} to prove complexity of L \leadsto requires rigid representations

No such for infinite trees!

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple Limitations:

- 3.a uses complexity in \mathcal{A}_{L} to prove complexity of L \leadsto requires rigid representations

No such for infinite trees!

- 3.b works under the assumption of lack of obstruction

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\mathcal{A})$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{L}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{L} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{L} for a complicated pattern

3.a Prove that L is hard
3.b Use it to show that L is simple Limitations:

- 3.a uses complexity in \mathcal{A}_{L} to prove complexity of L \leadsto requires rigid representations

No such for infinite trees!

- 3.b works under the assumption of lack of obstruction \leadsto difficult proofs

Game method

Game method

1. Input $L=\mathrm{L}(\varphi)$

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game \mathcal{G}_{φ}

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. $\sigma_{\text {I }}$

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is hard

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}
3.b Take his w.s. $\sigma_{\text {II }}$

Use σ_{I} to prove that L is hard

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. $\sigma_{\text {I }}$

Use σ_{I} to prove that L is hard
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is simple

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is hard
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is simple $\leadsto \leadsto \ln$ both cases we are on the positive side.

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is hard
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is simple
$\leadsto \mathrm{In}$ both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is hard
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is simple
$m \leadsto$ In both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}
3.b Take his w.s. $\sigma_{\text {II }}$

Use σ_{I} to prove that L is hard Use $\sigma_{\text {II }}$ to prove that L is simple $m \rightarrow$ In both cases we are on the positive side. \leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}
3.b Take his w.s. $\sigma_{\text {II }}$

Use σ_{I} to prove that L is hard Use $\sigma_{\text {II }}$ to prove that L is simple \leadsto In both cases we are on the positive side. \leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Examples

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}
3.b Take his w.s. $\sigma_{\text {II }}$

Use σ_{I} to prove that L is hard
Use $\sigma_{\text {II }}$ to prove that L is simple
$\leadsto \leadsto$ In both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Examples
-(Kirsten ['05]; Colcombet ['09]; Toruńczyk ['11]; Bojańczyk ['15]): star-height

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}
3.b Take his w.s. $\sigma_{\text {II }}$

Use σ_{I} to prove that L is hard
Use $\sigma_{\text {II }}$ to prove that L is simple
$m \rightarrow$ In both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Examples

 -(Kirsten ['05]; Colcombet ['09]; Toruńczyk ['11]; Bojańczyk ['15]): star-height -(Colcombet, Löding ['08] + Kuperberg, Vanden Boom ['13]):a variant of Rabin-Mostowski index problem

Part 4

Two examples

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a Büchi language of infinite trees is WMSO definable.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation
weaker logic

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \rightsquigarrow L$ is not WMSO def.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for L

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for L (pumping)

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }} . \quad[W \equiv A \vee(B \wedge C)]$

But it seemed that we can get more (ordinal ranks)!

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def. $\quad \sigma_{\mathrm{II}} \leadsto$ WMSO formula for $L \square$ (pumping)
Theorem (S., Walukiewicz ['16])
A Büchi language is wmso def. iff it is Borel; and it is decidable.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\text {I }} \leadsto L$ is not WMSO def. $\quad \sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)
Theorem (S., Walukiewicz ['16])
A Büchi language is WMSO def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime}$.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\text {I }} \leadsto L$ is not WMSO def. $\quad \sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)
Theorem (S., Walukiewicz ['16])
A Büchi language is WMSO def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime} . \quad\left[W \equiv(A \vee B) \wedge C^{\prime}\right]$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)
Theorem (S., Walukiewicz ['16])
A Büchi language is WMSO def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime} . \quad\left[W \equiv(A \vee B) \wedge C^{\prime}\right]$

$$
\begin{aligned}
\sigma_{\mathrm{I}} & \leadsto \boldsymbol{\Sigma}_{1}^{1} \leqslant \mathrm{~W} L \\
& \leadsto L \text { is not WMSO def. }
\end{aligned}
$$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)
Theorem (S., Walukiewicz ['16])
A Büchi language is WMSO def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime} . \quad\left[W \equiv(A \vee B) \wedge C^{\prime}\right]$

$$
\begin{aligned}
\sigma_{\mathrm{I}} & \leadsto \boldsymbol{\Sigma}_{1}^{1} \leqslant \mathrm{~W} L \\
& \leadsto L \text { is not WMSO def. }
\end{aligned}
$$

$\sigma_{\text {II }} \leadsto$ WMSO formula for L $\leadsto L$ is Borel

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])
It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \leadsto L$ is not WMSO def.
$\sigma_{\text {II }} \leadsto$ WMSO formula for $L \square$ (pumping)
Theorem (S., Walukiewicz ['16])
A Büchi language is WMSO def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime} . \quad\left[W \equiv(A \vee B) \wedge C^{\prime}\right]$

$$
\begin{aligned}
\sigma_{\mathrm{I}} & \leadsto \boldsymbol{\Sigma}_{1}^{1} \leqslant \mathrm{~W} L \\
& \leadsto L \text { is not WMSO def. }
\end{aligned}
$$

$\sigma_{\text {II }} \leadsto$ WMSO formula for L $\leadsto L$ is Borel

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{~W} \boldsymbol{\Pi}_{2}^{0}$

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{~W} \boldsymbol{\Pi}_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \geqslant_{\mathrm{W}} \boldsymbol{\Sigma}_{2}^{0}$

Theorem (Cavallari, Michalewski, S. [2017])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{w} \boldsymbol{\Pi}_{2}^{0}$
2. L isn't weak-alt(0,2)-definable and $L \geqslant_{\mathrm{W}} \boldsymbol{\Sigma}_{2}^{0}$ weak index

Theorem (Cavallari, Michalewski, S. [2017])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{w} \boldsymbol{\Pi}_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \geqslant_{\mathrm{W}} \boldsymbol{\Sigma}_{2}^{0}$ weak index
topological complexity

Theorem (Cavallari, Michalewski, S. [2017])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{w} \boldsymbol{\Pi}_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \geqslant_{\mathrm{W}} \boldsymbol{\Sigma}_{2}^{0}$ weak index
topological complexity

Proof

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c}.

Theorem (Cavallari, Michalewski, S. [2017])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{~W} \Pi_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \geqslant_{\mathrm{W}} \boldsymbol{\Sigma}_{2}^{0}$ weak index
topological complexity

Proof

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c}.
Consider a game \mathcal{F} on $\mathcal{B} \times \mathcal{A} \times \mathcal{A}$

Theorem (Cavallari, Michalewski, S. [2017])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \leqslant \mathrm{~W} \Pi_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \geqslant_{\mathrm{W}} \boldsymbol{\Sigma}_{2}^{0}$ weak index
topological complexity

Proof

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c}.
Consider a game \mathcal{F} on $\mathcal{B} \times \mathcal{A} \times \mathcal{A}$

Gameplay

Gameplay

\mathcal{B}-states $p \quad \mathcal{A}$-states $q \quad \mathcal{A}$-states q^{\prime}

Winning condition

(WR) (II) restarted infinitely many times

 (II): stay
 (I): b, \ldots
 (II): R

(WR) (II) restarted infinitely many times $\rightsquigarrow \boldsymbol{\Pi}_{2}^{0}$-complete set

(WR) (II) restarted infinitely many times $\rightsquigarrow \boldsymbol{\Pi}_{2}^{0}$-complete set (WB) \mathcal{B}-states p are accepting

(WR) (II) restarted infinitely many times $\leadsto \Pi_{2}^{0}$-complete set
(WB) \mathcal{B}-states p are accepting $\quad \leadsto$ seems that $t \notin L$

(WR) (II) restarted infinitely many times $\rightsquigarrow \Pi_{2}^{0}$-complete set
(WB) \mathcal{B}-states p are accepting \leadsto seems that $t \notin L$
(WA) \mathcal{A}-states q^{\prime} are accepting

(WR) (II) restarted infinitely many times
(WB) \mathcal{B}-states p are accepting
(WA) \mathcal{A}-states q^{\prime} are accepting
$\leadsto \Pi_{2}^{0}$-complete set \leadsto seems that $t \notin L$
\leadsto seems that $t \in L$

(WR) (II) restarted infinitely many times $\leadsto \Pi_{2}^{0}$-complete set
(WB) \mathcal{B}-states p are accepting \leadsto seems that $t \notin L$
(WA) \mathcal{A}-states q^{\prime} are accepting $\quad \leadsto \leadsto$ seems that $t \in L$

$$
W \equiv((\mathrm{WR}) \wedge(\mathrm{WB})) \vee(\neg(\mathrm{WR}) \wedge(\mathrm{WA}))
$$

Winning condition

(WR) (II) restarted infinitely many times $\leadsto \Pi_{2}^{0}$-complete set
(WB) \mathcal{B}-states p are accepting \leadsto seems that $t \notin L$
(WA) \mathcal{A}-states q^{\prime} are accepting $\quad \leadsto \leadsto$ seems that $t \in L$

$$
W \equiv \underbrace{((\mathrm{WR}) \wedge(\mathrm{WB})) \vee(\neg(\mathrm{WR}) \wedge(\mathrm{WA}))}_{\text {Wadge-like condition }}
$$

Winning condition

(WR) (II) restarted infinitely many times $\leadsto \Pi_{2}^{0}$-complete set
(WB) \mathcal{B}-states p are accepting \leadsto seems that $t \notin L$
(WA) \mathcal{A}-states q^{\prime} are accepting $\quad \leadsto \leadsto$ seems that $t \in L$

$$
W \equiv \underbrace{((\mathrm{WR}) \wedge(\mathrm{WB})) \vee(\neg(\mathrm{WR}) \wedge(\mathrm{WA}))}_{\text {Wadge-like condition }}
$$

\leadsto regular condition over infinite words

Winning condition

(WR) (II) restarted infinitely many times $\leadsto \Pi_{2}^{0}$-complete set
(WB) \mathcal{B}-states p are accepting \leadsto seems that $t \notin L$
(WA) \mathcal{A}-states q^{\prime} are accepting $\quad \leadsto \leadsto$ seems that $t \in L$

$$
W \equiv \underbrace{((\mathrm{WR}) \wedge(\mathrm{WB})) \vee(\neg(\mathrm{WR}) \wedge(\mathrm{WA}))}_{\text {Wadge-like condition }}
$$

$\leadsto \leadsto$ regular condition over infinite words $\rightsquigarrow \leadsto$ we can solve \mathcal{F}

Two lemmata:

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{C}$

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(\mathrm{WR}) \leqslant W L^{\mathrm{c}}$
$\leadsto L$ is not weak-alt(0,2)-definable

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(\mathrm{WR}) \leqslant \mathrm{W} L^{\mathrm{C}}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{C}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F}

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{C}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F}
Add some pumping

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{C}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F}
Add some pumping
\leadsto a weak-alternating $(0,2)$ automaton for L

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{C}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F}
Add some pumping
\leadsto a weak-alternating $(0,2)$ automaton for L
$m L \leqslant{ }_{\mathrm{W}} \boldsymbol{\Pi}_{2}^{0}$

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II) \leadsto a reduction proving that $(W R) \leqslant W L^{c}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable Proof

Take a finite memory strategy of (II) in \mathcal{F}
Add some pumping
\leadsto a weak-alternating $(0,2)$ automaton for L
$m \leadsto \leqslant{ }_{\mathrm{W}} \boldsymbol{\Pi}_{2}^{0}$
A complete proof

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof
Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{c}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable Proof

Take a finite memory strategy of (II) in \mathcal{F}
Add some pumping
\leadsto a weak-alternating $(0,2)$ automaton for L
$m \leadsto L \leqslant{ }_{\mathrm{W}} \Pi_{2}^{0}$

A complete proof not using properties on which
the game \mathcal{F} is based

Two lemmata:

1. If (I) wins \mathcal{F} then L is not Π_{2}^{0}

Proof
Take a strategy of (I) in \mathcal{F}
Confront it with multiple strategies of (II)
\leadsto a reduction proving that $(W R) \leqslant W L^{c}$
$\leadsto L$ is not weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable Proof

Take a finite memory strategy of (II) in \mathcal{F}
Add some pumping
\leadsto a weak-alternating $(0,2)$ automaton for L
$m \longrightarrow \leqslant \Pi_{2}^{0}$

A complete proof not using properties on which
the game \mathcal{F} is based
[dealternation]

Summary

Summary

\rightarrow characterising which languages are simple

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

pattern found
$m L$ is hard

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

\rightarrow games (may deal with non-determinism)

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

pattern found
$\leadsto L$ is hard
\rightarrow games (may deal with non-determinism)
$m L$ is hard

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

pattern found
$m L$ is hard
\rightarrow games (may deal with non-determinism)

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

pattern found
$m L$ is hard
\rightarrow games (may deal with non-determinism)

\rightarrow no general recipe for design

Summary

\rightarrow characterising which languages are simple
\rightarrow pattern method (rigid representatons: det. aut. / algebra)

pattern found
$\leadsto L$ is hard
\rightarrow games (may deal with non-determinism)

\rightarrow no general recipe for design
Conjecture: Every class of languages has a game characterisation

