Games and complexity: from Banach–Mazur to automata theory

Michał Skrzypczak

Workshop on Wadge Theory and Automata II Torino 08.06.2018

NATIONAL SCIENCE CENTRE

Part 1

Generic objects

Option 1.: Find one.

Option 1.: Find one.

Option 1.: Find one.

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**. **Option 3.**: Go contrapositive, etc. . .

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**. **Generic sets** should form a σ -filter:

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

• If P is generic then $P \neq \emptyset$.

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_n$ is generic.

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_n$ is generic.

Example Probabilistic approach:

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n \in \omega}$ are all generic then $\bigcap_{n \in \omega} P_n$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P) = 1$

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n\in\omega}$ are all generic then $\bigcap_{n\in\omega} P_n$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P) = 1$

$$\bigvee_{n \in \omega} \left(\mathbb{P}(P_n) = 1 \right) \implies \mathbb{P}\left(\bigcap_{n \in \omega} P_n \right) = 1$$

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n\in\omega}$ are all generic then $\bigcap_{n\in\omega} P_n$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P) = 1$

$$\bigvee_{n \in \omega} \left(\mathbb{P}(P_n) = 1 \right) \implies \mathbb{P}\left(\bigcap_{n \in \omega} P_n \right) = 1$$

Option 1.: Find one.

Option 2.: Prove that being four legged is a generic property.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n\in\omega}$ are all generic then $\bigcap_{n\in\omega} P_n$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P) = 1$

$$\bigvee_{n \in \omega} \left(\mathbb{P}\left(P_n\right) = 1 \right) \implies \mathbb{P}\left(\bigcap_{n \in \omega} P_n\right) = 1$$

But:

Option 1.: Find one.

Option 2.: Prove that being four legged is a **generic property**.

Generic sets should form a σ -filter:

- If P is generic then $P \neq \emptyset$.
- If $P \subseteq P'$ is generic then P' is generic.
- If $(P_n)_{n\in\omega}$ are all generic then $\bigcap_{n\in\omega} P_n$ is generic.

Example Probabilistic approach: P is generic iff $\mathbb{P}(P) = 1$

$$\bigvee_{n \in \omega} \left(\mathbb{P}(P_n) = 1 \right) \implies \mathbb{P}\left(\bigcap_{n \in \omega} P_n \right) = 1$$

But: limitations of quantitativity

 $G \subseteq X$ is comeagre iff

 $G \subseteq X$ is comeagre iff

$$G \supseteq \bigcap_{i \in \omega} U_i$$

 $G \subseteq X$ is comeagre

iff

 $G \supseteq \bigcap_{i \in \omega} U_i$ and all U_i are dense and open

Example

Take $U_i = \mathbb{R} - \{q_i\}.$

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is **dense**.

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is **dense**.

vvv the complement of a comeagre set is **not** comeagre

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is **dense**.

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is **dense**.

Corollaries (non-constructive proofs of existence)

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is **dense**.

Corollaries (non-constructive proofs of existence)

• a continuous function nowhere differentiable

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is dense.

Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable
- \bullet a linear partial differential equation with ${\bf no}$ solutions

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899]) [thus non-empty] In nice spaces (i.e. Polish) every comeagre set is **dense**.

Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable
- \bullet a linear partial differential equation with ${\bf no}$ solutions

• . . .

Example

Take
$$U_i = \mathbb{R} - \{q_i\}$$
. Then $\bigcap_{i \in \omega} U_i = \mathbb{R} - \mathbb{Q}$ is comeagre.

Theorem (Baire [1899])

[thus non-empty]

In nice spaces (i.e. Polish) every comeagre set is **dense**.

Corollaries (non-constructive proofs of existence)

- a continuous function **nowhere** differentiable
- a linear partial differential equation with **no** solutions

• . . .

Which sets are comeagre?

Which sets are comeagre? (Banach-Mazur game)

(take $W \subseteq [0,1]$)

(take $W \subseteq [0,1]$)

(take $W \subseteq [0,1]$)

BM(W) is the infinite game:

 $\begin{array}{ll} {\rm (I):} & 0, \\ {\rm (II):} & \end{array}$

(take $W \subseteq [0,1]$)

BM(W) is the infinite game:

(I): 0, $\underline{43226}$ (II):

(take $W \subseteq [0,1]$)

BM(W) is the infinite game:

 $\begin{array}{cccc} (I): & 0, & \underline{43226} \\ (II): & & \underline{19743} \end{array}$

(take $W \subseteq [0,1]$)

(I):	0,	43226		13
(II):			19743	

(take $W \subseteq [0,1]$)

(I):	0,	43226		<u>13</u>	
(II):			19743		

(take $W \subseteq [0,1]$)

(I):	0,	43226		13		8723466
(II):			19743		_	

(take $W \subseteq [0,1]$)

BM(W) is the infinite game:

 (I):
 0,
 43226
 13
 8723466

 (II):
 19743
 54326

(take $W \subseteq [0,1]$)

BM(W) is the infinite game:

(take $W \subseteq [0,1]$)

BM(W) is the infinite game:

(I): 0, <u>43226</u> <u>13</u> <u>8723466</u> $\cdots \quad \infty \quad \pi \in [0, 1]$

BM(W) is the infinite game:

(take $W \subseteq [0, 1]$) (II) wins π iff $\pi \in W$

(I): 0, $\frac{43226}{19743}$ $\frac{13}{54326}$ \cdots $\pi \in [0, 1]$

BM(W) is the infinite game:

(take $W \subseteq [0, 1]$) (II) wins π iff $\pi \in W$

Theorem (Banach–Mazur [1935], Oxtoby [1957])

Player (II) has a winning strategy in BM(W) iff W is comeagre.

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0, 1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0, 1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \cap_{i \in \omega} U_i$ -open, dense] Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0, 1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 13 8723466 54326 $\cdots \longrightarrow \pi \in [0, 1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \cap_{i \in \omega} U_i$ -open, dense]

Proof

 (\Rightarrow)

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0, 1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0, 1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \bigcap_{i \in \omega} U_i$ -open, dense] Proof

 (\Rightarrow) Each strategy σ provides a family U_i

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0,1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0,1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \bigcap_{i \in \omega} U_i \text{ -open, dense}$] Proof

 (\Rightarrow) Each strategy σ provides a family U_i (modulo some technicalities).

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0, 1]$) (II) wins π iff $\pi \in W$ BM(W) is the infinite game: (I): 0, $\underline{43226}$ <u>13</u> <u>8723466</u> <u>54326</u> · · · · · · · $\pi \in [0, 1]$ (II): 19743Theorem (Banach–Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. $W \supseteq \bigcap_{i \in U} U_i$ -open, dense Proof

 $(\Rightarrow) \quad \text{Each strategy } \sigma \text{ provides a family } U_i \text{ (modulo some technicalities)}.$ (\Leftarrow)

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0,1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0,1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \bigcap_{i \in \omega} U_i$ -open, dense] Proof

 (\Rightarrow) Each strategy σ provides a family U_i (modulo some technicalities).

(\Leftarrow) Consider the strategy σ that in a round *i* falls into U_i .

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0,1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0,1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \bigcap_{i \in \omega} U_i$ -open, dense] Proof

 (\Rightarrow) Each strategy σ provides a family U_i (modulo some technicalities).

(\Leftarrow) Consider the strategy σ that in a round *i* falls into U_i . Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_i \subseteq W$. Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0, 1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0, 1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \bigcap_{i \in \omega} U_i$ -open, dense] Proof

 (\Rightarrow) Each strategy σ provides a family U_i (modulo some technicalities).

(\Leftarrow) Consider the strategy σ that in a round *i* falls into U_i . Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_i \subseteq W$. Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0,1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, 43226 19743 13 8723466 54326 $\cdots \longrightarrow \pi \in [0,1]$ Theorem (Banach-Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. [$W \supseteq \cap_{i \in \omega} U_i$ -open, dense]

Proof

 (\Rightarrow) Each strategy σ provides a family U_i (modulo some technicalities).

(\Leftarrow) Consider the strategy σ that in a round *i* falls into U_i . Each play π consistent with σ belongs to $\bigcap_{i \in U} U_i \subseteq W$.

Corollary

Player (I) has a winning strategy in BM(W)

Which sets are comeagre? (Banach-Mazur game) (take $W \subseteq [0, 1]$) BM(W) is the infinite game: (II) wins π iff $\pi \in W$ (I): 0, $\underline{43226}$ <u>13</u> <u>8723466</u> 54326 · · · · · · · $\pi \in [0, 1]$ (II): 19743Theorem (Banach–Mazur [1935], Oxtoby [1957]) Player (II) has a winning strategy in BM(W) iff W is comeagre. $W \supseteq \bigcap_{i \in U} U_i$ -open, dense

Proof

- (\Rightarrow) Each strategy σ provides a family U_i (modulo some technicalities).
- (\Leftarrow) Consider the strategy σ that in a round *i* falls into U_i . Each play π consistent with σ belongs to $\bigcap U_i \subseteq W$.

Corollary

Player (I) has a winning strategy in BM(W) iff

([0,1]-W) is comeagre on some interval.

Part 2

Determinacy

A game is determined if either $\left(I\right)$ or $\left(II\right)$ has a winning strategy.

A game is determined if either $\left(I\right)$ or $\left(II\right)$ has a winning strategy.

• Every game of finite duration is determined.

• Every game of finite duration is determined.

• Every game of finite duration is determined.

• Every game of finite duration is determined.

• Every game of finite duration is determined.

• Every game of finite duration is determined.

A game is determined if either $\left(I\right)$ or $\left(II\right)$ has a winning strategy.

• Every game of finite duration is determined.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathbf{XOR} \subseteq \{0, 1\}^{\omega}$ satisfy

A game is determined if either $\left(I\right)$ or $\left(II\right)$ has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathbf{XOR} \subseteq \{0, 1\}^{\omega}$ satisfy

 $011001110101111011110101 \dots \in XOR$

A game is determined if either $\left(I\right)$ or $\left(II\right)$ has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathbf{XOR} \subseteq \{0, 1\}^{\omega}$ satisfy

 $\begin{array}{c} 011001110101 \, \textbf{1} 11011110101 \cdots \in \, \text{XOR} \\ \text{iff} \\ 011001110101 \, \textbf{0} 11011110101 \cdots \notin \, \text{XOR} \end{array}$

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] 011001110101**1**11011110101 ··· ∈ XOR iff 011001110101**0**11011110101 ··· ∉ XOR

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] 011001110101**1**11011110101 $\cdots \in XOR$ 011001110101**0**11011110101 $\cdots \notin XOR$

Then BM(XOR) is **non-determined**!

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] $011001110101\mathbf{1}11011110101 \cdots \in XOR$ $011001110101\mathbf{0}11011110101 \cdots \notin XOR$

Then BM(XOR) is **non-determined**!

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] $011001110101\mathbf{1}11011110101 \cdots \in XOR$ $011001110101\mathbf{0}11011110101 \cdots \notin XOR$

Then BM(XOR) is **non-determined**!

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] $011001110101\mathbf{1}11011110101 \cdots \in XOR$ $011001110101\mathbf{0}11011110101 \cdots \notin XOR$

Then BM(XOR) is non-determined!

(I): $\underbrace{\begin{array}{c}01100\\(\text{II}):\end{array}}_{11011} \underbrace{\begin{array}{c}00\\1\end{array}}_{1} \underbrace{\begin{array}{c}110010\\1\end{array}}_{00011} \underbrace{\begin{array}{c}\cdots\cdots\cdots \\ 00011\end{array}}_{(\text{II}) \text{ wins } \pi \text{ iff } \pi \in \text{XOR}\end{array}}$

1. ((II) has a w.s.) \implies ((I) has a w.s.)

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] $011001110101\mathbf{1}11011110101 \cdots \in XOR$ $011001110101\mathbf{0}11011110101 \cdots \notin XOR$

Then BM(XOR) is **non-determined**!

1. ((II) has a w.s.) \implies ((I) has a w.s.)

2. ((I) has a w.s.) \implies ((II) has a w.s.)

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $XOR \subseteq \{0, 1\}^{\omega}$ satisfy [hidden axiom of choice...] $011001110101\mathbf{1}11011110101 \cdots \in XOR$ $011001110101\mathbf{0}11011110101 \cdots \notin XOR$

Then BM(XOR) is **non-determined**!

1. ((II) has a w.s.) \implies ((I) has a w.s.)

2. ((I) has a w.s.) \implies ((II) has a w.s.)

BM(XOR) is non-determined! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) BM(XOR) is non-determined ! (II) wins

(II) wins π iff $\pi \in XOR$

Proof: "strategy stealing"

BM(XOR) is non-determined!

(II) wins π iff $\pi \in XOR$

(I): 01100 00 110010 00011 $\cdots \quad \cdots \quad \pi \in \{0, 1\}^{\omega}$ (II): 11011 1 0 (II) 00011 $\cdots \quad \cdots \quad \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) **Proof:** "strategy stealing" Take σ_{I} — a w.s. of (I) BM(XOR) is non-determined!

(II) wins π iff $\pi \in XOR$

(I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ (II): 11011 1 0 1 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) **Proof:** "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II) BM(XOR) is non-determined ! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I)

Construct σ_{II} — a w.s. of (II)

 σ_{I} :

(II):

 $\begin{array}{ll} \operatorname{BM}(\operatorname{XOR}) \text{ is non-determined !} & (\operatorname{II}) \ \text{wins } \pi \ \text{ iff } \pi \in \operatorname{XOR} \\ (I): & \underline{01100} \\ (II): & \underline{11011} & \underline{00} \ \underline{1} \ \underline{110010} \\ (II) & \underline{00011} & \cdots & \cdots & \pi \in \{0,1\}^{\omega} \\ & ((I) \ \text{ has a } \textbf{w.s.}) \implies ((II) \ \text{ has a } \textbf{w.s.}) \end{array}$ $\begin{array}{l} \operatorname{Proof: "strategy stealing"} \\ \operatorname{Take } \sigma_{\mathrm{I}} \ - \ \mathrm{a} \ \textbf{w.s.} \ \text{of } (\mathrm{II}) \\ \operatorname{Construct } \sigma_{\mathrm{II}} \ - \ \mathrm{a} \ \textbf{w.s.} \ \text{of } (\mathrm{II}) \end{array}$

 σ_{I}

(II):

(I):

 $\sigma_{ ext{II}}$:

 $\begin{array}{ll} \operatorname{BM}(\operatorname{XOR}) \text{ is non-determined !} & (\operatorname{II}) \ \text{wins } \pi \ \text{ iff } \pi \in \operatorname{XOR} \\ (I): & \underline{01100} & \underline{00} & \underline{110010} & \underline{00011} & \cdots & \cdots & \pi \in \{0,1\}^{\omega} \\ & ((I) \ \text{ has a w.s.}) & \Longrightarrow & ((\operatorname{II}) \ \text{ has a w.s.}) \end{array}$ $\begin{array}{ll} \operatorname{Proof: "strategy stealing"} \\ \operatorname{Take } \sigma_{\mathrm{I}} & - \operatorname{a w.s. of (I)} \\ \operatorname{Construct } \sigma_{\mathrm{II}} & - \operatorname{a w.s. of (II)} \end{array}$

 σ_{I}

(II):

(I): $\underline{r_0}$

 σ_{II} :

BM(XOR) is **non-determined**! (II) wins π iff $\pi \in XOR$ (I): 0110000 110010 $\underline{00011} \quad \cdots \quad \leadsto \pi \in \{0,1\}^{\omega}$ 11011 1 ((I) has a w.s.) \implies ((II) has a w.s.) **Proof:** "strategy stealing" Take $\sigma_{\rm I}$ — a w.s. of (I) Construct σ_{II} — a w.s. of (II) σ_{I} : s_0 (II):

(I): $\underline{r_0}$

 σ_{II} :

BM(XOR) is non-determined ! (II) wins π iff $\pi \in XOR$ (I): 01100 100 1 10010 00011 $\cdots \longrightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined ! (II) wins π iff $\pi \in XOR$ (I): 01100 100 1 10010 00011 $\cdots \longrightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \longrightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined ! (II) wins π iff $\pi \in XOR$ (I): 01100 100 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing"

Construct σ_{II} — a w.s. of (II)

Take $\sigma_{\rm I}$ — a w.s. of (I)

BM(XOR) is **non-determined**! (II) w

! (II) wins π iff $\pi \in XOR$

(I): 01100 (II): 11011 0 1 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) **Proof:** "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is **non-determined**! (II

(II) wins π iff $\pi \in XOR$

(I): 01100 (II): 11011 0 110010 ((I) has a w.s.) \longrightarrow ((II) has a w.s.) **Proof:** "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined!

(II) wins π iff $\pi \in XOR$

(I): 01100 (II): 11011 0 1 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) **Proof:** "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$

((I) has a w.s.) \implies ((II) has a w.s.)

Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined! (II) wins π iff $\pi \in XOR$ (I): 01100 00 110010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take $\sigma_{I} - a$ w.s. of (I)

Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined ! (II) wins π iff $\pi \in XOR$ (I): 01100 100 1 10010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

BM(XOR) is non-determined ! (II) wins π iff $\pi \in XOR$ (I): 01100 100 1 10010 00011 $\cdots \rightarrow \pi \in \{0, 1\}^{\omega}$ ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take σ_{I} — a w.s. of (I) Construct σ_{II} — a w.s. of (II)

••• $\rightsquigarrow s_0 r_0 0 \cdot \pi \notin \text{XOR}$

BM(XOR) is **non-determined**! (II) wins π iff $\pi \in XOR$ $\underbrace{00011} \cdots \cdots \longrightarrow \pi \in \{0,1\}^{\omega}$ (I): 01100 00 110010 11011 ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing"

Take $\sigma_{\rm I}$ — a w.s. of (I)

Construct $\sigma_{\rm II}$ — a w.s. of (II)

BM(XOR) is **non-determined**! (II) wins π iff $\pi \in XOR$ $\underbrace{00011} \cdots \cdots \longrightarrow \pi \in \{0,1\}^{\omega}$ (I): 0110000 110010 11011 ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take $\sigma_{\rm I}$ — a w.s. of (I) Construct $\sigma_{\rm II}$ — a w.s. of (II)
 σ_1 :
 $\underline{s_0}$ $\underline{s_1}$ $\underline{s_2}$ $\underline{s_3}$

 (II):
 $\underline{r_{00}}$ \langle $\underline{r_1}$ \langle $\underline{r_2}$ \rangle \cdots \cdots $s_0r_00\cdot\pi$ \notin XOR

 $\begin{array}{c|c} \hline \hline 100 \\ \hline 100 \hline \hline 100 \\ \hline 100 \\ \hline 100 \hline \hline 100 \\ \hline 100 \hline \hline 1$ (I): ••• $\rightsquigarrow r_0 s_0 1 \cdot \pi \in XOR$ σ_{II} : $s_0 1 | s_1$

BM(XOR) is **non-determined**! (II) wins π iff $\pi \in XOR$ $\underbrace{00011} \cdots \cdots \longrightarrow \pi \in \{0,1\}^{\omega}$ (I): <u>01100</u> 00 110010 11011 ((I) has a w.s.) \implies ((II) has a w.s.) Proof: "strategy stealing" Take $\sigma_{\rm I}$ — a w.s. of (I) Construct $\sigma_{\rm II}$ — a w.s. of (II) (I): ••• $\rightsquigarrow r_0 s_0 1 \cdot \pi \in XOR$ $s_0 1 | s_1$ σ_{II} : s_3

 $\rightsquigarrow \sigma_{\rm II}$ is a winning strategy of (II)

 $\rightsquigarrow \sigma_{\rm II}$ is a winning strategy of (II)

Determined are games which are:

Determined are games which are:

- played by two players,

Determined are games which are:

- played by two players,
- round-based,

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

when the winning condition is **Borel**.

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

when the winning condition is Borel.

Corollary

All Borel sets have:

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

when the winning condition is **Borel**.

Corollary

All Borel sets have:

• perfect set property (by *-games),

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

when the winning condition is **Borel**.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω ,

when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,
- Ramsey-style dichotomies, ...

6 / 22

Determined are games which are:

- played by two players,
- round-based.
- of perfect information,
- of length ω ,

when the winning condition is **Borel**.

- Many variants: Many variants: Blackwell games Nash equilibria

Corollary

All **Borel** sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,
- Ramsey-style dichotomies,

Part 3

Effectiveness

A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

____ . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family **REG** that:

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family **REG** that:

- contains some basic languages,

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family **REG** that:

- contains some basic languages,
- is closed under Boolean operations,

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family \mathbf{REG} that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \twoheadrightarrow A^{\omega}$.

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family \mathbf{REG} that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \twoheadrightarrow A^{\omega}$.

Facts:

— . . .

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family \mathbf{REG} that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \twoheadrightarrow A^{\omega}$.

Facts: $\mathbf{REG} \subseteq \mathbf{Borel}$,

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family **REG** that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \twoheadrightarrow A^{\omega}$.

Facts: $\mathbf{REG} \subseteq \mathbf{Borel}$, $\operatorname{proj}(\mathbf{REG}) \subseteq \mathbf{REG}$,

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family **REG** that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \twoheadrightarrow A^{\omega}$.

Facts: $\mathbf{REG} \subseteq \mathbf{Borel}$, $\operatorname{proj}(\mathbf{REG}) \subseteq \mathbf{REG}$, $\operatorname{proj}(\mathbf{Borel}) \notin \mathbf{Borel}$.

— . . .

- A set $L \subseteq A^{\omega}$ is regular if (equivalently) it can be:
- defined in Monadic Second-order logic: $FO[\leqslant, A] + \exists X$,
- recognised by a non-deterministic Büchi automaton,
- recognised by a deterministic parity automaton,

Regular sets is the smallest family **REG** that:

- contains some basic languages,
- is closed under Boolean operations,
- and under projection $(A \times B)^{\omega} \twoheadrightarrow A^{\omega}$.

Facts: $\mathbf{REG} \subseteq \mathbf{Borel}$, $\operatorname{proj}(\mathbf{REG}) \subseteq \mathbf{REG}$, $\operatorname{proj}(\mathbf{Borel}) \notin \mathbf{Borel}$.

Theorem (Büchi ['62])

Given (a represention of) $L \in \mathbf{REG}$ it is **decidable** if $L \neq \emptyset$.

Theorem (Büchi, Landweber ['69]) Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$). **Theorem** (Büchi, Landweber ['69]) Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$). Consider a game $\mathcal{G}(W)$:

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$). Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_2}$ $\underline{a_4}$ $\underline{a_6}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II): $\underline{a_1}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_5}$ $\underline{a_7}$

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$). Consider a game $\mathcal{G}(W)$:

(I):
$$\underline{a_0}$$
 $\underline{a_2}$ $\underline{a_4}$ $\underline{a_6}$ $\underline{a_7}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$
(II) wins π iff $\pi \in W$

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$). Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_4}$ $\underline{a_5}$ $\underline{a_6}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$ Then:

Michał Skrzypczak Games and complexity: from **-games to automata 8 / 22

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$). Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is **Borel**)

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_4}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.
- 3. The winner can use a finite memory winning strategy:

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_6}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.
- **3.** The winner can use a finite memory winning strategy: There is a finite set *M* of memory values,

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.
- The winner can use a finite memory winning strategy: There is a finite set M of memory values, initial memory m₀ ∈ M,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

Then:

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.
- 3. The winner can use a finite memory winning strategy: There is a finite set M of memory values, initial memory $m_0 \in M$, and update function $\delta \colon M \times A \to M$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

Then:

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.
- 3. The winner can use a finite memory winning strategy: There is a finite set M of memory values, initial memory $m_0 \in M$, and update function $\delta \colon M \times A \to M$, such that for $m_{i+1} \stackrel{\text{def}}{=} \delta(m_i, a_i)$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{REG}$).

Consider a game $\mathcal{G}(W)$:

(I): $\underline{a_0}$ $\underline{a_1}$ $\underline{a_2}$ $\underline{a_3}$ $\underline{a_5}$ $\underline{a_7}$ $\underline{a_8}$ $\cdots \longrightarrow \pi = (a_0 a_1 \cdots) \in A^{\omega}$ (II) wins π iff $\pi \in W$

Then:

- **1.** $\mathcal{G}(W)$ is determined. (because W is **Borel**)
- **2.** The winner of $\mathcal{G}(W)$ can be effectively computed.
- 3. The winner can use a finite memory winning strategy: There is a finite set M of memory values, initial memory $m_0 \in M$, and update function $\delta \colon M \times A \to M$, such that for $m_{i+1} \stackrel{\text{def}}{=} \delta(m_i, a_i)$, the choice of a_i depends only on m_i .

Part 4

Applications

Trace $\tau = (i_0$

Trace $\tau = (i_0 \ o_0$

Trace $\tau = (i_0 \ o_0$

Trace $\tau = (i_0 \ o_0 \ i_1)$

Trace $\tau = (i_0 \ o_0 \ i_1 \ o_1$

Trace $\tau = (i_0 \ o_0 \ i_1 \ o_1 \cdots$

Trace $\tau = (i_0 \ o_0 \ i_1 \ o_1 \ \cdots \ i_n)$

Trace $\tau = (i_0 \ o_0 \ i_1 \ o_1 \ \cdots \ i_n \ o_n$

Trace $\tau = (i_0 \ o_0 \ i_1 \ o_1 \ \cdots \ i_n \ o_n \ \cdots) \in (I \sqcup O)^{\omega}$

Env.: Impl.:

Env.: <u>i</u>0 Impl.:

Impl.: $\underline{o_0}$

Env.: <u>i</u>0 Impl.: <u>o</u>0

Impl.: *o*₀

Impl.:

00

01

Impl.: $\underline{o_0}$ $\underline{o_1}$

Impl.: $\underline{o_0}$ $\underline{o_1}$ $\underline{o_2}$

Impl.: $\underline{o_0}$ $\underline{o_1}$ $\underline{o_2}$

Michał Skrzypczak Games and complexity: from **-games to automata 9 / 22

Take a regular $G \subseteq A^{\omega}$.

Take a regular $G \subseteq A^{\omega}$.

$$\left[G = \mathcal{L}(\mathcal{A}_G)\right]$$

Take a regular $G \subseteq A^{\omega}$.

Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$:

$$\left[G = \mathcal{L}(\mathcal{A}_G)\right]$$

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G]$

(I): (II):

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$

(I): $\underline{a_0}$ (II): $\underline{a_0}$

Take a regular $G \subseteq A^{\omega}$. $\left[G = \mathcal{L}(\mathcal{A}_G)\right]$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G]$

(I): $\underline{a_0}$ (II): \underline{b}

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$

 $\begin{array}{ccc} \text{(I):} & \underline{a_0} & \underline{a_1} \\ \text{(II):} & \underline{b} \end{array}$

$$\begin{array}{cccc} (I): & \underline{a_0} & & \underline{a_1} \\ (II): & \underline{\flat} & & \underline{\flat} \end{array}$$

(I):
$$\underline{a_0}$$
 $\underline{a_1}$ \underline{b} \underline{b}
(II): \underline{b} \underline{b} $\underline{a_2}$ $\underline{a_3}$

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\left[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G\right]$ (I): $a_0 \qquad a_1 \qquad b \qquad b$

(II):
$$\underline{b}$$
 \underline{b} $\underline{a_2}$ $\underline{a_3}$

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G]$ (I): $a_0 \qquad a_1 \qquad b \qquad b \qquad b$

(II):
$$\underline{b}$$
 \underline{b} $\underline{a_2}$ $\underline{a_3}$ $\underline{a_4}$

Take a regular $G \subseteq A^{\omega}$. $\left[G = \mathcal{L}(\mathcal{A}_G)\right]$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G]$

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ $\stackrel{(I):}{(II):} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}}$

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ $\stackrel{(I):}{(II):} \xrightarrow{\underline{a_0}} \underbrace{\underline{a_1}}_{\underline{b}} \underbrace{\underline{b}}_{\underline{a_2}} \underbrace{\underline{a_3}}_{\underline{a_3}} \underbrace{\underline{a_4}}_{\underline{a_5}} \underbrace{\underline{b}}_{\underline{b}}$

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ (I): $\underline{a_0}$ $\underline{a_1}$ \underline{b} \underline{b}

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ $\stackrel{(I):}{(II):} \xrightarrow{\underline{a}_0} \xrightarrow{\underline{a}_1} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{a}_6}$

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ $\stackrel{(I):}{(II):} \xrightarrow{b} \xrightarrow{b} \xrightarrow{b} \xrightarrow{a_2} \xrightarrow{a_3} \xrightarrow{a_4} \xrightarrow{a_5} \xrightarrow{b} \xrightarrow{a_6} \cdots$

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ (I): $\underline{a_0} \quad \underline{a_1} \quad \underline{b} \quad \underline{b} \quad \underline{b} \quad \underline{b} \quad \underline{b} \quad \underline{b} \quad \underline{a_5} \quad \underline{b} \quad \cdots$ ((II) wins BM(G)) \iff ((II) wins $\mathcal{G}(W_G)$)

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ $\stackrel{(\mathrm{II}):}{(\mathrm{II}):} \xrightarrow{\underline{a}_0} \xrightarrow{\underline{a}_1} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{a}_6} \cdots$ $\stackrel{((\mathrm{II}) \text{ wins } \mathrm{BM}(G)) \iff ((\mathrm{II}) \text{ wins } \mathcal{G}(W_G))$ Solve $\mathcal{G}(W_G)$ to know if G is comeagre.

Take a regular $G \subseteq A^{\omega}$. $\left[G = L(\mathcal{A}_G)\right]$ Construct a regular $W_G \subseteq \left(A \sqcup \{b\}\right)^{\omega}$: $\left[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G\right]$ (I): $\underline{a_0}$ $\underline{a_1}$ \underline{b} \underline{b} $\underline{a_2}$ $\underline{a_3}$ $\underline{a_4}$ $\underline{a_5}$ \underline{b} (II) wins BM(G)) \longleftrightarrow ((II) wins $\mathcal{G}(W_G)$)Solve $\mathcal{G}(W_G)$ to know if G is comeagre. \blacksquare

Similarly with other game-characterised properties for regular sets:

 $G = L(\mathcal{A}_G)$ Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $[\mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G]$ $((II) \text{ wins } BM(G)) \iff ((II) \text{ wins } \mathcal{G}(W_G))$ Solve $\mathcal{G}(W_G)$ to know if G is comeagre. Similarly with other game-characterised properties for regular sets: — countability,

Take a regular $G \subseteq A^{\omega}$. $\begin{bmatrix} G = L(\mathcal{A}_G) \end{bmatrix}$ Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ $\stackrel{(\mathrm{I}):}{(\mathrm{II}):} \xrightarrow{\underline{a}_0} \xrightarrow{\underline{a}_1} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{b}} \xrightarrow{\underline{a}_6} \cdots$ $((\mathrm{II}) \text{ wins } \mathrm{BM}(G)) \iff ((\mathrm{II}) \text{ wins } \mathcal{G}(W_G))$ Solve $\mathcal{G}(W_G)$ to know if G is comeagre.

Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0,

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ (I): $\underline{a_0} \xrightarrow{a_1} \xrightarrow{b} \underbrace{a_2} \xrightarrow{a_3} \underbrace{a_4} \xrightarrow{a_5} \xrightarrow{b} \underbrace{a_6} \cdots$ ((II) wins BM(G)) \iff ((II) wins $\mathcal{G}(W_G)$)

Solve $\mathcal{G}(W_G)$ to know if G is comeagre.

Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0,
- Wadge reductions (in a moment), ...

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ (I): $\underline{a_0} \qquad \underline{a_1} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b} \qquad \underline{a_5} \qquad \underline{b} \qquad \cdots$ ((II) wins BM(G)) \iff ((II) wins $\mathcal{G}(W_G)$)

Solve $\mathcal{G}(W_G)$ to know if G is comeagre.

Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0,
- Wadge reductions (in a moment), ...

Sometimes works even for infinite trees:

Take a regular $G \subseteq A^{\omega}$. Construct a regular $W_G \subseteq (A \sqcup \{b\})^{\omega}$: $\begin{bmatrix} \mathcal{A}_G \mapsto \mathcal{A}_{W_G} \text{ s.t. } L(\mathcal{A}_{W_G}) = W_G \end{bmatrix}$ (I): $\underline{a_0} \qquad \underline{a_1} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b} \qquad \underline{b} \qquad \underline{a_5} \qquad \underline{b} \qquad \cdots$ ((II) wins BM(G)) \iff ((II) wins $\mathcal{G}(W_G)$)

Solve $\mathcal{G}(W_G)$ to know if G is comeagre.

Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0,
- Wadge reductions (in a moment), ...

Sometimes works even for infinite trees:

Theorem (Michalewski, Mio, S. ['17])

It is decidable if $L(\mathcal{A})$ is comeagre for game-automata $\mathcal{A}.$

Wadge order for regular languages

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$

Wadge order for regular languages

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K, L)$:

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K, L)$:

(I): (II):

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K, L)$:

(I): a_0 (II):

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K,L)$:

(I):
$$a_0 \overset{\& A}{}$$
(II):

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K,L)$:

(I):
$$a_0 \overset{\& A}{(\mathrm{II}):} b_0$$

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K,L)$: ${}_{\&}A$

(I):
$$a_0$$

(I): b_0
 $\bigotimes B \sqcup \{\epsilon\}$

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_W L$?

Wadge game $\mathcal{W}(K,L)$:

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K, L)$:

$$(I): \qquad \begin{array}{c} & & & \\ & & & \\ (I): & & a_0 & a_1 \\ (II): & & b_0 & b_1 \\ & & &$$

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_W L$?

Wadge game $\mathcal{W}(K, L)$:

$$\begin{array}{c} & & & \\ & & & \\ (I): & a_0 & a_1 & a_2 & a_3 & a_4 \\ (II): & & b_0 & b_1 & b_2 & b_3 & b_4 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_W L$?

Wadge game $\mathcal{W}(K,L)$:

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K, L)$:

 $W \equiv \beta \in B^{\omega} \land \left(\alpha \in L \Leftrightarrow \beta \in K \right)$

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K,L)$:

$$W \equiv \beta \in B^{\omega} \land \left(\alpha \in L \Leftrightarrow \beta \in K \right)$$

regular property over $A \cup B \sqcup \{\epsilon\}$

Input: Regular $K \subseteq A^{\omega}$ and $L \subseteq B^{\omega}$ Output: Does $K \leq_{W} L$?

Wadge game $\mathcal{W}(K,L)$:

(I):

$$a_{0} \quad a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \quad \cdots \quad \cdots \Rightarrow \alpha \in A^{\omega}$$
(II):

$$b_{0} \quad b_{1} \quad b_{2} \quad b_{3} \quad b_{4} \quad \cdots \quad \cdots \Rightarrow \beta \in B^{\leqslant \omega}$$

$$\overset{\bigotimes B \sqcup \{\epsilon\}}{W \equiv \beta \in B^{\omega} \land (\alpha \in L \Leftrightarrow \beta \in K)}$$
regular property over $A \cup B \sqcup \{\epsilon\}$

Effectively solve $\mathcal{W}(K, L)$ to know if $K \leq_{\mathrm{W}} L$.

Parity index Fix a pair $i \leq j$. $P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\stackrel{\Omega: Q \to \{i, \dots, j\}}{\underbrace{(i, \dots, j)}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{i \in \mathbb{N}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\stackrel{\Omega: Q \to \{i, \dots, j\}}{\longrightarrow}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$. Proof

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega : Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$. Proof

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\alpha = a_0 \quad a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_6 \quad \cdots$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$. Proof

 $\mathcal{A} \text{ reads } \alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$. Proof

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\sum_{\substack{\Omega \colon Q \to \{i, \dots, j\}}} \sum_{i \in Q} \tau(i) = 0 \pmod{2}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$. Proof

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{i \in \mathbb{N}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_{\mathrm{W}} P_{i,j}$ and $L \in \mathbf{REG}$

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_W P_{i,j}$ and $L \in \mathbf{REG}$ then $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity. **Proof** — game:

(I): (II):

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_W P_{i,j}$ and $L \in \mathbf{REG}$ then $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity. **Proof** — game:

(I): a_0 (II):

F

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_{W} P_{i,j}$.

Proposition

If $L \leq_W P_{i,j}$ and $L \in \mathbf{REG}$ then $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof — game: & A(I): a_0 (II):

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_{W} P_{i,j}$.

Proposition

If $L \leq_W P_{i,j}$ and $L \in \mathbf{REG}$ then $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof — game: & A(I): a_0 (II): p_0

F

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\underbrace{\Omega \colon Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_{W} P_{i,j}$.

Proposition

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\underbrace{\Omega \colon Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_{W} P_{i,j}$.

Proposition

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_{W} P_{i,j}$.

Proposition

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{\Omega: Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_{\mathrm{W}} P_{i,j}$ and $L \in \mathbf{REG}$ then $L = \mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{\Omega: Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_{W} P_{i,j}$ and $L \in \mathbf{REG}$ then $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{\Omega: Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_W P_{i,j}$ and $L \in \mathbf{REG}$ then $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

Fact
$$\underbrace{\Omega: Q \to \{i, \dots, j\}}_{\Omega: Q \to \{i, \dots, j\}}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_{\mathrm{W}} P_{i,j}$ and $L \in \mathbf{REG}$ then $L = \mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

1. (II) wins the game (because $L \leq_W P_{i,j}$).

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_{\mathrm{W}} P_{i,j}$ and $L \in \mathbf{REG}$ then $L = \mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

Proof — game:
(I):
$$a_0 \quad a_1 \quad a_2 \quad a_3 \quad a_4 \quad \cdots \quad \cdots \quad \alpha \in A^{\omega}$$

(II): $p_0 \quad p_1 \quad p_2 \quad p_3 \quad p_4 \quad \cdots \quad \cdots \quad \tau \in \{i, \dots, j\}^{\omega}$
 $\bigotimes \{i, \dots, j\}$
 $W \equiv \alpha \in L \Leftrightarrow \tau \in P_{i,j}$ — regular condition

- **1.** (II) wins the game (because $L \leq_W P_{i,j}$).
- 2. So (II) wins using finite memory

Fix a pair $i \leq j$.

$$P_{i,j} \stackrel{\text{def}}{=} \left\{ \tau \in \{i, \dots, j\}^{\omega} \mid \limsup_{n \to \infty} \tau(n) \equiv 0 \pmod{2} \right\}$$

act
$$\Omega: Q \to \{i, \dots, j\}$$

If $L = L(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity automaton then $L \leq_W P_{i,j}$.

Proposition

If $L \leq_{\mathrm{W}} P_{i,j}$ and $L \in \mathbf{REG}$ then $L = \mathrm{L}(\mathcal{A})$ with \mathcal{A} det. (i, j)-parity.

- **1.** (II) wins the game (because $L \leq_W P_{i,j}$).
- **2.** So (II) wins using finite memory \leadsto det. (i, j)-parity aut. for L.

Trivia:

Trivia: $P_{i,j} \leq_W P_{i,j+1}$,

Trivia: $P_{i,j} \leq_W P_{i,j+1}$, $P_{i,j} \equiv_W P_{i+2,j+2}$,

Trivia:
$$P_{i,j} \leq W P_{i,j+1}$$
, $P_{i,j} \equiv_W P_{i+2,j+2}$, $P_{i,j} \equiv_W P_{i+1,j+1}^c$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,$ Trivia: $P_{i,j} \leq_W P_{i,j+1}$, $P_{i,j} \equiv_W P_{i+2,j+2}$, $P_{i,j} \equiv_W P_{i+1,j+1}^c$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,8}$ $P_{0,$

 $\alpha =$

 $\rho = q_0$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,$

$$\alpha =$$

$$\rho = q_0$$

$$\Omega$$
:

$$\tau = 1$$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,$

 $\begin{array}{rcl} \alpha = & 0 \\ \rho = & q_0 \\ \Omega : & \downarrow \\ \tau = & 1 \end{array}$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,$

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,6}$ $P_{0,7}$ $P_{0,$

Trivia: $P_{i,j} \leq_W P_{i,j+1}$, $P_{i,j} \equiv_W P_{i+2,j+2}$, $P_{i,j} \equiv_W P_{i+1,j+1}^c$ $P_{0.0}$ P_{0.1} P_{0,2} P_{0,3} P_{0,4} P_{0,5} P_{0,6} P_{0,7} P_{0,8} P_{0,8 \leqslant_W $P_{1,0+1}$ $P_{1,1+1}$ $P_{1,2+1}$ $P_{1,3+1}$ $P_{1,4+1}$ $P_{1,5+1}$ $P_{1,6+1}$ $P_{1,5+1}$ P_{1 Theorem $P_{i,j} \leq P_{i+1,j+1}$ **Proof** Assume that $P_{i,j} \leq_W P_{i+1,j+1}$ \longrightarrow L(\mathcal{A}) = $P_{i,j}$ with \mathcal{A} det. (i+1, j+1)-parity automaton

Trivia: $P_{i,j} \leq_{W} P_{i,j+1}$, $P_{i,j} \equiv_{W} P_{i+2,j+2}$, $P_{i,j} \equiv_{W} P_{i+1,j+1}^{c}$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,8}$ $P_{0,6}$ $P_{0,7}$ $P_{0,8}$ $P_{0,8}$

 $1 + \limsup_{n \to \infty} \alpha(n) = \limsup_{n \to \infty} \tau(n)$

Trivia: $P_{i,j} \leq_W P_{i,j+1}$, $P_{i,j} \equiv_W P_{i+2,j+2}$, $P_{i,j} \equiv_W P_{i+1,j+1}^c$ $P_{0,0}$ $P_{0,1}$ $P_{0,2}$ $P_{0,3}$ $P_{0,4}$ $P_{0,5}$ $P_{0,6}$ $P_{0,7}$ $P_{0,8}$ $P_{0,$

$$1 + \limsup_{n \to \infty} \alpha(n) = \limsup_{n \to \infty} \tau(n)$$

$$\alpha \in \mathcal{L}(\mathcal{A}) \text{ iff } \tau \in P_{i,j} \text{ iff } \alpha \notin P_{i,j}$$

Michał Skrzypczak

Games and complexity: from **-games to automata 13 / 22

Part 5

Effective characterisations

Procedure:

Input: \mathcal{A}

Output: Is $L(\mathcal{A})$ simple?

definable in a weaker logic (e.g. FO)

Procedure:

Input: \mathcal{A}

Output: Is L(A) simple?

Procedure:

Input: \mathcal{A}

Output: Is L(A) simple?

definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...

Procedure:

Input: \mathcal{A}

Output: Is L(A) simple?

definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...
tenelogically simple (e.g. Porel)

→ topologically simple (e.g. **Borel**)

Procedure:

Input: \mathcal{A}

Output: Is L(A) simple?

definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...
topologically simple (e.g. Borel)
...

Procedure:

Input: \mathcal{A}

Output: Is L(A) simple?

definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...
topologically simple (e.g. Borel)
...

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in \mathbf{REG}$ is First-order (i.e. FO) definable.

Procedure:

Input: \mathcal{A}

Output: Is L(A) simple?

definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...
topologically simple (e.g. Borel)
...

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in \mathbf{REG}$ is First-order (i.e. FO) definable.

Theorem (Bojańczyk, Walukiewicz ['04])

It is decidable if a regular language of finite trees is EF definable.

Procedure: Input: A

Output: Is L(A) simple?

definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...
topologically simple (e.g. Borel)
...

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in \mathbf{REG}$ is First-order (i.e. FO) definable.

Theorem (Bojańczyk, Walukiewicz ['04])

It is decidable if a regular language of finite trees is ${\rm EF}$ definable.

Theorem (Murlak ['06])

Topological complexity is dec. for deterministic languages of inf. trees.

Procedure: Input: AOutput: Is L(A) simple? definable in a weaker logic (e.g. FO)
finite / countable / meagre / ...
topologically simple (e.g. Borel)
...

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in \mathbf{REG}$ is First-order (i.e. FO) definable.

Theorem (Bojańczyk, Walukiewicz ['04])

It is decidable if a regular language of finite trees is ${\rm EF}$ definable.

Theorem (Murlak ['06])

Topological complexity is dec. for deterministic languages of inf. trees.

Bárány, Bojańczyk, Colcombet, Duparc, Facchini, Idziaszek, Kuperberg, Michalewski, Murlak, Niwiński, Place, Sreejith, Walukiewicz, ...

Pattern method for rigid representations

1. Input $L = L(\mathcal{A})$

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(\mathcal{A}_L)$ $\begin{bmatrix} \text{Properties of } \mathcal{A}_L \\ \text{are properties of } L \end{bmatrix}$ $\varphi \equiv (\varphi \land \Psi) \lor (\varphi \land \neg \Psi)$

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L

3. Search in \mathcal{A}_L for a complicated **pattern**

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L

3. Search in \mathcal{A}_L for a complicated **pattern**

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

e.g. (acc. rej.) or
$$x^M \neq x^M \cdot x$$

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

3.a Prove that L is hard

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- 3. Search in \mathcal{A}_L for a complicated **pattern**

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- 3. Search in \mathcal{A}_L for a complicated **pattern**

Limitations:

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

Limitations:

• 3.a uses complexity in \mathcal{A}_L to prove complexity of L

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

Limitations:

3.a uses complexity in A_L to prove complexity of L
 →→ requires rigid representations

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

Limitations:

• 3.a uses complexity in \mathcal{A}_L to prove complexity of L

vow requires rigid representations

No such for infinite trees!

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

3.a Prove that *L* is hard

3.b Use it to show that L is simple

Limitations:

• 3.a uses complexity in \mathcal{A}_L to prove complexity of L

vvv requires rigid representations

No such for infinite trees!

• 3.b works under the assumption of lack of obstruction

- **1.** Input $L = L(\mathcal{A})$
- **2.** Compute a rigid representation $L = L(A_L)$ Properties of A_L are properties of L
- **3.** Search in \mathcal{A}_L for a complicated **pattern**

3.a Prove that *L* is hard

3.b Use it to show that L is simple

Limitations:

• 3.a uses complexity in \mathcal{A}_L to prove complexity of L

vvv requires rigid representations

No such for infinite trees!

• **3.b** works under the assumption of lack of obstruction wifficult proofs

1. Input $L = L(\varphi)$

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ}

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his **w.s.** $\sigma_{\rm I}$

Use $\sigma_{\rm I}$ to prove that L is hard

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

3.b Take his w.s. σ_{II}

Use $\sigma_{\rm I}$ to prove that L is hard

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his w.s. $\sigma_{\rm I}$

3.b Take his w.s. $\sigma_{\rm II}$

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his **w.s.** $\sigma_{\rm I}$

3.b Take his **w.s.** σ_{II}

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

 \cdots In both cases we are on the positive side.

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his **w.s.** $\sigma_{\rm I}$

3.b Take his w.s. σ_{II}

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

 \cdots In both cases we are on the positive side.

 \longrightarrow If \mathcal{G}_{φ} is regular then σ_{I} and σ_{II} are **finite memory**.

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his **w.s.** σ_{I}

3.b Take his w.s. σ_{II}

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

 \cdots In both cases we are on the positive side.

 \longrightarrow If \mathcal{G}_{φ} is regular then σ_{I} and σ_{II} are **finite memory**.

 $\leadsto \mathcal{G}_{arphi}$ can work with a non-rigid representation arphi

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his **w.s.** σ_{I}

3.b Take his w.s. σ_{II}

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

 \cdots In both cases we are on the positive side.

 \longrightarrow If \mathcal{G}_{φ} is regular then σ_{I} and σ_{II} are **finite memory**.

 $\rightsquigarrow \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ

(e.g. deal with non-determinism).

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

3.b Take his w.s. σ_{II}

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

 \cdots In both cases we are on the positive side.

 \longrightarrow If \mathcal{G}_{φ} is regular then σ_{I} and σ_{II} are **finite memory**.

 $\rightsquigarrow \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ

(e.g. deal with non-determinism).

Examples

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

3.b Take his w.s. σ_{II}

Use σ_{I} to prove that L is hard

Use σ_{II} to prove that L is simple

 \cdots In both cases we are on the positive side.

 \longrightarrow If \mathcal{G}_{φ} is regular then σ_{I} and σ_{II} are **finite memory**.

 $\leadsto \mathcal{G}_{arphi}$ can work with a non-rigid representation arphi

(e.g. deal with non-determinism).

Examples

-(Kirsten ['05]; Colcombet ['09]; Toruńczyk ['11]; Bojańczyk ['15]): star-height

1. Input $L = L(\varphi)$ **2.** Construct a game \mathcal{G}_{φ} **3.** Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

3.b Take his w.s. σ_{II}

Use $\sigma_{\rm I}$ to prove that L is hard

Use $\sigma_{\rm II}$ to prove that L is simple

 \cdots In both cases we are on the positive side.

 \longrightarrow If \mathcal{G}_{φ} is regular then σ_{I} and σ_{II} are **finite memory**.

 $\rightsquigarrow \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ

(e.g. deal with non-determinism).

Examples

-(Kirsten ['05]; Colcombet ['09]; Toruńczyk ['11]; Bojańczyk ['15]): **star-height** -(Colcombet, Löding ['08] + Kuperberg, Vanden Boom ['13]):

a variant of Rabin-Mostowski index problem

Michał Skrzypczak Games and complexity: from **-games to automata 16 / 22

Part 4

Two examples

It is decidable if a Büchi language of infinite trees is WMSO definable.

It is decidable if a Büchi language of infinite trees is WMSO definable.

no rigid representation

It is decidable if a Büchi language of infinite trees is WMSO definable.

no rigid representation

weaker logic

It is decidable if a Büchi language of infinite trees is WMSO definable.

no rigid representation

weaker logic

Proof

Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a Büchi language of infinite trees is WMSO definable.

no rigid representation

weaker logic

Proof

Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

 $\left[W \equiv A \lor \left(B \land C\right)\right]$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a Büchi language of infinite trees is WMSO definable.

Michał Skrzypczak Games and complexity: from **-games to automata 17 / 22

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14])

It is decidable if a Büchi language of infinite trees is WMSO definable.

no rigid representation

weaker logic

Proof

Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

 $\left[W \equiv A \lor \left(B \land C\right)\right]$

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a <u>Büchi language of infinite trees</u> is <u>WMSO definable</u>. **no** rigid representation **Proof** Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. $W \equiv A \lor (B \land C)$] $\sigma_{I} \rightsquigarrow L$ is **not** WMSO def. $\sigma_{II} \rightsquigarrow WMSO$ formula for $L \blacksquare$

But it seemed that we can get more (ordinal ranks)!

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation weaker logic Proof $\left[W \equiv A \lor \left(B \land C\right)\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. (II) wins (I) wins $\sigma_{\rm I} \leadsto L$ is **not** WMSO def. $\sigma_{\rm II} \rightsquigarrow {\rm WMSO}$ formula for L(pumping) **Theorem** (S., Walukiewicz ['16]) A Büchi language is WMSO def. **iff** it is **Borel**; and it is decidable.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation weaker logic Proof $\left[W \equiv A \lor \left(B \land C\right)\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. (II) wins (I) wins $\sigma_{\rm I} \leadsto L$ is **not** WMSO def. $\sigma_{\rm II} \rightsquigarrow {\rm WMSO}$ formula for L(pumping) **Theorem** (S., Walukiewicz ['16]) A Büchi language is WMSO def. **iff** it is **Borel**; and it is decidable. Proof

Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}'_{\mathcal{B}}$.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation weaker logic Proof $\left[W \equiv A \lor \left(B \land C\right)\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. (II) wins (I) wins $\sigma_{\rm I} \leadsto L$ is **not** WMSO def. $\sigma_{\rm II} \rightsquigarrow {\rm WMSO}$ formula for L(pumping) **Theorem** (S., Walukiewicz ['16]) A Büchi language is WMSO def. **iff** it is **Borel**; and it is decidable. Proof $\left[W \equiv \left(A \lor B\right) \land C'\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}'_{\mathcal{B}}$.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation weaker logic Proof $\left[W \equiv A \lor \left(B \land C\right)\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. (II) wins (I) wins $\sigma_{\rm I} \leadsto L$ is **not** WMSO def. $\sigma_{\rm II} \leadsto {\rm WMSO}$ formula for L(pumping) **Theorem** (S., Walukiewicz ['16]) A Büchi language is WMSO def. **iff** it is **Borel**; and it is decidable. Proof Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}'_{\mathcal{B}}$. $[W \equiv (A \lor B) \land C']$ (I) wins $\sigma_{\mathrm{I}} \leadsto \Sigma_{\mathrm{1}}^{1} \leqslant_{\mathrm{W}} L$ $\longrightarrow L$ is **not** WMSO def.

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation weaker logic Proof $\left[W \equiv A \lor \left(B \land C\right)\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. (II) wins (I) wins $\sigma_{\rm I} \leadsto L$ is **not** WMSO def. $\sigma_{\rm II} \leadsto {\rm WMSO}$ formula for L(pumping) **Theorem** (S., Walukiewicz ['16]) A Büchi language is WMSO def. **iff** it is **Borel**; and it is decidable. Proof Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}'_{\mathcal{B}}$. $[W \equiv (A \lor B) \land C']$ (II) wins (I) wins $\sigma_{\mathrm{I}} \leadsto \Sigma_{\mathrm{1}}^{1} \leqslant_{\mathrm{W}} L$ $\sigma_{\rm II} \longrightarrow {\rm WMSO}$ formula for L $\longrightarrow L$ is **not** WMSO def. $\longrightarrow L$ is **Borel**

Michał Skrzypczak

Games and complexity: from **-games to automata 17 / 22

Theorem (Colcombet et al. ['13]; S., Walukiewicz ['14]) It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation weaker logic Proof $\left[W \equiv A \lor \left(B \land C\right)\right]$ Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$. (II) wins (I) wins $\sigma_{\rm I} \leadsto L$ is **not** WMSO def. $\sigma_{\rm II} \leadsto {\rm WMSO}$ formula for L(pumping) **Theorem** (S., Walukiewicz ['16]) A Büchi language is WMSO def. **iff** it is **Borel**; and it is decidable. Proof Take $L = L(\mathcal{B})$ and construct a game $\mathcal{G}'_{\mathcal{B}}$. $[W \equiv (A \lor B) \land C']$ (II) wins (I) wins $\sigma_{\mathrm{I}} \leadsto \Sigma_{\mathrm{1}}^{1} \leqslant_{\mathrm{W}} L$ $\sigma_{\rm II} \longrightarrow {\rm WMSO}$ formula for L $\longrightarrow L$ is **Borel** $\longrightarrow L$ is **not** WMSO def.

Michał Skrzypczak

Games and complexity: from **-games to automata 17 / 22

Let L be regular lang. of inf. trees. Then effectively either:

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt(0,2)-definable and $L \leq_W \Pi_2^0$

Let L be regular lang. of inf. trees. Then effectively either:

- **1.** L is weak-alt(0,2)-definable and $L \leq_W \Pi_2^0$
- **2.** L isn't weak-alt(0, 2)-definable and $L \ge_{\mathrm{W}} \Sigma_2^0$

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt(0,2)-definable and $L \leq_W \Pi_2^0$

2. L isn't weak-alt(0, 2)-definable and $L \ge_W \Sigma_2^0$

weak index

Let L be regular lang. of inf. trees. Then effectively either: **1.** L is weak-alt(0, 2)-definable and $L \leq_W \Pi_2^0$ **2.** L isn't weak-alt(0, 2)-definable and $L \geq_W \Sigma_2^0$ weak index topological complexity

Let *L* be regular lang. of inf. trees. Then effectively either: **1.** *L* is weak-alt(0, 2)-definable and $L \leq_W \Pi_2^0$ **2.** *L* isn't weak-alt(0, 2)-definable and $L \geq_W \Sigma_2^0$ weak index topological complexity **Proof**

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c} .

Let *L* be regular lang. of inf. trees. Then effectively either: **1.** *L* is weak-alt(0, 2)-definable and $L \leq_W \Pi_2^0$ **2.** *L* isn't weak-alt(0, 2)-definable and $L \geq_W \Sigma_2^0$ weak index topological complexity **Proof**

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c} . Consider a game \mathcal{F} on $\mathcal{B} \times \mathcal{A} \times \mathcal{A}$

Let *L* be regular lang. of inf. trees. Then effectively either: **1.** *L* is weak-alt(0,2)-definable and $L \leq_W \Pi_2^0$ **2.** *L* isn't weak-alt(0,2)-definable and $L \geq_W \Sigma_2^0$ weak index topological complexity **Proof**

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c} . Consider a game \mathcal{F} on $\mathcal{B} \times \mathcal{A} \times \mathcal{A}$

Gameplay

Gameplay	$\mathcal B$ -states p	$\mathcal A$ -states q	$\mathcal A$ -states q'
	· · · · · · · · · · · · · · · · · · ·		

Winning condition

(WR) (II) restarted infinitely many times

(WR) (II) restarted infinitely many times $\longrightarrow \Pi_2^0$ -complete set

(WR) (II) restarted infinitely many times $\longrightarrow \Pi_2^0$ -complete set (WB) \mathcal{B} -states p are accepting

(WR) (II) restarted infinitely many times $\longrightarrow \Pi_2^0$ -complete set (WB) \mathcal{B} -states p are accepting \longrightarrow seems that $t \notin L$

Wadge-like condition for $(WR) \leq_W L^c$

Wadge-like condition for $(WR) \leq_W L^c$

v regular condition over infinite words

Michał Skrzypczak

Wadge-like condition for $(WR) \leq_W L^c$

 \rightsquigarrow regular condition over infinite words \rightsquigarrow we can solve \mathcal{F}

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in ${\mathcal F}$

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

```
Take a strategy of (I) in {\mathcal F}
```

Confront it with multiple strategies of $\left(II\right)$

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

```
Take a strategy of (I) in \mathcal{F}
```

Confront it with multiple strategies of (II)

 \leadsto a reduction proving that $(WR)\leqslant_W \mathit{L^c}$

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0, 2)-definable

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0,2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable **Proof**

Take a finite memory strategy of (II) in $\mathcal F$

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0, 2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of (II) in $\mathcal F$ Add some pumping

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0, 2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F} Add some pumping \rightsquigarrow a weak-alternating (0,2) automaton for L

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0, 2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F} Add some pumping \longrightarrow a weak-alternating (0,2) automaton for L $\longrightarrow L \leq_W \Pi_2^0$

1. If (I) wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0, 2)-definable

1. If (II) wins $\mathcal F$ then L is $\mathrm{weak-alt}(0,2)\text{-definable}$

Proof

Take a finite memory strategy of (II) in \mathcal{F} Add some pumping \rightsquigarrow a weak-alternating (0,2) automaton for L \rightsquigarrow $L \leq_{\mathrm{W}} \Pi_2^0$ A complete proof

ProofA complete proofTake a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) $\cdots \rightarrow$ a reduction proving that (WR) $\leq_W L^c$ $\cdots \rightarrow L$ is not weak-alt(0, 2)-definable1. If (II) wins \mathcal{F} then L is weak-alt(0, 2)-definableProofTake a finite memory strategy of (II) in \mathcal{F} Add some pumping
Confront it with multiple strategies of (II) \longrightarrow a reduction proving that (WR) $\leq_W L^c$ $\longrightarrow L$ is not weak-alt(0, 2)-definable 1. If (II) wins \mathcal{F} then L is weak-alt(0, 2)-definable Proof Take a finite memory strategy of (II) in \mathcal{F} Add some pumping
$\begin{array}{l} & \longrightarrow \text{ a reduction proving that (WR)} \leqslant_{\mathrm{W}} L^{\mathrm{c}} \\ & \longrightarrow L \text{ is not } \mathrm{weak-alt}(0,2)\text{-definable} \end{array} \qquad \begin{array}{l} & \text{A complete proof} \\ & \text{not using properties} \\ & \text{on which} \end{array} \\ & \text{1. If (II) wins } \mathcal{F} \text{ then } L \text{ is weak-alt}(0,2)\text{-definable} \end{array} \qquad \begin{array}{l} & \text{A complete proof} \\ & \text{not using properties} \\ & \text{on which} \end{array} \\ & \text{the game } \mathcal{F} \text{ is based} \end{array}$
$ \begin{array}{c} & & & \\ & & \\ \textbf{1. If (II) wins } \mathcal{F} \text{ then } L \text{ is weak}-\text{alt}(0,2)\text{-definable} \\ & & \\ \textbf{Proof} \\ & & \\$
Proof Take a finite memory strategy of (II) in F Add some pumping
Take a finite memory strategy of (II) in ${\cal F}$ Add some pumping
Add some pumping
\checkmark a weak-alternating $(0,2)$ automaton for L
$\longrightarrow L \leqslant_{\mathrm{W}} \Pi_2^0$

1. If (I) wins ${\mathcal F}$ then L is not ${\mathbf \Pi}_2^0$

Proof

Take a strategy of (I) in \mathcal{F} Confront it with multiple strategies of (II) \rightsquigarrow a reduction proving that (WR) $\leq_W L^c$ $\rightsquigarrow L$ is **not** weak-alt(0, 2)-definable

1. If (II) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (II) in \mathcal{F} Add some pumping \rightsquigarrow a weak-alternating (0,2) automaton for L \rightsquigarrow $L \leq_W \Pi_2^0$ A complete proof not using properties on which the game \mathcal{F} is based [dealternation]

 \rightarrow characterising which languages are simple

- → characterising which languages are simple
- → pattern method (rigid representatons: det. aut. / algebra)

- → characterising which languages are simple
- → pattern method (rigid representatons: det. aut. / algebra)

- → characterising which languages are simple
- → pattern method (rigid representatons: det. aut. / algebra)

- → characterising which languages are simple
- \rightarrow pattern method (rigid representations: det. aut. / algebra)

→ games (may deal with non-determinism)

- → characterising which languages are simple
- \rightarrow pattern method (rigid representations: det. aut. / algebra)

 $\leadsto L$ is simple

→ games (may deal with non-determinism)

strategy of (I) $\rightsquigarrow L$ is hard

Summary \rightarrow characterising which languages are simple → pattern method (rigid representatons: det. aut. / algebra) pattern found pattern missing $\longrightarrow L$ is hard $\longrightarrow L$ is simple \rightarrow games (may deal with non-determinism) strategy of (I)strategy of (II) $\longrightarrow L$ is hard $\longrightarrow L$ is simple

Summary \rightarrow characterising which languages are simple → pattern method (rigid representatons: det. aut. / algebra) pattern found pattern missing $\longrightarrow L$ is hard $\longrightarrow L$ is simple \rightarrow games (may deal with non-determinism) strategy of (I)strategy of (II) $\longrightarrow L$ is hard $\longrightarrow L$ is simple

→ no general recipe for design

Summary \rightarrow characterising which languages are simple → pattern method (rigid representatons: det. aut. / algebra) pattern found pattern missing $\longrightarrow L$ is hard $\longrightarrow L$ is simple \rightarrow games (may deal with non-determinism) strategy of (II) strategy of (I) $\longrightarrow L$ is hard $\longrightarrow L$ is simple

→ no general recipe for design

Conjecture: Every class of languages has a game characterisation