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Abstract. This paper exhibits an example of a Σ1
1-complete ω-language

that can be recognised by a Büchi automaton with one partially blind
counter (or equivalently a Büchi VASS with only one place). It follows as
a corollary that there is no equivalent model of deterministic automata,
even if we allow much richer data structures than just counters. The same
holds for weaker forms of determinism, like for unambiguous or count-
ably-unambiguous machines. This shows that even in the one counter
case, non-determinism of Büchi VASS is inherent.

Keywords: Petri nets · infinite words · non-determinism.

In this work we study the strength of non-determinism in the context of
partially blind multi-counter Büchi automata. This is a model of finite automata
over infinite words with the Büchi acceptance condition (also known as “repeated
reachability condition”). Additionally, each such automaton is equipped with
a finite set of counters taking non-negative integer values. The automaton can
freely increment and decrement the values of the counters, however it cannot
test these values (i.e. no zero nor equality test). The only way in which the
values of the counters influence the behaviour of the automaton is that they
must stay non-negative during a run. The studied class of automata is strongly
connected with other models based on Petri nets: a partially blind multi-counter
Büchi automaton can be seen as a Büchi Vector Addition System with States
(i.e. Büchi VASS) and vice versa.

Similarly as in the case of Petri nets, the considered model is naturally
equipped with non-determinism. The main result of [10] implies that Büchi VASS
are able to recognise ω-languages that cannot be recognised by the deterministic
variant of the machines. This was achieved by topological methods: the paper
provides an example of a Büchi VASS recognising an ω-language complete for
the third level of the hierarchy of Borel sets (Σ0

3-complete); while deterministic
Büchi VASS can only recognise ω-languages in the second level of the hierarchy
(in Π0

2).
While the result of [10] separates non-deterministic Büchi VASS from the

deterministic ones, it does not settle the question of the upper bounds on the
topological complexity for these machines. Moreover, the lower bound of Σ0
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does not rule out the possibility of having a model of automata with a limited
form of non-determinism that still captures the expressive power of non-deter-
ministic Büchi VASS. To counterbalance the lack of full non-determinism, one
could consider adding new counter operations (like min and max, see e.g. [1,3]);
extending the acceptance condition to a topologically harder one, like Rabin,
lim inf-parity, or something like the ωBS condition from [2]; or adding a richer
data structure, e.g. a stack. Also, instead of a fully deterministic model, one
could hope for an intermediate form of non-determinism, as in the case of unam-
biguous machines [5]; or when the non-deterministic choices appear only finitely
many times in the accepting runs. The latter assumption implies that there are
at most countably many accepting runs over a fixed ω-word, we will call such
a machine countably-unambigous. This last restriction finds justification in the
actual example provided in [10], where the whole non-deterministic choice of the
machine reduces to choosing a single natural number at the beginning of a run.

In general, topological complexity suits well to make a distinction between
determinism and non-determinism. Firstly, in the case of all standard models of
machines, the relation run(α, ρ) of “being a run” is a closed1 relation between
ω-words α ∈ Aω and sequences of configurations ρ ∈ Cω. Moreover, for all the
standard acceptance conditions mentioned above, the property of being an ac-
cepting run acc(ρ) is Borel. This implies that all deterministic devices, which
can be seen as transducers of an input ω-word into a sequence of configurations,
recognise only Borel sets. The situation is different in the case of non-determinis-
tic devices, where the language of such a machine can be written as a projection
of a Borel set:

{α ∈ Aω | ∃ρ ∈ Cω. run(α, ρ)∧acc(ρ)} = πAω

(
{(α, ρ) | run(α, ρ)∧acc(ρ)}

)
. (1)

It is known that in general, projections of Borel sets might not be Borel — they
form a wider class of analytic sets (denoted Σ1

1). Thus, Σ1
1 is the upper bound for

the topological complexity of general non-deterministic devices. The above for-
mula, together with a theorem by Lusin and Novikov [12, Theorem 18.10], imply
that countably-unambiguous machines recognise only Borel ω-languages. This
means that in terms of topological complexity they are closer to deterministic
than to non-deterministic ones.

The above topological results say that the distinction between weak vs. full
forms of non-determinism can be topologically understood as the difference be-
tween Borel and analytic sets. The purpose of the present paper is to use this
correspondence by showing the following theorem.

Theorem 1. There exists an ω-language that is recognised by a Büchi VASS
with one counter (i.e. with one place) that recognises a Σ1

1-complete ω-language.

As noted above, all ω-languages recognised by non-deterministic Büchi VASS
are in Σ1

1. Thus, the above result solves the question of the upper bounds for
the topological complexity of these machines. Moreover, the theorem translates
to the automata theoretic realms as the following corollary.
1 Equivalently: a relation given by a safety condition.
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Corollary 1. No model of deterministic, unambiguous, nor even countably-un-
ambiguous automata with countably many configurations and a Borel acceptance
condition can capture the class of ω-languages recognisable by Büchi VASS with
one counter.

The crucial difficulty in proving Theorem 1 is the fact, that Büchi VASS
are partially blind: they cannot test their counters for exact values. As a con-
sequence, there is a natural simulation order on the configurations of a Büchi
VASS: a configuration (q, #»a ) simulates (q, #»c ) if they have the same state and
the counter values #»a and #»c satisfy coordinate-wise #»a ≥ #»c . In such a case, the
language recognised from (q, #»a ) contains the language recognised by (q, #»c ); be-
cause each accepting run from (q #»c ) can be lifted to an accepting run from (q, #»a )
just by increasing the counter values. In particular, when there is exactly one
counter, the maximal size of an anti-chain of the simulation order is bounded by
the number of states; what limits the possible structure of the so-called residual
ω-languages of the device.

Although the construction of the paper is expressed in terms of topologi-
cal complexity, the actual core of the proof is a combinatorial idea allowing to
simulate a Σ1

1-hard behaviour (i.e. one that involves full non-determinism) by
an efficient way of storing information in the value of a unique partially blind
counter of the automaton. The idea is not very complex, and the overall con-
struction should be considered as rather direct.

To simplify the presentation of the proof it is performed in three steps. In
Section 2 we provide an easy example of a Σ1

1-complete ω-language recognised
by a Büchi VASS with two counters. Then, in Section 3 we characterise a specific
Σ1

1-complete set (namely IFinf). This set is in a certain sense monotone, which
is used to reflect the simulation order on configurations of our automata. In
Section 4 we reduce the set IFinf to an ω-language recognised by a Büchi VASS
with only one counter, which concludes the proof of Theorem 1. Section 5 is
devoted to Corollary 1. Finally, Section 6 gives some concluding remarks.

Acceptance condition The results of the paper speak about VASS with the
Büchi acceptance condition. Since non-deterministic Büchi automata recognise
all ω-regular languages, these machines can simulate all other ω-regular accep-
tance conditions. Thus, the Büchi condition seems to be one of the canonical
ones (with most of them actually equivalent). On the other hand, the situation
is different for certain weaker acceptance conditions: the safety, reachability, and
co-Büchi conditions can be written as countable unions of closed sets (i.e. Σ0

2).
A known topological fact says that a projection of a Σ0

2 set contained in a com-
pact2 topological space is also Σ0

2. Therefore, none of these weaker conditions
allows a non-deterministic VASS to recognise a non-Borel ω-language. A reason-
able task (although out of the scope of the present paper) is to design deter-

2 The space of runs is compact because the automata do not admit ε-transitions and
therefore the possible counter values are bounded at each fixed place of the input
ω-word.
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ministic or almost deterministic models for VASS with these weaker acceptance
conditions.

Related work There is a number of papers studying the topological complexity
of sets recognisable by various models of machines [13,6,8,4,7]. In certain cases,
the topological lower bounds were used to separate models of machines [1,10].
Also, high topological complexity of some classes of languages can influence their
decidability [11].

The question of upper bounds on the topological complexity for Büchi VASS
was left as an open problem in [10]. After publication of that article, the authors
independently managed to solve this problem. In [9], Finkel has found a family of
Büchi VASS with four counters that recognise ω-languages at all Wadge degrees
of non-deterministic Turing machines. This result implies that there are Büchi
VASS with 4 counters recognising Σ1

1-complete ω-languages. Moreover, it shows
that many intermediate classes of topological complexity are also inhabited by
such ω-languages. However, it is not clear whether the number of counters in
that construction can be reduced. This paper provides a construction of a single
Σ1

1-complete ω-language recognised using only one counter. Thus, the two results
are mathematically incomparable.

1 Preliminary notions

We use ω = {0, 1, . . .} to denote the set of natural numbers. If A is a non-empty
set then A∗ and Aω are respectively sets of finite and infinite sequences of el-
ements of A. The elements of A∗ are called words and the elements of Aω are
called ω-words. An ω-language is a set of ω-words. If v ∈ A∗ then by |v| ∈ ω we
denote the length of v (i.e. the number of symbols in v). By v · x we denote the
concatenation of the two sequences, with |v ·x| = |v|+ |x|. If the context is clear,
we skip the concatenation symbol ·. If n ≤ |v| then by v�n ∈ An we denote the
restriction of the sequence to its first n symbols.

Büchi VASS A Büchi VASS (or shortly VASS, as we consider only the Büchi
acceptance condition) is a tuple A = 〈A,Q, qI, F, C, δ〉, where:

– A is a finite input alphabet,
– Q is a finite set of states,
– qI ∈ Q is an initial state,
– F ⊆ Q is a set of accepting states,
– C is a finite set of counters,
– δ is a finite transition relation, its elements are transitions (q, a, τ, q′) where
q, q′ ∈ Q, a ∈ A, and τ : C → Z.

Without loss of generality we assume that the set of counters C has the form C =
{1, 2, . . . , k} for some k (in this work 1 or 2). We visually represent a transition

(q, a, τ, q′) by q
a:
(
τ(1),τ(2),...,τ(k)

)
−−−−−−−−−−−−−→ q′. We say that such a transition is over the
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letter a. If A′ ⊆ A then q
A′:

(
τ(1),τ(2),...,τ(k)

)
−−−−−−−−−−−−−−→ q′ means that for each a ∈ A′ there

is a respective transition. Similarly, q a−→ q′ and q
A′−→ q′ denote the respective

transitions that do not modify the counter values (i.e. τ is constant 0).
A configuration of a VASS A is a tuple (q, c1, c2, . . . , ck) where q ∈ Q,

c1, . . . , ck ∈ ω, and {1, . . . , k} = C. The initial configuration is (qI, 0, . . . , 0). We

say that a transition q
a:
(
τ(1),...,τ(k)

)
−−−−−−−−−−→ q′ goes from a configuration (q, c1, . . . , ck)

to a configuration
(
q′, c1 + τ(1), . . . , ck + τ(k)

)
(note that by the definition it

requires all the numbers ci + τ(i) to be non-negative).
Let α ∈ Aω be an ω-word over the input alphabet. A run of a VASS A

over α is an infinite sequence ρ of configurations, such that ρ(0) is the initial
configuration and for every i ∈ ω there is a transition of A over the letter
α(i) that goes from the configuration ρ(i) to the configuration ρ(i+1). A run ρ
is accepting if for infinitely many i the configuration ρ(i) = (qi, . . .) satisfies
qi ∈ F (i.e. it visits infinitely many times an accepting state). A VASS A accepts
an ω-word α if there exists an accepting run of A over α. The language of A
(denoted L(A)) is the set of ω-words accepted by A.

Topology We will use the standard notions of topology on Polish spaces [12].
The space Aω of all ω-words over a finite alphabet A can be naturally endowed
with a topology where open sets are those obtained as unions of basic open sets of
the form Nu

def
= {u·α | α ∈ Aω}. A set whose complement is open is called closed.

Closed subsets C of Aω can be equivalently characterised as those satisfying the
following safety property:

∀α ∈ Aω.
(
∀n ∈ ω. ∃β ∈ Aω. α�n · β ∈ C

)
=⇒ α ∈ C. (2)

The family of Borel sets in a topological space X is the smallest σ-algebra
that contains all the open sets in X. By Σ1

1 we denote the family of analytic
sets, i.e. projections of Borel sets. A function f : X → Y between two topological
spaces is continuous if the pre-image f−1(U) ⊆ X is open for every open3 set
U ⊆ Y . If A ⊆ X and B ⊆ Y are two subsets of topological spaces then we
call f : X → Y a reduction of A to B if f−1(B) = A. If Γ is a class of sets and
G ⊆ X is a subset of a topological space X, we say that G is Γ -hard if for every
set A ∈ Γ there exists a continuous reduction of A to G. If additionally G ∈ Γ
then we say that G is Γ -complete. Since continuous reductions can be composed,
we obtain the following fact.

Fact 2. If G is Γ -hard and G continuously reduces to G′ then also G′ is Γ -hard.

Orders Consider a set X and a relation o ⊆ X × X on X. We say that o is
a linear order if it is reflexive, transitive, and anti-symmetric. We interpret a pair
(x, x′) ∈ o as representing the fact that x is o-smaller-or-equal than x′. A linear
order o is ill-founded if there exists an infinite sequence x0, x1, . . . of pairwise
3 Since f−1

(⋃
F
)
=
⋃
f−1

(
F
)
, it is enough to consider basic open sets U .
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distinct elements ofX such that for all n we have (xn+1, xn) ∈ o. Such a sequence
indicates an infinite o-descending chain. An order that is not ill-founded is called
well-founded.

Binary trees The binary tree is the set of all sequences of directions T def
= {L, R}∗

where the directions L, R are two fixed distinct symbols. For technical reasons we
sometimes consider a third direction M (it does not occur in the binary tree).

A set X ⊆ T can be naturally identified with its characteristic function

X ∈ {0, 1}
(
{L,R}∗

)
. Thus, the family of all subsets of the binary tree, with the

natural product topology, is homeomorphic with the Cantor set {0, 1}ω.
The elements v, x ∈ T are called nodes. Nodes are naturally ordered by the

following three orders:

– the prefix order: v � x if x can be obtained by concatenating something at
the end of v,

– the lexicographic order: v ≤lex x if v is lexicographically smaller than x (we
assume that L <lex M <lex R),

– the infix order: v ≤inf x if vMω (i.e. the ω-word obtained by appending in-
finitely many symbols M after v) is lexicographically less or equal than xMω.

Notice that, for every fixed n, when restricted to {L, R}n, the lexicographic
and infix orders coincide. However, L <inf ε <inf R but ε is the minimal element
of ≤lex. Both the lexicographic and infix orders are linear.

Since the infix order is countable, dense, and has no minimal nor maximal
elements, we obtain the following fact.

Fact 3. (T ,≤inf) is isomorphic to the order of rational numbers (Q,≤).

Hardness In the following part of the paper we will use the following two sets:

IFpre
def
= {X ⊆ T | X contains an infinite �-ascending chain},

IFinf
def
= {X ⊆ T | X contains an infinite ≤inf -descending chain}.

The following lemma is a standard topological observation.

Lemma 1. The sets IFpre and IFinf are Σ1
1-complete.

Proof. Both sets belong to Σ1
1 just by the form of the definition. IFpre is Σ1

1-hard
by an easy reduction from the set of ill-founded ω-branching trees, the proof is
similar to [12, Exercise 27.3].

IFinf is Σ1
1-hard by a reduction from the set of ill-founded linear orders on ω

(seen as elements of {0, 1}ω×ω). Let us prove this fact more formally. Consider
an element o ∈ {0, 1}ω×ω that is a linear order on ω. The latter set is Σ1

1-complete
by a theorem by Lusin and Sierpiński [12, Theorem 27.12]. We will inductively
define Xo ⊆ T in such a way to ensure that o 7→ Xo is a continuous mapping
and o is ill-founded if and only if Xo ∈ IFinf .
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Let us proceed inductively, defining a sequence of nodes (xn)n∈ω ⊆ T . Our
invariant says that |xk| = k and the map k 7→ xk is an isomorphism of the orders(
{0, 1, . . . , n}, o

)
and

(
{x0, x1, . . . , xn},≤inf

)
. We start with x0 = ε (i.e. the root

of T ). Assume that x0, . . . xn are defined and satisfy the invariants. By the
definition of ≤inf , there exists a node x ∈ {L, R}n+1 such that for k = 0, 1, . . . , n
we have x ≤inf xk if and only if (n+1, k) ∈ o. Let xn+1 be such a node.

The above induction defines an infinite sequence of nodes x0, x1, . . . LetXo
def
=

{xn | n ∈ ω} ⊆ T . By the definition of Xo, the mapping o 7→ Xo is continuous —
the fact whether a node x ∈ T belongs to Xo depends only on o∩{0, 1, . . . , |x|}2.
Using our invariant, we know that the map k 7→ xk is an isomorphism of the
orders

(
ω, o

)
and

(
Xo,≤inf

)
. Thus, o is ill-founded if and only if Xo ∈ IFinf .

2 Hardness for two counters

In this section we provide a simple example of an ω-language that is Σ1
1-complete

and can be recognised by a VASS A2 with two counters. This example should be
seen as a preliminary step towards the one counter example given in Section 4.

The VASS A2 is depicted in Figure 1. Let A0
def
=

{
<, d1, d2, |, i1, i2,+,−, >

}
and let the alphabet A def

= A0 ∪ {]}. The initial state is q0, the single accepting
state is qa. The only non-determinism occurs in q0 when reading < — the VASS
can stay in q0 or move to q1. Only the states q1 and q2 modify the counter values.

q0 q1 q2

qa

qr

q3

A0

<

d1 : (−1, 0)

d2 : (0,−1)

|

i1 : (+1, 0)

i2 : (0,+1)

+

−

>

>

A0

]

Fig. 1. The VASS A2 with two counters that recognises a Σ1
1-complete ω-language.

Lemma 2. There exists a continuous reduction from IFpre to the ω-language
recognised by A2.

Intuition An ω-word accepted by A2 consists of infinitely many phases sepa-
rated by ]. Each phase is a finite word over the alphabet A0. In our reduction
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we will restrict to phases being sequences of blocks, each block being a finite
word of the form given by the following definition (for n1, n2,m1,m2 ∈ ω and
s ∈ {+,−}):

Bs(−n1,−n2,+m1,+m2)
def
= < dn1

1 dn2
2 | i

m1
1 im2

2 s > ∈ A∗0. (3)

Such a block is accepting if s = +, otherwise s = − and the block is rejecting.
If A2 starts reading a block and moves from q0 to q1 over < then we say that
it chooses this block. Otherwise A2 stays in q0 and it does not choose the given
block. By the construction of the VASS A2, in every run it needs to choose
exactly one block from each phase. Additionally, the run is accepting if and only
if infinitely many of the chosen blocks are accepting.

In our reduction we will represent a given set X ⊆ T by an appropriately
defined sequence of phases. We will control the set of configurations the VASS can
reach at the beginning of each phase. These configurations will form an anti-chain
with respect to the coordinate-wise (or simulation) order: if the VASS can reach
two distinct configurations (q0, c1, c2) and (q0, c

′
1, c
′
2) then either c1 < c′1 and

c2 > c′2; or c1 > c′1 and c2 < c′2. Each block in the successive phase will be of
the form Bs(−c1,−c2,+m1,+m2) for some reachable configuration (q0, c1, c2)
— this will be the only reachable configuration in which the automaton can
choose the considered block. After choosing it, the automaton will finish reading
the phase in the configuration (q3,m1,m2).

Proof of Lemma 2 For the rest of this section we prove Lemma 2. Let us
fix a set X ⊆ T . We will construct an ω-word α(X) ∈ Aω. The ω-word α(X)
will consist of infinitely many phases α(X) = u0]u1] · · · , for un ∈ A∗0. The n-th
phase un (for n = 0, 1, . . .) will depend on X ∩ {L, R}n. This will guarantee that
the function α : 2T → Aω is continuous. The proof will be concluded by the
following claim.

Claim. X has an infinite �-ascending chain if and only if A2 accepts α(X).

To simplify the construction, let us define inductively the function b : T → ω,
assigning to nodes v ∈ T their binary value b(v):

– b(ε) = 0,
– b(vL) = 2 · b(v),
– b(vR) = 2 · b(v) + 1.

Let b′(v) = 2n − b(v)− 1 for n = |v| (i.e. v ∈ {L, R}n). Note that for every n ∈ ω
we have

b
(
{L, R}n

)
= b′

(
{L, R}n

)
= {0, 1, . . . , 2n − 1},

and both b and b′ are bijective between these sets. Additionally, if v 6= v′ ∈ {L, R}n
then either b(v) < b(v′) and b′(v) > b′(v′); or b(v) > b(v′) and b′(v) < b′(v′).

We take any n = 0, 1, . . . and define the n-th phase un. Let un be the con-
catenation of the following blocks, for all v ∈ {L, R}n and d ∈ {L, R}:

Bs
(
−b(v),−b′(v),+b(vd),+b′(vd)

)
,
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where s = + if v ∈ X and s = − otherwise. Thus, the n-th phase is a concate-
nation of 2n+1 blocks, one for each node vd in {L, R}n+1.

To prove Claim 2 it is enough to notice the following fact.

Fact 4. There is a bijection between infinite branches β ∈ {L, R}ω and runs
ρ of A2 over α(X). The bijection satisfies that the configuration in ρ before
reading the n-th phase of α(X) is

(
q0, b(vn), b

′(vn)
)
for vn = β�n ∈ {L, R}n. A2

visits an accepting state in ρ while reading the n-th phase of α(X) if and only if
vn ∈ X.

Proof. Easy induction.

This concludes the proof of Lemma 2.

3 Representation of IFpre

To construct our continuous reduction in the one-counter case, we need the
following simple lemma that provides an alternative characterisation of the
set IFinf . Let us introduce the following definition.

Definition 1. A sequence v0, v1 . . . ∈ T is called a correct chain if v0 = ε and
for every n = 0, 1, . . .:

1. |vn+1| = |vn|+ 1,
2. vn+1 ≤inf vnR (or equivalently vn+1 ≤lex vnR).

A correct chain is witnessing for a set X ⊆ T if for infinitely many n we
have vn ∈ X and vn+1 ≤inf vnL.

Intuitively, the definition forces the sequence to be not so-much increasing
in the infix order ≤inf : the successive element vn+1 needs to be to the left in the
tree from vnR. Such a sequence is witnessing for a set X if infinitely many times
it belongs to X and at these moments it actually drops in ≤inf .

Lemma 3. A set X ⊆ T belongs to IFinf if and only if there exists a correct
chain witnessing for X.

Proof. First take a correct chain witnessing for X. Let x0, x1, . . . be the sub-
sequence that shows that (vn)n∈ω is witnessing for X. In that case, by the
definition, for all n we have xn ∈ X and xn+1 <inf xn (because xn+1M

ω ≤lex

xnLR
ω <lex xnM

ω). Thus, X has an infinite ≤inf -descending chain and belongs
to IFinf .

Now assume that X ∈ IFinf and x0 >inf x1 >inf x2 >inf . . . is a sequence
witnessing that. Without loss of generality we can assume that |xn+1| > |xn| be-
cause for each fixed depth k there are only finitely many nodes of T in {L, R}≤k.
We can now add intermediate nodes in-between the sequence (xn)n∈ω to con-
struct a correct chain witnessing for X; the following pseudo-code realises this
goal:
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n := 0;
i := 0;
while (true) {

if (n > |xi|) {
i := i+ 1;

}

vn := xi�n;
n := n+ 1;

}

Clearly, Property 1 in the definition of a correct chain is guaranteed. Let
i ∈ ω and n = |xi|. By the fact that xi+1 <inf xi we know that xi+1�n+1 ≤inf xiL.
Therefore, for every n ∈ ω we have vn+1 ≤inf vnR and if n = |xi| for some i then
vn+1 ≤inf vnL. It implies that the sequence (vn)n∈ω satisfies Property 2 in the
definition of a correct chain. It is clearly witnessing for X because it contains
(xn)n∈ω as a subsequence.

4 Hardness for one counter

In this section we provide an example of an ω-language that is Σ1
1-complete and

can be recognised by a VASS A1 with one counter. A1 is depicted in Figure 2,
it is very similar to A2, but simpler. Let A0

def
= {<, d, |, i,+,−, >} and let the

alphabet A def
= A0 ∪ {]}.

q0 q1 q2

qa

qr

q3

A0

<

d : −1

|

i : +1

+

−

>

>

A0

]

Fig. 2. The VASS A1 with one counter that recognises a Σ1
1-complete ω-language.

Proposition 1. There exists a continuous reduction from IFinf to the ω-lan-
guage recognised by A1.

Similarly as before, we will use the notion of phases and blocks. Since there
is only one counter now (and only two letters modifying its value: d and i) we
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exchange the definition of a block (see (3)) by the following one (for n,m ∈ ω
and s ∈ {+,−}):

Bs(−n,+m)
def
= < dn | im s > ∈ A∗0. (4)

Similarly as before, we will take a set X ⊆ T and construct an ω-word α(X).
This ω-word will be a concatenation of infinitely many phases u0]u1] · · · . The
n-th phase un will depend onX∩{L, R}n. The configurations (q0, c) reached at the
beginning of an n-th phase will be in correspondence with the nodes v ∈ {L, R}n.
The bigger the value c, the higher in the infix order (or the lexicographic order,
as they overlap here) the respective node v is.

To precisely define our ω-word α(X) we need to define fast-growing functions:
m : {−1} ∪ ω → ω and e : T → ω:

m(−1) = 1,

m(n) = m(n− 1) · 2n for n ∈ ω,
e(v) = m(|v| − 1) · b(v) for v ∈ T .

These functions allow to use a big range of the possible values of a single counter
of a VASS to represent particular nodes of the tree. We will use the following
two invariants of this definition, for n ∈ ω and v, v′ ∈ {L, R}n:

v <inf v
′ ⇐⇒ e(v) ≤ e(v′), (5)

e(v) +m(|v| − 1) ≤ m(|v|). (6)

We take any n = 0, 1, . . . and define the n-th phase un. Let un be the con-
catenation of the following blocks, for all v ∈ {L, R}n and d ∈ {L, R}:

Bs
(
−e(v),+e(vd)

)
,

where s = + if v ∈ X and d = L; otherwise s = −. Thus, the n-th phase is
a concatenation of 2n+1 blocks, one for each node vd in {L, R}n+1.

To conclude the proof of Proposition 1 it is enough to prove the following
two lemmas.

Lemma 4. If there exists a correct chain witnessing for X then α(X) ∈ L(A1).

Lemma 5. If α(X) ∈ L(A1) then there exists a correct chain witnessing for X.

Proof of Lemma 4 Consider a correct chain (vn)n∈ω witnessing for X. Assume
that I ⊆ ω is an infinite set such that for n ∈ I we have vn ∈ X and vn+1 ≤inf vnL.
Let us construct inductively a run ρ of A1 on α(X). The invariant is that for
each n ∈ ω the configuration of ρ before reading the n-th phase of α(X) is of
the form (q0, cn) with cn ≥ e(vn). To define ρ it is enough to decide which block
to choose from an n-th phase of α(X):

– if n ∈ I then choose the block B+
(
−e(vn),+e(vnL)

)
,
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– otherwise choose the block B−
(
−e(vn),+e(vnR)

)
.

Notice that by the invariant, it is allowed to choose the respective blocks as cn ≥
e(vn). Because of (5) and the fact that (vn)n∈ω is a correct chain, the invariant
is preserved. As the set I is infinite, the constructed run chooses an accepting
block infinitely many times and thus is accepting.

Proof of Lemma 5 Assume that ρ is an accepting run of A1 over α(X). For
n = 0, 1, . . . let (q0, cn) be the configuration in ρ before reading the n-th phase
of α(X) and assume that ρ chooses a block of the form Bsn

(
−e(vn),+e(vndn)

)
in the n-th phase of α(X). Our aim is to show that (vn)n∈ω is a correct chain
witnessing for X. First notice that by the construction of α(X) we have |vn| = n.

Clearly, as the counter needs to be non-negative, we have e(vn) ≤ cn. Notice
that by (6) we obtain inductively for n = 0, 1, . . . that cn < m(n). Therefore, we
have

m(n) · b(vn+1) = e(vn+1) ≤ cn+1 =

= cn − e(vn) + e(vndn) < m(n) + e(vndn) =

= m(n) +m(n) · b(vndn).

By dividing by m(n) we obtain b(vn+1) < 1 + b(vndn), thus b(vn+1) ≤ b(vndn)
and therefore vn+1 ≤inf vndn ≤inf vnR. Moreover, if sn = + (i.e. the n-th chosen
block is accepting) then vn ∈ X and dn = L. Therefore, as ρ chooses infinitely
many accepting blocks, (vn)n∈ω is witnessing for X.

This concludes the proof of Proposition 1.

5 Inherent non-determinism

In this seciton we formally state and prove Corollary 1. It is expressed in the same
spirit as the corresponding Theorem 5.5 in [11]: we consider an abstract model
of automata A with a countable set of configurations C, an initial configuration
cI ∈ C, a transition relation δ ⊆ C×A×C, and an acceptance conditionW ⊆ Cω.
The notions of a run run(α, ρ); an accepting run acc(ρ); and the language L(A)
are defined in the standard way. Thus, under the assumption that the acceptance
condition W is Borel, the set

P
def
=

{
(α, ρ) ∈ Aω × Cω | run(α, ρ) ∧ acc(ρ)

}
,

as in (1) is also Borel. The assumptions that the machine is deterministic, un-
ambiguous, or countably-unambiguous imply that the cardinality of the sections
Pα

def
= {ρ | (α, ρ) ∈ P} for α ∈ Aω is at most countable. Therefore, the following

small section theorem by Lusin and Novikov applies.

Theorem 5 (see [12, Theorem 18.10]). Let X, Y be standard Borel spaces
and let P ⊆ X×Y be Borel. If every section Px is countable, then P has a Borel
uniformization and therefore πX(P ) is Borel.
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Therefore, we know that L(A) = πAω (P ) is Borel. Thus, no such machine
can recognise L(A1) for the Büchi VASS A1 from Section 4, as that language is
non-Borel.

6 Concluding remarks

The core result of this paper is a technique of encoding a Σ1
1-complete set in

a monotone way using only one partially blind counter — Proposition 1. This
shows that even in that restricted case, the non-determinism of the machines is
inherent, and cannot be simulated by any restricted form (like countable-unam-
biguity).

The question whether one counter Büchi VASS recognise languages at all
levels of the Wadge hierarchy that are occupied by non-deterministic Büchi Tur-
ing machines (see [9]) is left open. The construction provided in [9] involves four
counters and at the moment it is not clear whether one can reduce that number.
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