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We investigate measure theoretic properties of regular sets of infinite trees. As a first result, 
we prove that every regular set is universally measurable and that every Borel measure on 
the Polish space of trees is continuous with respect to a natural transfinite stratification 
of regular sets into ω1 ranks. We also expose a connection between regular sets and the 
σ -algebra of R-sets, introduced by A. Kolmogorov in 1928 as a foundation for measure 
theory. We show that the game tree languages Wi,k are Wadge-complete for the finite levels 
of the hierarchy of R-sets. We apply these results to answer positively an open problem 
regarding the game interpretation of the probabilistic μ-calculus.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Among logics for expressing properties of concurrent processes, represented as nondeterministic transition systems 
(NTS’s), Rabin’s Monadic Second Order Logic [31] and Kozen’s modal μ-calculus [25] play a fundamental rôle. The two 
logics are closely related (see, e.g. [18]) and enjoy an intimate connection with parity games [11,18,34]. An abstract setting 
for investigating topological properties of regular sets, using the tools of descriptive set theory, is given by so-called game 
tree languages of [1] (see also [2]). For natural numbers i < k, the language Wi,k is the regular set of parity games with 
priorities in {i . . .k}, played on an infinite binary tree structure, which are winning for Player ∃. The (i, k)-indexed sets Wi,k
form a strict hierarchy of increasing topological complexity called the index hierarchy of game tree languages [1,2,7]. Precise 
definitions are presented in Section 2.

For many purposes in computer science, it is useful to add probability to the computational model, leading to the notion 
of probabilistic nondeterministic transition systems (PNTS’s). In an attempt to identify a satisfactory analogue of Kozen’s 
μ-calculus for expressing properties of PNTS’s, the third author has recently introduced in [29,30] a quantitative fixed-point 
logic called probabilistic μ-calculus with independent product (pLμ). A central contribution of [30] is the definition of a game 
interpretation of pLμ, given in terms of a novel class of games generalizing ordinary two-player stochastic parity games. 
While in ordinary two-player (stochastic) parity games the outcomes are infinite sequences of game-states, in pLμ-games 
the outcomes are infinite trees, called branching plays, whose vertices are labelled with game-states. This is because in pLμ
games some of the game-states, called branching states, are interpreted as generating distinct game-threads, one for each 

* Corresponding author.
E-mail address: mskrzypczak@mimuw.edu.pl (M. Skrzypczak).

1 Author supported by Poland’s National Science Centre grant no. 2014-13/B/ST6/03595.
2 Author supported by France’s project ANR-16-CE25-0011 REPAS.
http://dx.doi.org/10.1016/j.ic.2017.04.012
0890-5401/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2017.04.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:mskrzypczak@mimuw.edu.pl
http://dx.doi.org/10.1016/j.ic.2017.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2017.04.012&domain=pdf


T. Gogacz et al. / Information and Computation 256 (2017) 108–130 109
successor state of the branching state, which continue their execution concurrently and independently. The winning set of a 
pLμ-game is therefore a collection of branching plays specified by a combinatorial condition associated with the structure 
of the game arena.

Unlike winning sets of ordinary two-player (stochastic) parity games, which are well-known to lie in the �0
3 class of sets 

in Borel hierarchy, the winning sets of pLμ-games generally belong to the �1
2-class of sets in the projective hierarchy of 

Polish spaces [30, Theorem 4.20]. This high topological complexity is a serious concern because pLμ-games are stochastic, 
i.e. the final outcome (the branching play) is determined not only by the choices of the two players but also by the ran-
domized choices made by a probabilistic agent. A pair of strategies for ∃ and ∀, representing a play up-to the choice of 
the probabilistic agent, only defines a probability measure on the space of outcomes. For this reason, one is interested in 
the probability of a play to satisfy the winning condition. Under the standard Kolmogorov’s measure-theoretic approach to 
probability theory, a set has a well-defined probability only if it is a measurable3 set. Due to a result of Kurt Gödel (see [19, 
§25]), it is consistent with Zermelo–Fraenkel Set Theory with the Axiom of Choice (ZFC) that there exists a �1

2 set which 
is not measurable. This means that it is not possible to prove (in ZFC) that all �1

2-sets are measurable. However it may be 
possible to prove that a particular set (or family of sets) in the �1

2-class is measurable. In [29] the author asks the following 
question4: are the winning sets of pLμ-games measurable in ZFC? As already observed in [29, §5.4], the problem can be 
equivalently reformulated, using well-known concepts and terminology, as follows:

Question 1.1. Are the game tree languages Wi,k measurable in ZFC?

A positive answer to Question 1.1 implies, as an immediate corollary, that every regular set of trees (i.e. definable in 
Rabin’s Monadic Second Order Logic [31]) is measurable. This follows from the fact that continuous pre-images of universally 
measurable sets are universally measurable (cf. Proposition 2.1 in Section 2).

In his work on the probabilistic μ-calculus [29,30], the third author introduced a method for evaluating the probability 
of sets of branching plays. Once rephrased in the terminology of game tree languages, the method consists in a transfinite 
characterization of Wi,k as the union of a chain of simpler subsets Wα

i,k , indexed by countable ordinals α < ω1, in such a 
way that

Wi,k =
⋃

α<ω1

Wα
i,k

Precise definitions are given in Section 2.1. This is used in [29,30] to evaluate the probability μ(W i,k) in terms of the limit 
of the probabilities of its simpler approximants using the equality

μ(Wi,k)= sup
α<ω1

μ(Wα
i,k)

This equality, however, expresses a form of ℵ1-continuity of the measure μ which does not follow from the standard 
properties of measures which are only σ -continuous. For this reason the author asks:

Question 1.2. Does μ(Wi,k) = supα<ω1
μ(Wα

i,k) hold for all Borel probability measures μ?

It was observed in [29,30] that both Question 1.1 and Question 1.2 can be proved in ZFC+MAℵ1 , the extension of ZFC

with “Martin’s Axiom at ℵ1”. Indeed ZFC+MAℵ1 proves that every �1
2 set is universally measurable (this solves Question 1.1

since Wi,k belong to �1
2 ⊆�1

2 ) and that, for every Borel measure μ, the equality μ(
⋃

α Xα) = supα μ(Xα) holds for arbitrary 
ω1-indexed collections Xα of measurable sets (this solves Question 1.2 taking Xα =Wα

i,k). For more informations regarding 
Martin’s Axiom, see [14].

1.1. Main contribution

We succeeded to solve Questions 1.1 and 1.2, originally motivating this work.

Theorem 1.3. For every i ≤ k the game tree language Wi,k is universally measurable.

Since universally measurable sets are closed under taking continuous pre-images (see, e.g. Corollary 7.44.1 in [5]) and 
every regular tree language continuously reduce to one of the languages Wi,k , we obtain the following

Corollary 1.4. All regular languages of trees are universally measurable.

3 In this paper the adjective measurable always stands for universally measurable, see Section 2 for definitions.
4 Statement “is mG-UM(�p) true?”, see Definition 5.1.18 and discussion at the end of Section 4.5 in [29]. See also Section 8.1 in [30].
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Theorem 1.5. For every i ≤ k, with k odd, and for every Borel measure μ on Tri,k the following equality holds:

μ(Wi,k)= sup
α<ω1

μ(Wα
i,k)

We provide in Section 3 a self-contained ZFC proof of both theorems. We use a method of Lusin and Sierpiński [26]
originally applied to prove measurability of analytic sets and later applied by A. Kolmogorov [33] to prove measurability of 
R-sets (discussed below).

Together, our positive answers to Question 1.1 and Question 1.2 imply that the results of [29,30] about the game seman-
tics of the probabilistic μ-calculus hold in ZFC alone.

1.2. Kolmogorov’s R-sets

Before discovering that the proof method of Lusin and Sierpiński could be applied to solve both questions from [29,30], 
we found another interesting way to give a positive answer to Question 1.1 in ZFC alone. This resulted in the discovery of a 
tight connection between the notion of R-sets, introduced below in this introduction and discussed in details in Section 4, 
and the combinatorial machinery of parity games.

Measure theoretic problems such as the one formulated in Question 1.1 have been investigated since the first develop-
ments of measure theory, in late 19th century, as the existence of non-measurable sets (e.g. Vitali sets [19]) was already 
known. The measure-theoretic foundations of probability theory are based around the concept of a σ -algebra of measurable 
events on a space of potential outcomes. Typically, the σ -algebra is assumed to contain all open sets. Hence the minimal 
σ -algebra under consideration consists of all Borel sets whereas the maximal consists, by definition, of the collection of all 
measurable sets. The Borel σ -algebra, while simple to work with, do not include important classes of measurable sets such 
as the analytic (�1

1 ) sets. On the other hand, the full σ -algebra of measurable sets may be difficult to work with since there 
is no constructive methodology for establishing its membership relation, i.e. for proving that a given set belongs to this 
σ -algebra. This picture led to a number of attempts to find larger σ -algebras, extending the Borel σ -algebra and including 
as many measurable sets as possible and, at the same time, providing practical techniques for establishing the membership 
relation.

A classical methodology for constructing such σ -algebras is to identify a family F of “safe” operations on sets which, 
when applied to measurable sets are guaranteed to produce measurable sets. When the operations considered have count-
able arity (e.g. countable union), the σ -algebra generated by the open sets closed under the operations in F admits a 
transfinite decomposition into ω1-levels, and this allows the membership relation to be established inductively. The sim-
plest case is given by the σ -algebra of Borel sets, with F consisting of the operations of complementation and countable 
union. Other less familiar examples include C-sets studied by E. Selivanovski [32], Borel programmable sets proposed by 
D. Blackwell [6] and R-sets proposed by A. Kolmogorov [24].

Most measurable sets arising in ordinary mathematics are R-sets belonging to the finite levels of the transfinite hierarchy 
of R-sets. For example, all Borel sets, analytic sets, co-analytic sets and Selivanovski’s C-sets lie in the first two levels [10]. 
Furthermore, the inductive proof method for establishing membership in the class of R-sets has allowed the development of 
a rich theory of R-sets. Beside the original work of Kolmogorov [24], fundamental results were obtained by Lyapunov [27]
and, more recently, by Burgess [10]. Further progress can be found in the work of Barua [3,4]. The basic definitions on 
R-sets are presented in Section 4. We refer to [21] for a modern introduction to the subject.

In this paper we prove the following theorem relating the R-sets and game tree languages.

Theorem 1.6. Wk−1,2k−1 is complete for the k-th level of the hierarchy of R-sets.

In particular, game tree languages Wi,k are R-sets and therefore measurable. Thus Theorem 1.6 provides an answer to 
Question 1.1. Furthermore, the theory of R-sets sheds some additional light on the properties of game tree languages and 
regular sets. For example, a basic result of this theory (see, e.g. [4, Theorem 2.8]) states that every R-set has the Baire 
property. Hence Wi,k , and thus every regular set of trees, have the Baire property.

The result of Theorem 1.6 also contributes to the abstract theory of R-sets. Indeed, to the best of our knowledge, the 
game tree languages Wi,k are the first natural examples of sets complete for the finite levels of the R-hierarchy. Having 
examples of complete sets sheds additional light on the concept of R-sets and, in analogy with the study of complexity 
classes in computational complexity theory, may simplify further investigations.

Another interesting aspect of our work is the following. The proof of Theorem 1.6 is obtained by first introducing in 
Section 5 a class of sets definable by parametrized parity games which we call Matryoshka games. These games can be seen 
as a variant of parity games with final positions that can be assigned to any winning condition. Such games are often 
employed for instance in model-checking of μ-calculus over various structures (e.g. pushdown systems). The novelty here is 
that Matryoshka games are used to define set theoretic operations. The usefulness of this notion comes from the following 
observations:
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i) every R-set belonging to the k-th level of the R-hierarchy can be defined by a Matryoshka game using priorities in the 
range (k, 2k − 1),

ii) the game tree language Wi−1,k is a complete set among the sets definable by Matryoshka games with priorities in (i, k).

These two observations imply that the game tree language Wk−1,2k−1 is hard for the k-level of the R-hierarchy. Then the 
result of Theorem 1.6, establishing membership of Wk−1,2k−1 in the k-th level of the R-hierarchy, completes the picture.

The shift of indices between the game tree language Wi−1,k and Matryoshka games with priorities (i, k) comes from the 
fact that game tree languages are binary branching and Matryoshka games may be ω-branching, see Lemma 5.7.

As a consequence of the above equivalences, the class of Matryoshka definable sets and the class of sets belonging to 
the finite levels of the R-hierarchy, coincide. This indicates that the combinatorics introduced by Kolmogorov for defining 
a large σ -algebra of measurable sets and that of parity games, developed since the 80’s in Computer Science to investigate 
ω-regular properties of transition systems, are closely related. It is suggestive to think that the origins of the concept of 
parity games could be backdated to the original work of A. Kolmogorov.

1.3. Boundedness Principle

In attempts to solve Question 1.2, that is the problem of establishing the ℵ1-continuity property, we also tried a very 
natural approach based on the Boundedness Principle (see, e.g. Section 34.B in [23]).

We discovered that this approach solves the problem of ℵ1-continuity in the simplest case of W0,1. We discuss this 
argument in Section 6 along with a counter-example showing that this method does not generalize to W1,3 or higher 
indices.

1.4. Related work

A game-theoretic approach to R-sets, closely related to this work, is developed by Burgess in [10] where the following 
characterization is stated as a remark without a formal proof: (1) every set A ⊆ X belongs to a finite level of the hierarchy 
of R-sets if and only if it is of the form A = �(K ), for some set K ⊆ωω which is a Boolean combination of �0

2 sets, and (2) 
the levels of the hierarchy of R-sets are in correspondence with the levels of the difference hierarchy (see [23, §22.E]) of �0

2
sets. The operation � is the so-called game quantifier (see [23, §20.D] and [8,9,20,28,13]). Admittedly, our characterization of 
R-sets in terms of Matryoshka games, can be considered as a modern variant of the result of Burgess. From the theorem 
of Burgess one can relatively easily infer Theorem 1.3 through appropriately formulated reductions. For the second level of 
the R hierarchy, that is for so called �1

1 -inductive sets, the reduction is done in [28]. A variant of Theorem 1.3 regarding 
the Baire property of R-sets has been recently proved in [13]. Since we were interested in proving both Theorem 1.3
and Theorem 1.5, we decided to reconstruct the argument of Burgess in the terminology of Matryoshka games in order to 
investigate in a more convenient framework the issue of ℵ1-continuity.

In another direction, a result of Fenstand and Normann [12], which builds on previous work of Solovay, can be used 
to give a very succinct proof of Theorem 1.3, that is a proof of the measurability of Wi,k . In their paper [12], the authors 
introduce the class of absolutely �1

2 sets as a subclass of �1
2 and prove that all sets belonging to it are measurable. The mea-

surability of Wi,k then follows from the observation that Wi,k is an absolutely �1
2 set. This fact was already noticed in the 

proof of Theorem 6.6 in [16] and was exploited to establish that all regular sets (and thus also Wi,k) are Baire measurable. 
As we already observed earlier, the fact that regular sets are Baire measurable also follows from our Theorem 1.3.

The method of absoluteness is very general and can be arguably used to settle virtually all measurability questions 
arising in ordinary mathematics. However, at the moment of writing of this article, the authors don’t see how to use this 
approach to give an alternative proof of Theorem 1.5 stated above.

1.5. Some further remarks

This article builds on the results of [15] announced at the annual MFCS 2014 conference in Budapest. In [15] the authors 
provided a positive answer to Question 1.1 of [29,30] and established the connection with the theory of R-sets by proving 
Theorem 1.6. It was also announced, without proofs, that Question 1.2 of [29,30] could be given a positive answer assuming 
the (not provable in ZFC alone) determinacy of so-called Harrington games. Only after the submission, we discovered that 
the method of Lusin and Sierpiński could be used to answer both Question 1.1 and Question 1.2, and that the result of 
Fenstand and Normann could also give a succinct answer to Question 1.1.

1.6. Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give the necessary basic notions of descriptive set theory 
and regular languages on trees, including the stratification of Wi,k into ω1-levels Wα

i,k . In Section 3 we prove Theorems 1.3
and 1.5 by applying the method of Lusin and Sierpiński. In Section 4 we provide the basic definitions of the theory of 
R-sets. In Section 5 we introduce Matryoshka games and prove Theorem 1.6. In Section 6 we show how the Boundedness 
Principle can be used to prove the ℵ1-continuity in the case of W0,1.
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2. Basic notions from descriptive set theory

We assume that the reader is familiar with the basic notions of descriptive set theory and measure theory. We refer 
to [23] as a standard reference on these subjects.

Given two sets X and Y , we denote with X Y the set of functions from Y to X . We denote with 2 and ω the two element 
set and the set of all natural numbers, respectively. The powerset of X will be denoted by both 2X and P(X), as more 
convenient to improve readability. A topological space is Polish if it is separable and the topology is induced by a complete 
metric. A set is clopen if it is both closed and open. A space is zero-dimensional if the clopen subsets form a basis of the 
topology. In this work we limit our attention to zero-dimensional Polish spaces. Let X, Y be two topological spaces and 
A ⊆ X , B ⊆ Y be two sets. We say that A is Wadge reducible to B , written as A ≤W B , if there exists a continuous function 
f : X → Y such that A = f −1(B). Two sets A and B are Wadge equivalent (denoted A ∼W B) if A ≤W B and B ≤W A hold. 
Given a family C of subsets of X , we say that a set A ⊆ C is hard for C if B ≤W A holds for all B ∈ C . The set A is complete 
for C if it is hard for C and A ∈ C .

Given a Polish space X , we denote with M=1(X) the Polish space of all Borel probability measures μ on X (see e.g. [23, 
Theorem 17.22]). A set N ⊆ X is μ-null if there exists a Borel set B ⊇ N such that μ(B) = 0. A set A ⊆ X is μ-measurable 
if A = B ∪ N , for a Borel set B and a μ-null set N . A set A ⊆ X is universally measurable if it is μ-measurable for all 
μ ∈M=1(X). Universally measurable sets are closed under taking continuous pre-images (see, e.g. Corollary 7.44.1 in [5]). 
In what follows we omit the “universally” adjective.

Proposition 2.1. If A ≤W B and B is measurable then A is measurable.

Given a finite alphabet �, we denote with Tr� the collection �{0,1}∗ of labellings of the vertices {0, 1}∗ of the full 
binary tree with elements of �. The set Tr� is endowed with the standard Polish topology (see e.g. [2]) so that Tr� is 
homeomorphic to the Cantor space 2ω .

Given two natural numbers i ≤ k, we succinctly denote with Tri,k the space Tr� with � = {∃, ∀} ×{i, . . . , k}. Each t ∈ Tri,k
can be interpreted as a two-player parity game with priorities in {i, . . . , k}, with players ∃ and ∀ controlling vertices labelled 
by ∃ and ∀, respectively. As usual we consider the standard formulation of parity games, where a play is winning for ∃ if 
and only if the greatest priority visited infinitely often if even.

Definition 2.2 ([2]). Given two natural numbers i ≤ k, the game tree language Wi,k is the subset of Tri,k consisting of all 
parity games admitting a winning strategy for ∃. The pair (i, k) is called the index of Wi,k .

Clearly, there is a natural Wadge equivalence between the languages Wi,k and Wi+2,k+2. Therefore, we identify indices 
(i, k) and (i + 2 j, k + 2 j) for every i ≤ k and j ∈ω. Indices can be partially ordered by defining (i, k) ⊆ (i′, k′) if and only if 
{i, . . . , k} ⊆ {i′, . . . , k′}.

It is well-known that, for every i ≤ k the language W i,k is regular, i.e. definable in Rabin’s Monadic Second Order Logic 
on the full binary tree [31]. The importance of game tree languages in the study of regular languages of trees is expressed 
by the following proposition.

Proposition 2.3. For any finite alphabet � and regular language A ⊆ Tr� there exists an index (i, k) such that A ≤W W i,k.

Proof. Let A be a parity tree automaton accepting the regular set A and let i and k be the lower and greatest priorities 
in A, respectively. The automaton can be regarded as a transducer f continuously mapping �-labelled trees to parity games 
with priorities in {i, k} in such a way that a tree t is accepted by A if and only if f (t) ∈W i,k . �

The following well-known result states that the hierarchy of game tree languages forms a chain of increasing topological 
complexity.

Theorem 2.4 (Arnold–Niwiński [2]). If (i, k) � (i′, k′) then Wi,k �W Wi′,k′ .

It is well-known that the first level of this hierarchy, the languages W0,1 and W1,2, constitute examples of co-analytic 
(�1

1) complete and analytic (�1
1 ) complete sets, respectively and that, for every i ≤ k, the language Wi,k belongs to the 

�1
2-class. Already at the second level, however, the regular tree languages W0,2 and W1,3 are not contained in the σ -algebra 

generated by the analytic sets ([17], see also [28]).

2.1. Ranks on regular tree languages

In [29,30] the author investigated a transfinite inductive characterization of the game tree language Wi,k , for i ≤ k, whose 
general purpose is to describe Wi,k as a union of simpler sets. We recall this characterization in this section. Detailed 
informations can be found in Sections 4.3 and 6 of [29].
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Fig. 1. A decomposition of a tree t as a substitution of subtrees t�vi
into vertices vi that are the first occurrences of k.

In what follows we restrict attention to indexes i ≤ k with k an odd number. All definitions and results below have 
their corresponding version for the case of k even, and are obtained by standard duality arguments (see, e.g. the end of 
Section 6.3 of [29]).

The intuitive idea of the construction can be understood as follows. In a game tree t ∈ Tri,k the maximal priority k is the 
most important. In particular, if a tree t does not contain occurrences of k, then t is “simple” as it already belongs to Tri,k−1. 
Since k is odd, this is a role of ∃ to guarantee that every play visits only finitely many times the priority k. Therefore, we 
can approximate Wi,k by allowing more and more occurrences of the priority k. This motivates the following definition.

Definition 2.5 (Occurrences of k’s). Given a tree t ∈ Tri,k we say that a vertex v ∈ {0, 1}∗ is an occurrence of k if t(v) has 
priority k, i.e. if t(v) = (∃, k) or t(v) = (∀, k).

We say that v is a first occurrence of k if it is an occurrence of k and none of its nonempty predecessors (i.e. nodes v ′
such that ε ≺ v ′ ≺ v) are occurrences of k.

In the above definition the root of the tree is not considered as a first occurrence of k. The purpose of that will be 
explained in a moment.

For any tree t ∈ Tri,k , the set of first occurrences of k forms an anti-chain of vertices in t . Thus t can be decomposed as 
depicted on Fig. 1, where v0, v1, . . . is the (at most countable) collection of the first occurrences of k and tvi = t�vi

is the 
subtree of t rooted at vi .

For the purpose of the analysis of the ranks, we assume that the alphabet Ai,k is additionally equipped with symbols �, 
⊥ that denote the winning positions—reaching the symbol � (resp. ⊥) in the game on a given tree t makes the player ∃
(resp. ∀) win the play no matter what further symbols are visited.

Let � (resp. ⊥) stand for the tree labelled everywhere by � (resp. ⊥). By the definition we have that � ∈Wi,k and 
⊥ /∈Wi,k .

Assume that X ⊆ Tri,k is a set of trees. Intuitively X stands for the set of trees on which ∃ can win and guarantee 
herself to visit only few occurrences of k. Our aim is to define πX (t) as a tree where instead of each first occurrence vi
of k, a subtree � or ⊥ is plugged, depending on whether t�vi

∈ X or not. More formally consider t ∈ Tri,k with the first 
occurrences of k being v0, . . . . For every such occurrence vi define ti as � if t�vi

∈ X and ⊥ otherwise. Let t′ be the same 
tree as t but with priority i set in the root. Now let πX (t) be obtained by plugging trees ti as subtrees under nodes vi in 
the tree t′ , such an operation is denoted as follows:

πX (t)= t′
[
vi ← ti

]
i=0,...

Observe that πX (t) ∈ Tri,k−1 as the only occurrences of k in t are in subtrees substituted by �, ⊥, and possibly in the 
root.

Definition 2.6. We define the operator W : P(Tri,k) →P(Tri,k) as follows:

W(X)= {
t | πX (t) ∈Wi,k−1

}
The following basic properties of W , which are folklore, are listed in the following lemma (see, e.g. Lemmas 6.2.15–16 

in [29] for detailed proofs).

Lemma 2.7. The following assertions hold:

1. (monotonicity) If X ⊆ Y then W(X) ⊆W(Y ),
2. (fixed-point) W(Wi,k) =Wi,k.
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Now we can formally define the approximants of Wi,k .

Definition 2.8. Let us define by transfinite induction:

W0
i,k = ∅

Wα+1
i,k =W

(
Wα

i,k

)
Wβ

i,k =
⋃
α<β

Wα
i,k (for β limit ordinal)

The following result is proved as Lemmas 6.3.3 and 6.3.6 in [29].

Theorem 2.9. The game tree language Wi,k is the least fixed-point of W . This fixed-point is reached in ω1 steps. In particular

Wi,k =
⋃

α<ω1

Wα
i,k

Definition 2.10. A tree t ∈Wi,k is said to have rank α if α is the least ordinal such that t ∈Wα
i,k . Note that every t has a 

countable rank.

3. Measurability using the Lusin–Sierpiński method

The two measurability questions regarding regular tree languages, left open in [29,30] and stated as Question 1.1 and 
Question 1.2 in the Introduction, can be formally stated as follows.

Theorem 1.3. For every i ≤ k the game tree language Wi,k is universally measurable.

Note that the case for k − i = 1 is trivial. Indeed W1,2 is a well-known example of analytic (�1
1 ) complete set and every 

such set is measurable (see, e.g. [23, §29.B]). Already for W0,2, however, measurability is not obvious since W0,2 is not 
contained in the σ -algebra generated by the analytic sets (see Remarks after Theorem 2.4).

Theorem 1.5. For every i ≤ k, with k odd, and for every Borel measure μ on Tri,k the following equality holds:

μ(Wi,k)= sup
α<ω1

μ(Wα
i,k)

Clearly the statement of Theorem 1.5 does not follow from σ -continuity of measures because the supremum is taken 
over an uncountable chain of sets.

In this section we adapt a proof method of N. Lusin and W. Sierpiński introduced in [26] which allows for a uniform 
proof of both Theorem 1.3 and Theorem 1.5. Originally the method was applied to prove measurability of analytic sets.

In what follows, we fix an arbitrary pair i ≤ k. We first introduce a notion of j-schemas in Section 3.1. Section 3.2
shows that j-schema admit properties of duality and locality. In Section 3.3 we prove the crucial result—that the operations 
defined by j-schemas preserve measurability. It will directly imply Theorem 1.3. Finally, in Section 3.4 we show how to 
obtain Theorem 1.5 using the presented construction.

3.1. j-Schemas

We start by defining a variant of the operation W(X) from Definition 2.6 that will allow us to prove our results induc-
tively.

Definition 3.1. Assume that i − 1 ≤ j ≤ k. A j-schema is an indexed family of tuples(
R( j+1)

v , . . . , R(k)
v

)
v∈{0,1}∗

where all the sets R(p)
v are subsets of Tri,k .

Intuitively, R(p)
v contains trees on which ∃ should instantly win from the node v if this node has priority p. The crucial 

difference with the set X from Definition 2.6 is that all the trees in sets R(p)
v are rooted in the same node—we do not 

restrict to the subtree t�v .
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Definition 3.2. Given a j-schema S = (−→
R v

)
v , a tree t ∈ Tr(i,k) , and two vertices v ≺ w ∈ {0, 1}∗ , we say that w is a victory 

from v if the priority p of t(w) is greater than j.
A victory w from v is an ∃-victory if t ∈ R(p)

w . A victory w is an ∀-victory otherwise.

Since we require that v ≺ w , no matter what the priority of t(v) is, the node w = v cannot be a victory from v . 
Intuitively it means that the priority of t(v) does not influence victories from v , and corresponds to the assumption that ε
is never a first occurrence of k in a tree t .

Definition 3.3. Given a tree t and a vertex w ∈ {0, 1}∗ which is a victory from v (either ∃ or ∀) we say that w is a first 
victory if no predecessor of w (i.e. a node w ′ such that v ≺ w ′ ≺ w) is a victory from v .

In an analogous way to the concept of “(first) occurrence of k” of Definition 2.5 in Section 2.1, given a tree t , the set of 
first victories from v forms an anti-chain of vertices wi in t , so that we can consider a decomposition as depicted in Fig. 1.

Definition 3.4. Assume that S is a j-schema. We will define the function πS,v : Tri,k → Tri, j as follows. Consider a tree t
with first victories from v being w0, . . . . For each such victory wi define ti as � if wi is ∃-victory, otherwise ti =⊥, where 
the trees � and ⊥ are defined as in Section 2.1. Let t′ be obtained from t by setting the priority in the node v as i. Now

πS,v(t)= t′
[

wi ← ti
]

The above function (for v = ε) aims at reducing a tree t ∈ Tri,k to a tree t ∈ Tri, j by replacing all occurrences of priorities 
higher than j by � and ⊥ depending on S . Since we want to use the above construction also for the case when j = i − 1
we need to extend our definitions of Tri, j and Wi, j to this case. Let Tri,i−1 be the set of trees with only finitely many 
subtrees different than � and ⊥; and let Wi,i−1 be the subset of Tri,i−1 containing the trees on which ∃ has a winning 
strategy. Therefore, we obtain the following fact.

Fact 1. Assume that i − 1 ≤ j ≤ k, S is a j-schema, t ∈ Tri,k, and v is a vertex of t. Then

πS,v(t) ∈ Tri, j

Remark 3.5. For i < k, the projection function πX of Section 2.1 with parameter X ⊆ Tri,k coincides with the projection πS,ε

associated with the (k−1)-schema (i.e. j = k − 1) S = (
R(k)

v
)

v where

R(k)
v = {

t | t�v ∈ X
}

The following definition is similar to Definition 2.6 of Section 2.1.

Definition 3.6. We define:

W∃,v(S)= {
t | πS,v(t)�v ∈Wi, j

}
W∀,v(S)= {

t | πS,v(t)�v /∈Wi, j
}

In other words (recalling the operation πS,v ) WP ,v (S) is the set of game trees t such that P has a strategy σ starting 
from v such that any play π consistent with σ :

• Either does not include any victory from v and is winning for the player P under the usual parity condition (in this 
case the priorities appearing in the play below v are between i and j),

• or it includes a (first) victory w from v which is a P -victory (see Definition 3.2).

Remark 3.7. Note that Wi,k can be defined as W∃,ε (S) for the k-schema

()
v∈{0,1}∗

i.e. the only k-schema that by the definition does not contain any sets R(p)
v .
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3.2. Duality and locality

In this section we prove certain properties of j-schemas. The property of duality says that for every j-schema S there 
exists a dual ( j+1)-schema dual(S). The property of locality (see Lemma 3.12) says that if all the sets involved in two 
j-schemas S , S ′ agree on a fixed tree t then t ∈WP ,v (S) ⇔ t ∈WP ,v (S ′).

Definition 3.8. Given a tree t ∈ Tri,k we define its dual as the tree dual(t) ∈ Tri+1,k+1 with dual(t)(v) = 〈P , p + 1〉 if t(v) =
〈P , p〉 and P ∈ {∃, ∀}.

For a set X ⊆ Tri,k we denote with dual(X) = {dual(t) | t ∈ X}. Similarly, for a measure μ on Tri,k we denote by dual(μ)

the measure on Tri+1,k+1 given by

dual(μ)(X)=μ
(
dual−1(X)

)
.

By the definition t ∈Wi,k if and only if dual(t) /∈Wi+1,k+1.

Definition 3.9. For a j-schema S = (
R( j+1)

v , . . . , R(k)
v

)
v we define the dual ( j+1)-schema

dual(S)= (
R ′ ( j+2)

v , . . . , R ′ (k+1)
v

)
v

with R ′ (p+1)
v = dual

(
Tri,k \ R(p)

v
)
.

The following fact follows directly from the definition of WP ,v
(
S

)
and determinacy of parity games [34].

Lemma 3.10. The following equality holds:

WP ,v
(
S

)= Tr(i,k) \WP ,v

(
S

)
and, for t ∈ Tri,k, it holds that:

t ∈WP ,v
(
S

)⇔ dual(t) ∈WP ,v

(
dual(S)

)
The property of locality of j-schemas is described by the following definition.

Definition 3.11. Let S , S ′ be two j-schemas and t ∈ Tr(i,k) be a tree. We say that S , S ′ are t-equivalent if for all sets R(p)
v , 

R ′ (p)
v in S , S ′; t belongs to R(p)

v if and only if t belongs to R ′ (p)
v .

The following lemma follows directly from the definition of WP ,v (S).

Lemma 3.12. Given t ∈ Tri,k and two t-equivalent j-schemas S , S ′ the following equivalence holds: t ∈WP ,v (S) ⇔ t ∈WP ,v (S ′).

3.3. Measurability

We are now finally ready to state the invariant of induction that will lead to the proof of Theorems 1.3 and 1.5.

Definition 3.13. Given a Borel measure μ on Tri,k , we say that a j-schema S is μ-measurable if all the sets in it are 
μ-measurable.

Proposition 3.14. For every Borel measure μ on Tri,k and μ-measurable j-schema S it holds that WP ,v(S) is μ-measurable (for all 
P ∈ {∃, ∀} and v ∈ {0, 1}∗).

Note that by Remark 3.7 it will directly imply Theorem 1.3. The rest of this section is devoted to a proof of this result. 
The proof goes by induction on the value of j, for i − 1 ≤ j ≤ k.

Observe that in the case i − 1 = j every vertex w such that v ≺ w is a victory. Therefore, whether a tree t belongs to 
WP ,v(S) depends only on the sets 

−→
R w and the label of t in w for w = v, v0, v1. Therefore, in this case the thesis of the 

proposition holds.
The duality properties listed in Lemma 3.10 allow us to reduce all the other cases to the case of P = ∃, j odd, and 

i ≤ j ≤ k. First, we observe that we can always exchange the players P ↔ P . Now, given μ, P ∈ {∃, ∀}, i ≤ j ≤ k, and a 
j-schema S with j even we can apply the operation dual and solve the case for the measure dual(μ), P , i +1 ≤ j +1 ≤ k +1
and the ( j+1)-schema dual(S).
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Let us fix an odd j and assume, by inductive hypothesis, that the statement of the proposition holds for all j′-schemas 
with j′ < j.

Let us fix a Borel measure μ on Tri,k and a μ-measurable j-schema

S = (
R( j+1)

v , R( j+2)
v , . . . , R(k)

v
)

v

Our aim is to prove that W∃,v(S) is μ-measurable for all v .
Let us define E0

v = ∅, for v ∈ {0, 1}∗ . We now construct inductively a family of sets Eα
v and use them to define 

( j−1)-schemas:

Sα =
(

Eα
v , R( j+1)

v , R( j+2)
v , . . . , R(k)

v

)
v

For the case α a successor ordinal, we define

Eα+1
v =W∃,v

(
Sα

)
For α a limit ordinal we define Eα

v =
⋃

β<α Eβ
v .

Observe that by the inductive hypothesis on j we know that every Eα
v is μ-measurable, and therefore all ( j−1)-schemas 

Sα are μ-measurable.

Fact 2. The sequences Eα
v , for every v, are increasing sequences of sets.

Proof. It follows by induction from the definition of Eα
v . We know that ∅ = E0

v ⊆ E1
v and if Eα

v ⊆ Eα+1
v then Eα+1

v ⊆
Eα+2

v . �
Since no uncountable strictly increasing sequence of real numbers exists, for every v ∈ {0, 1}∗ there exists a countable 

ordinal αv such that the measure μ(Eα
v ) stabilizes at αv , i.e.

μ(Eαv
v )=μ(Eβ

v ) , for all β > αv

Let α� be the supremum of αv for v ∈ {0, 1}∗ . Note that α� , being a limit of countably many countable ordinals, is itself 
a countable ordinal. Let

U =
⋃

v

(
Eα�+1

v \ Eα�
v

)
(1)

By the definition of α� , we have that μ(Eα�+1
v \ Eα�

v ) = 0. Hence the set U is a countable union of μ-null sets and is 
therefore μ-null.

Our goal now is to prove that:

Eα�
v ⊆

⋃
α<ω1

Eα
v ⊆ Eα�

v ∪ U (2)

This will show that 
⋃

α<ω1
Eα

v is a measurable set, since every set contained between two measurable sets of equal 
measure (i.e. Eα�

v and Eα�
v ∪ U ) is measurable.

The left containment is trivial, hence let’s consider the inclusion 
⋃

α Eα
v ⊆ Eα�

v ∪ U and assume, towards a contradiction, 
that there exists a tree t ∈⋃

α Eα
v such that t /∈ Eα�

v and t /∈ U .
The fact that t /∈ U implies, by the definition of U , that t /∈ E

α�+1
v . Since by the hypothesis t /∈ Eα�

v , this means that Sα�

and Sα�+1 are t-equivalent.
By Lemma 3.12 this implies that t ∈Wv,P (Sα� ) ⇔ t ∈Wv,P (Sα�+1 ). By the definition of Eα

v , for any α, this means that 
t ∈ Eα�+1

v if and only if t ∈ Eα�+2
v .

Hence Sα�+1 and Sα�+2 are t-equivalent. By iterating the process, all the ( j−1)-schemas Sβ for β ≥ α� are t-equivalent. 
In particular, t /∈⋃

β Eβ
v because t /∈ Eα�

v . A contradiction.
What remains is to prove a relation between the sets Eα

v and Wα
i, j as expressed by the following lemma.

Lemma 3.15. For every v ∈ {0, 1}∗ and α < ω1 we have

Eα
v =

{
t | πS,v(t)�v ∈Wα

i, j

}
(3)

Proof. The proof is inductive on α. For α = 0 both sets are empty. For α a limit ordinal the equality holds by the inductive 
assumption and the definitions of Eα

v and Wα
i, j . Assume that the equality holds for α and all v , we need to prove it for 

α + 1.
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Unravelling the definitions we obtain:

t ∈ Eα+1
v ⇔ πSα,v(t)�v ∈Wi, j−1

πS,v(t)�v ∈Wα+1
i, j ⇔ πWα

i, j

(
πS,v(t)�v

) ∈Wi, j−1

Therefore, it is enough to prove that

πSα,v(t)�v = πWα
i, j

(
πS,v(t)�v

)
(4)

Note that the j-schema S contains exactly the same sets as the ( j−1)-schemas Sα except for the sets R( j)
v = Eα

v . That 
is, πSα,v(t) operates as πS,v (t) but additionally every first occurrence w of j under v is replaced by � or ⊥ depending 
whether t ∈ Eα

w . By the inductive assumption (3), this is equivalent to checking whether the subtree πS,v (t)�w belongs to 
Wα

i, j . Therefore, (4) follows. �
The proof of Proposition 3.14 is concluded by the following fact and the measurability of 

⋃
α<ω1

Eα
v that follows from (2).

Fact 3. For every v ∈ {0, 1}∗ we have 
⋃

α<ω1
Eα

v =W∃,v
(
S

)
.

Proof. By (3) and the definition of W∃,v
(
S

)
we have

Eα
v =

{
t | πS,v(t)�v ∈Wα

i, j

}
W∃,v

(
S

)= {
t | πS,v(t)�v ∈Wi, j

}
Therefore, the fact follows directly from Theorem 2.9. �
3.4. Proof of Theorem 1.5

We conclude this section by proving Theorem 1.5 using the set U defined in (1) in the proof of Proposition 3.14.

Proof. If j = k and S is the trivial j-schema 
()

v then by (3) for every v ∈ {0, 1}∗ and α < ω1 we have

Eα
v =

{
t | t�v ∈Wα

i,k

}
because the projection πS,v (t) in that case does not modify the given tree t . In particular, for v = ε we have Eα

ε =Wα
i,k .

Recall the definition of the set U in (1). Theorem 1.5 follows from (2) for v = ε and the fact that U is μ-null. �
4. Kolmogorov’s R-sets

In this section we provide the basic definitions and state the main results of the theory of R-sets. The expository article 
of Kanovei [21] constitutes an excellent introduction to the topic.

As outlined in the introduction, one of Kolmogorov’s motivations for investigating R-sets was to identify a large 
σ -algebra of measurable (and more generally, “well-behaved”) sets. The approach followed by Kolmogorov [24] for ob-
taining such a σ -algebra is based on the identification of a family F of “safe” operations on sets guaranteeing that, for 
f ∈ F , the set f (X1, . . . , Xm, . . . ) is measurable whenever every set Xi of the input sequence (Xi) is a measurable set. 
Clearly, the operations of countable union (

⋃
), countable intersection (

⋂
) and complementation (¬) are safe operations. 

Another important safe operation, today well-known as the Suslin operation (A) had been discovered in 1917 (see, e.g. [23, 
§14.C]). Kolmogorov’s insight was to generalize this idea and define an R-transform mapping a safe operation f to a new, 
more expressive safe operation R( f ). As we will discuss below, it is the case that R(

⋃
) =A, and further iterations of the 

R-transform and complementation produce strictly more expressive operations. Using the R-transform, Kolmogorov defined 
the σ -algebra of R-sets as the least σ -algebra containing the open sets and closed under F , where the family F is itself 
obtained by closing the familiar operations {⋃, 

⋂
, ¬} under the R-transform. An equivalent definition, more convenient 

for our purposes, is obtained by considering the least σ -algebra containing the clopen sets and closed under the family F
obtained by closing the single operation 

⋃◦ ⋂ (see Definition 4.8) under the co-R operation (see Definition 4.13). After 
this brief informal introduction, we now proceed with the formal definitions.

In the rest of this section we fix a zero-dimensional Polish space X . A (countable) operation on sets is a function 
� : (P(X))ω → P(X). Note that, e.g., the operation of complementation can be seen as a countable operation ignoring 
all but its first input: ¬(A0, . . . , An, . . . ) = X \ A0.

Among the family of all operations, an important subfamily is that of positive analytic operations. Informally, these are the 
operations that are monotone and such that the question “does x belong to �

(
(An)n∈ω

)
” is completely determined by the 

set of indices {n | x ∈ An}.
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Definition 4.1. A positive analytic operation is an operation � such that, for any two sequences (An)n∈ω and (Bn)n∈ω , it holds 
that:

1. (monotonicity) ∀n ∈ω (An ⊆ Bn) ⇒ �
(
(An)n∈ω

)⊆ �
(
(Bn)n∈ω

)
, and

2. for all x, y ∈ X if ∀n ∈ω (x ∈ An ⇔ y ∈ Bn) then

x ∈ �
(
(An)n∈ω

)⇔ y ∈ �
(
(Bn)n∈ω

)
An alternative and very convenient description of positive analytic operations can be given by introducing the concept of 

a basis of an operation �.

Definition 4.2. We say that N ⊆P(ω) is a basis for an operation � if

�
(
(An)n∈ω

)= ⋃
S∈N

⋂
n∈S

An

For any N ⊆P(ω), the unique operation induced by N is denoted by �N .

Note that the union is uncountable if N is uncountable. The following proposition is due to Kantorovich and Livenson 
([22, Theorem 1, page 230])

Proposition 4.3. An operation � is positive analytic if and only if there exists N ⊆P(ω) such that � = �N .

Remark 4.4. Observe that if N is a basis for �, then also its upward-closure N ′ = {X ∈ P(ω) | ∃Y ∈ N (Y ⊆ X)} is a basis 
for �. Hence, we can always assume that the basis N of a positive analytic operation is an upward closed set.

Example 4.5. The countable union operation (
⋃

) is positive analytic with, e.g., basis N = {{n} | n ∈ ω}. Similarly, the opera-
tion of countable intersection has basis N = {ω}.

In the rest of this article we only consider positive analytic operations, henceforth referred to simply as operations. It will 
be convenient, in what follows, to assume that the countably many arguments of an operation � are indexed by a countable 
set (called the arena of �) denoted by A� . Thus an operation � has type � : P(X)A� → P(X). Clearly this is just a useful 
notational convention, since ω and A� can be put in bijective correspondence. A basis for � is taken to be a collection 
N ⊆P(A�) such that �

(
(As)s∈A�

)=⋃
S∈N

⋂
s∈N As .

Example 4.6. The Suslin operation A is defined (see, e.g. [23, §14.C]) using AA =ω∗ , the set of finite sequences (including 
the empty sequence ε) of natural numbers. The basis N of A is the set of maximal chains (under the prefix relation) 
of sequences. In other words, each S ∈ N is the set of all prefixes of an infinite sequence of natural numbers. The Suslin 
operation is defined as:

A
(
(Bs)s∈AA

)= ⋃
S∈N

⋂
s∈S

Bs

We now define transforms on operations, as outlined at the beginning of this section.

Definition 4.7 (Composition). Given two operations � and � their composition � ◦ � is the operation with arena A� ×A�

defined as:

� ◦ �
(
(As,s′)s∈A�,s′∈A�

)=�
(

�
(
(As,s′)s∈A�

)
s′∈A�

)

A basis for � ◦ � can be given ([21, §1]) by N ⊆P(A� ×A�) consisting of all pairs S × S ′ with S ∈ N� and S ′ ∈ N� .

Example 4.8. The operation 
⋃

n

⋂
m An,m coincides with 

⋃◦ ⋂.

Definition 4.9 (Dualization). For a given operation � with an arena A� and a basis N� , we define a dual operation co-�

with the same arena A� , defined as:

co-�
(
(As)s∈A�

)= ⋂
S∈N�

⋃
s∈S

As
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A basis for the operation co- � is given by

Nco- �
def= {S ∈ P(A�) | ∀T ∈ N� (T ∩ S �= ∅)} .

See, e.g. [21, §1].

Example 4.10. The following equalities hold: co-
⋃=⋂

and co-
⋂=⋃

.

Proof. Recall that A⋃ =A⋂ =ω with N⋃ = {{n} | n ∈ω} and N⋂ = {ω}. Then Nco-
⋃ consists of sets which have nonempty 

intersection with every singleton. But there is only one such set: ω. Hence, Nco-
⋃ = N⋂ .

The second equality is a bit more involved. By unfolding the definitions we have

x ∈ co-
⋂(

(An)n∈ω
)⇔∃S ⊆ω (S ∩ω �= ∅)∧ (∀n ∈ S x ∈ An)

If the right expression is satisfied, then it is satisfied by a minimal S = {n}, for some n ∈ω. Therefore the right condition 
is equivalent to ∃n ∈ω (x ∈ An), i.e., x ∈⋃(

(An)n∈ω
)
. �

Definition 4.11 (R-transform). The R-transform of an operation � with a basis N� is the operation R� with the arena 
AR = (A�)∗ (finite sequences of elements in A�) and the basis:

NR�
def= {

S ⊆ (A�)∗ | ε ∈ S ∧ ∀t ∈ S {v ∈A� | tv ∈ S} ∈ N�

}
(5)

where ε denotes the empty sequence and tv the concatenation of t ∈ (A�)∗ with v ∈A� .

The definition of the basis can be read as follows. The elements S ∈ NR� are sets of finite sequences which, when 
ordered by the prefix relation, can be seen as trees with ε as the root. Then, a tree S is in NR� if and only if, for all of 
its vertices t ∈ S , the set {v ∈A� | tv ∈ S} corresponding to the children of t in S , is in N� . Hence, NR� is the set of trees 
whose possible shapes are determined by N� . The following simple example illustrates the definition of the R-transform.

Example 4.12. The following equality holds: R 
⋃=A.

Proof. Recall that A⋃ = ω and N⋃ = {{n} | n ∈ ω}. By the definition, AR⋃ is ω∗ which is indeed the arena of A as 
in Example 4.6. Hence, we just need to check that NA = NR⋃ . This follows directly from definitions since an element 
S ∈ NR⋃ is a linearly ordered (by prefix relation) set of finite sequences, and it can be seen as an infinite tree with only 
one infinite branch. �
Definition 4.13. We denote by co-R the composition of the transforms co- and R, and define the operations

�k
def= (co-R)k

(⋃
◦
⋂)

where 
⋃◦ ⋂ is as in Example 4.8.

Definition 4.14. For a positive number k ≥ 1, we say that a set A ⊆ X is an R-set of k-th level if and only if A =
�k

(
(Us)s∈A�k

)
for some A�k -indexed family of clopen sets Us ⊆ X .

In what follows, by R-sets we mean R-sets of finite levels. The rest of this subsection is devoted to the proofs of basic 
properties of R-sets.

Lemma 4.15. The k-th level of R-sets is closed under pre-images of continuous functions.

Proof. Continuous pre-images of clopen sets are clopen. Therefore the following equation, valid for an arbitrary operation �, 
concludes the proof

f −1
(
�

(
(Es)s∈A�

))= f −1

⎛
⎝ ⋃

N∈N�

⋂
s∈N

Es

⎞
⎠=

=
⋃

N∈N�

⋂
s∈N

f −1(Es)=

=�
((

f −1(Es)
)

s∈A�

) �
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Proposition 4.16 (Normality of R). For a given operator � the classes of sets which can be obtained by operators R� and R� ◦R�

are the same.

This theorem is proved in Kolmogorov’s seminal work [24]. The proof is essentially a direct generalization of the analo-
gous result about normality of the Suslin operation (see, e.g. [23, Proposition 25.6] or [21, page 130]).

We say that an operation � preserves measurability if for any family E = {Es}s∈A�
of measurable sets, the set �(E) is 

measurable. The following theorem motivates our interest on the notion of R-sets.

Theorem 4.17 (Kolmogorov). If � and � preserve measurability then � ◦�, R�, and co-� preserve measurability.

Kolmogorov in [33, Theorem 6 in Appendix 2, page 273] mentioned that the proof follows from application of the method 
of Lusin and Sierpiński presented in [26] (see also [27, Theorem 4] and Section 7 in [21]).

Corollary 4.18. All R-sets are measurable.

5. Matryoshka games

In this section we define Matryoshka games, a variant of parity games which makes it easier to establish a connection 
between the languages Wi,k and the operations �k (see Definition 4.13 in Section 4) and thus with the finite levels of the 
hierarchy of R-sets.

A Matryoshka game is the familiar structure of a two-player parity game played on an infinite countably branching graph, 
extended with a labelling function assigning to each finite play (i.e. every sequence of game-states ending in a terminal state) 
a play label. Formally:

G =
〈
V G = V G

∃ � V G
∀ , FG, EG, vG

I ,
G,AG, labelG
〉

such that 
〈
V G = V G

∃ � V G
∀ , FG , EG, vGI ,
G

〉
is a standard parity game with terminal positions FG . Let us define precisely all 

the elements:

• V G is a countable set of positions of the game,
• FG is a countable set of terminal positions of the game,
• EG ⊆ V G × (

V G ∪ FG)
is the edge relation,

• vGI ∈ V G is the initial position,
• 
G : V G →{i, . . . , k} ⊆ω is the priority function,
• AG is a set of play labels,
• labelG : (V G)∗FG →AG is a function assigning to finite plays their play labels.

We assume that for every v ∈ V G there is at least one v ′ ∈ V G ∪ FG such that (v, v ′) ∈ EG , so that the only terminal 
game-states are in FG . As for standard parity games, the pair (i, k) containing the minimal and maximal values of 
 is 
called the index of the game. By P ∈ {∃, ∀} we denote the players of the game. The opponent of P is denoted by P .

A play is defined as usual as a maximal path in the arena, i.e. either as a finite sequence in 
(

V G)∗
FG or as an infinite 

sequence (V G)ω . Similarly, a strategy σ for a player P is a function σ : (V G)∗
V G

P → V G ∪ FG defined as expected.
A set of play labels X ⊆AG is called a promise. A finite play π is winning for ∃ with promise X if label(π) ∈ X . An infinite 

play π is winning for ∃ if 
(

lim supn→∞ 
G(π(n))
)

is even, as in the standard parity condition. If a play is not winning for ∃
then it is winning for ∀. A strategy σ for Player P is winning in the Matryoshka game G with promise X (shortly X-winning) if, 
for every counter-strategy τ of P , the resulting play π(σ , τ ) is winning for P with promise X , in the sense just described. 
The following proposition directly follows from the well-known determinacy of parity games.

Proposition 5.1. If G is a Matryoshka game with play labels AG and X ⊆ AG then exactly one of the players has a winning strategy 
in G with promise X.

Proof. By reduction to the standard parity games: first, we can assume that we play on the unravelling of the arena with 
additional loop-edges on elements of FG . For a given promise X ⊆AG we can set the priorities on FG such that the position 
in the unravelling corresponding to f ∈ FG is winning for ∃ if and only if the label of the unique play reaching this position 
belongs to X .

A winning strategy for P in the obtained game gives an X-winning strategy for P in the original game. �
The point of allowing parametrized winning conditions in Matryoshka games is the possibility of defining set-theoretical 

operations with a direct game interpretation. Given a Polish space X , the operation on sets (see Section 2) associated with a 
Matryoshka game G (denoted G(E)) has arena AG and is defined as follows:
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Fig. 2. The game G0 corresponding to the operation
⋃◦⋂

.

Fig. 3. The game co-G .

Fig. 4. The game RG .

{
x ∈ X | ∃ has a winning strategy in G with promise {s ∈AG | x ∈ Es}

}
(6)

where E = (Es)s∈AG is a family of subsets of X .
We now define a Matryoshka game called G0, whose associated operation is precisely the operation (

⋃◦ ⋂) (as in 
Example 4.8 of Section 2). The structure of G0 is depicted in Fig. 2. This is a simple game of two steps, where ∃ chooses a 
number n and ∀ responds choosing a number m. After these choices are done, the play reaches a terminal position.

More formally, let the arena V G0 consist of the sets of positions V G0∃ = {e0} and V G0∀ = {a0, a1, . . .}; and let FG0 = { fn,m |
n, m ∈N}. Let EG0 contain pairs of the form (e0, an) and (an, fn,m) for n, m ∈N. Let AG0 =ω2. Note that all the plays of G0

are finite and of the form π = (e0, an, fn,m). For such a play, let labelG0 (π) = (n, m). Let 
G0 : V G0 → {0} be the constant 
function.

We now introduce transforms on games which directly match the corresponding transforms on operations defined in 
Section 2.

Game co-G For a Matryoshka game G of index (i, k), we define co-G as the game obtained from G by replacing the sets 
V∃ ↔ V∀ and increasing all priorities in 
 by 1 (see Fig. 3). Note that the index of co-G is (i + 1, k + 1), and that the sets 
of plays in the two games are equal. We define Aco- G def= AG and labelco-G(π) def= labelG(π).

Game RG Lastly, we define the R-transform on games. Let us take a Matryoshka game G of index (i, k). Let 2 j be the 
minimal even number such that k ≤ 2 j. The game RG is depicted in Fig. 4.

A play in the game RG starts from a first copy of G . In this inner game, the play π can either be infinite (in which 
case π is a valid play in RG and is winning for Player P if and only if it is winning for P in G) or terminate in a terminal 
position of G . In this latter case, Player ∀ can either conclude the game RG , or start another session of the inner game G . 
Observe that if ∀ always chooses to start a new session, he looses because the even priority 2 j is maximal in RG .

The set of play labels ARG is defined as 
(
AG)∗

, i.e. the set of finite sequences of play labels in G . The set of positions 
V RG of RG is defined as {a0, a1, . . .} � ω × V G . Each vertex an belongs to ∀ (i.e. an ∈ V RG

∀ ). A vertex (n, v) ∈ ω × V G

belongs to a player P if and only if v ∈ V G
P . RG has infinitely many terminal positions f0, f1, . . . The priority function on 

ω× V G is the same as in G . All the vertices an have priority 2 j. The edges in RG are of the following forms:

• if (v, v ′) ∈ EG with v, v ′ ∈ V G then ((n, v), (n, v ′)) ∈ ERG for n ∈N,
• if (v, f ) ∈ EG with v ∈ V G and f ∈ FG then ((n, v), an) ∈ ERG—instead of a terminal position of G we move to the 

successive vertex of ∀,
• additionally, we add edges (an, (n + 1, vGI )) ∈ ERG and (an, fn) ∈ ERG .

We let the initial position of RG be (0, vG).
I
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The crucial part of the definition of the R-transform are the labels. Consider a finite play π that reaches a terminal 
position fn of RG . Such a play has lasted for n rounds until it reached the terminal position fn . In that case, the play π is 
of the form:

a0π0a1π1 . . . πn−1an fn

where πi corresponds to a play in G . Let xi be the label assigned by G to the play πi and let

labelRG(π)= (
x0, x1, . . . , xn−1

)
Given the basic Matryoshka game G0 and the two transforms of games co- and R, we can construct more and more 

complex “nested” games. This fact motivates the name Matryoshka for this class of games. We denote with Gk the game 
obtained from G0 by iterating k-times the transform (co-R).

By the definition, the game Gk for k > 0 consists of infinitely many copies of Gk−1 and an additional set of new vertices, 
see Fig. 4. These new vertices are called the k-layers of the game. Therefore, by unfolding the definition, each vertex v of Gk
is either a vertex of a copy of G0 or it belongs to a j-layer for some 1 ≤ j ≤ k. Observe that if v is in a j-layer of Gk then


Gk (v)= k+ j−1 and
(

v ∈ V Gk∀ ⇔ k+ j−1≡ 0 (mod 2)
)

(7)

We are now ready to state the expected correspondence between the operation �k of Section 2 and the Matryoshka 
game Gk .

Theorem 5.2. For every k ∈ω the basis N�k of the �k operation equals the family

promise(Gk)
def= {X ⊆Ak | ∃ has a winning strategy in Gk with promise X}.

Proof. The proof goes by induction. First take k = 0. Note that the following family forms a basis of �0 =⋃◦ ⋂:

N�0 =
{

N ⊆ω2 | ∃n∀m (n,m) ∈ N
}

Observe that a strategy of ∃ in G0 coincides with the selection of the first number n. Then ∀ selects the second number m
and the play ends in a terminal position with label (n, m). Therefore, the family of promises of winning strategies of ∃ in 
G0 coincides with N�0 .

Now assume that N� = promise(G) and we prove that we have Nco- � = promise(co-G). Let A be the set of play labels 
in G . Observe that the following conditions are equivalent (by w.s. we abbreviate winning strategy):

X ∈ Nco- �

by the definition of co-�

∀X ′ ∈ N� X ∩ X ′ �= ∅
N� is upward-closed (Remark 4.4)

A \ X /∈ N�

by the inductive assumption

there is no (A\X)-w. s. for ∃ in G
by the definition of co-G

there is no X-w. s. for ∀ in co-G
by determinacy (Proposition 5.1)

∃ has an X-w. s. in co-G
by the definition of promise(co-G)

X ∈ promise(co-G)

Now assume that N� = promise(G), we prove that NR� = promise(RG). This will finish the inductive proof of the 
proposition. As above, let A equal arena(G). Additionally, let G i denote the sub-game of RG corresponding to the i-th copy 
of G (formally, G i contains vertices of the form (i, v)).

First assume that σ is an X-winning strategy for ∃ in RG . We need to show that X ∈ NRG . Clearly ε ∈ X since ∀ can 
move directly from a0 to f0. Let s̄ ∈ X . We need to show that {x | s̄x ∈ X} is an element of NG . Let i = |s̄| be the length 
of s. Observe that s̄ ∈ X means that there exists a finite play π that is consistent with σ that goes through the sub-games 
G0, . . . , G i−1 and then to ai and f i , formally:
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Fig. 5. “Normalization” of game languages—the same technique works for both binary and ω-branching trees.

π = a0π0a1π1 · · ·ai−1πi−1ai f i

Consider the strategy of ∃ σ ′ in G obtained as restricting σ to sequences that extend a0π1 · · ·πi−1ai(i, vGI ), where (i, vGI )

is the initial position in the i-copy of G . This strategy is winning with some minimal promise X ′ ⊆ A. Note that if there is 
a play π ′ consistent with σ ′ such that labelG(π ′) = x then s̄x ∈ X—directly after the play π ′ , player ∀ can decide to move 
from ai+1 to f i+1. Therefore, σ ′ witnesses that {x | s̄x ∈ X} ∈ NG .

Now assume that X ∈ NR� . In particular X ⊆ A∗ and for every element s̄ ∈ X we have {x | s̄x ∈ X} ∈ NG . We need to 
construct an X-winning strategy σ of ∃ in RG . The strategy is defined inductively, between successive sub-games G i . The 
invariant says, that if a play π consistent with σ reaches the terminal position f i , then labelRG(π) ∈ X . Assume that we 
have reached ai after a play π such that the label of π f i is s̄. By the invariant, we know that s̄ ∈ X . In particular, there exists 
a winning strategy σ ′ of ∃ in G with the promise {x | s̄x ∈ X}. Let σ follow the decisions of σ ′ until reaching a terminal 
position of G (i.e. the position ai+1 in RG). We now prove that σ is X-winning. Let π be a play consistent with σ . There 
are the following cases:

• π is a finite play and by the above invariant labelRG(π) ∈ X .
• π is an infinite play that stays from some point on in one of the sub-games G i . In that case π is winning for ∃ since it 

contains a winning play in G as a suffix.
• π is an infinite play that passes through infinitely many sub-games G i . In that case all the vertices ai are on π so

lim sup
n→∞


(π(n))= 2 j

where 2 j is the highest priority occurring in RG . Therefore π satisfies the parity condition and is winning for ∃. �
Corollary 5.3. For each k and each family (Es)s∈Ak we have �k

(
(Es)s∈Ak

)= Gk
(
(Es)s∈Ak

)
.

5.1. Relation between the R-sets and the index hierarchy

In this subsection we shall establish a precise correspondence between the finite levels of the hierarchy of R-sets and 
game tree languages Wi,k . The proofs will make use of the “intermediary” concept of Matryoshka games, introduced in the 
previous section.

As a preliminary step, it is convenient to define a variant of game tree languages over countably branching trees. This 
will simplify the proof of the connection between the languages Wi,k and the Matryoshka games which are played on 
countably branching structures.

Definition 5.4. Let Tr(ω)

i,k be the space of labelled ω-trees

t : ω∗ → {∃,∀} × {i, . . . ,k,�,⊥}
Each t ∈ Tr(ω)

i,k is naturally interpreted as a parity game on the countable tree structure, with the possibility of terminating 
at leaves, labelled by � and ⊥, which are winning for ∃ and ∀, respectively. We also require that the following simple 
technical conditions are satisfied:

1. in the root there is a vertex (P , k) where P = ∃ if i = 0 and P = ∀ if i = 1,
2. for a vertex v ∈ω2n on an even depth in the tree, if the label of v is of the form (P , j) then the labels of all the vertices 

vl ∈ ω∗ for l ∈ ω are (P , j), see Fig. 5. In other terms, the players appear alternately and the priorities are duplicated 
every second level.

Definition 5.5. W(ω) ⊆ Tr(ω) is the set of ω-trees such that ∃ has a winning strategy.
i,k i,k
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Fig. 6. Reduction of W(ω)
1,3 to W0,3.

An easy argument shows that

Lemma 5.6. Dropping conditions 1. and 2. in Definition 5.4 defines a language which is Wadge equivalent to W (ω)

i,k .

Proof. Let us start from an observation that adding technical requirements regarding the same ranks on two subsequent 
levels 2n and 2n + 1 of a given tree and requiring that the players ∃ and ∀ move one after another in turns does not limit 
generality from the point of view of Wadge reducibility. Namely, as illustrated by Fig. 5 we may modify arbitrary graph to 
fulfil the additional requirements. �

The following routine lemma establishes the connection between the ω-branching game tree languages W (ω)

i,k and binary 
(as in Section 2) game tree languages Wi,k .

Lemma 5.7. For i < k the language Wi,k is Wadge equivalent to W(ω)

i+1,k. In particular W0,1 ∼W W(ω)
1,1 and W1,3 ∼W W(ω)

0,1 .

Proof. Let us start with a reduction of W(ω)

i+1,k to Wi,k . To encode infinite branching we use a standard trick—each leftmost 
branch B in the binary tree is treated as a one vertex V . Right children of vertices in B are treated as children of V . To 
guarantee that a player P who can choose a child of V will always exit branch B , we label vertices along B with the lowest 
possible priority loosing for P (i.e. i or i + 1). One should notice, that such a labelling does not increase lim sup of a play 
that contains infinitely many right children.

The Wadge reduction of the language W(ω)
1,3 to W0,3 is shown in Fig. 6.

Technically more involved is a reduction of Wi,k to W(ω)

i+1,k . The proof below follows a standard technique of reducing 
binary branching games to ω-branching games. Without loss of generality let i = 0 (i.e. priority winning for ∃). A continuous 
reduction φ maps a tree t ∈ Tri,k into φ(t) ∈ Tr(ω)

i+1,k and is defined as follows. When we encounter a vertex with priority 
greater than 0 it is copied without any change—we can duplicate both of the children of this vertex infinitely many times, 
to make sure that the obtained tree is ω-branching.

The situation is different when we encounter a vertex v with priority 0. In this case a vertex v ′ = (∀, 1) with ω children 
is produced. Intuitively, since priority 0 is loosing for ∀ he wants to visit vertices with higher priorities. Let τn (n ∈ ω) be 
a list of all finite strategies of ∀ starting from v in t . The successive children of v ′ correspond to the strategies (τn)n∈N . In 
order to decide children of τn , we consider possible choices of ∃ against strategy τn . This gives finitely many options which 
we verbatim copy as children of τn , unless a priority of such a child is 0. Then we decide that ∀ looses and mark it as �. 
We will prove that φ is a Wadge reduction by showing the following equivalence

t ∈Wi,k if and only if φ(t) ∈W(ω)

i+1,k.

The proof is based on the heuristic that if ∀ cannot reach a priority greater than 0 then he looses.
Assume first that σ is a winning strategy of ∃ on the tree t . We need to show that ∃ wins on φ(t). We play according 

to σ on φ(t) until there appears a vertex with priority 0. Assume now that ∀ selected a finite strategy τn . Since σ and 
τn define a unique answer of ∃ in t we can select the counterpart of this answer in the tree φ(t). Since σ is winning, the 
above strategy either reaches � or the parity condition is satisfied.

Assume now that σ is a winning strategy of ∃ on φ(t) and towards a contradiction assume that τ is a winning strategy 
of ∀ on t . We play these two strategies against each other as far as the priority 0 is not reached in t . If 0 is reached, then 
against σ we play a finite approximation τn of τ which avoids vertices of rank 0 (if every approximation of τ contains 
a 0-labelled leaf then according to König’s lemma we would be able to construct a path in τ containing only 0-labelled 
vertices—a path loosing for ∀). If σ selects a leaf w of τn in φ(t), we mimic the same gameplay in t . As a result, the visited 
priorities in t and φ(t) must be the same, but this contradicts our assumption that the strategies σ and τ are winning for 
∃ and ∀ respectively. �
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The fact that Wi,k corresponds to W(ω)

i+1,k reflects the cost of the translation of ω-branching games into binary games: an 
extra priority is required to mimic countably many choices by iterating binary choices. Thanks to this lemma, in Theorem 1.6
one can replace the languages Wk−1,2k−1 with the languages W(ω)

k,2k−1.

Having established this convenient correspondence between Wk−1,2k−1 and the languages W(ω)

k,2k−1, we can go back to 
our original intent.

The result of Corollary 5.3 can be read as follows. Every R-set belonging to the finite levels of the R-hierarchy is also 
definable by Matryoshka games. This allows us to state a first relationship between R-sets and the hierarchy of game tree 
languages.

Lemma 5.8. Given a Polish space X, let A ⊆ X be a set defined by a Matryoshka game A = Gk
(
(Es)s∈Ak

)
, for k ≥ 1. Then A ≤W

W(ω)

k,2k−1 .

Proof. By the definition (see Equation (6)) of the membership in A, we have that x ∈ A if and only if the game Gk with the 
promise {s ∈AG

k | x ∈ Es} is winning for the player ∃. Observe that Gk uses k-priorities and it’s greatest priority is odd. Thus, 
let us assume without loss of generality, that Gk has index (k, 2k − 1). We define the function f : X → Trωk,2k−1 as mapping 
x to the corresponding unfolded parity game, where each terminal position s is replaced by � if x ∈ Es and ⊥ if x /∈ Es , as 
described in the proof of Proposition 5.1. Since all sets Es are clopen (and thus the corresponding characteristic function 
χEs is continuous) the function f is continuous. Therefore we have that x ∈ A ⇔ f (x) ∈W (ω)

k,2k−1 and this concludes the 
proof. �
Corollary 5.9. For every R-set A belonging to the k-th level of the R-hierarchy, it holds that A ≤W Wk−1,2k−1 .

In other words, the game tree language Wk−1,2k−1 is hard for the sets belonging to the k-th level of the R-hierarchy. 
We will now strengthen this result by showing that Wk−1,2k−1 is complete for the k-th level of the R-hierarchy. To do this 
we show that W(ω)

k,2k−1 belongs to the k-level of the hierarchy of R-sets.

We will do so by explicitly constructing a family Ek = (Es)s∈Ak of clopen sets in Tr(ω)

k,2k−1 such that �k(Ek) =W(ω)

k,2k−1, 
where Ak is the arena of the operation �k . The construction requires some effort. First we recall from Section 4 that 
the arena of the operation 

⋃◦ ⋂ is A0 = {〈n, m〉 | n, m ∈ ω} (the pairs of natural numbers) and from the definition 
of the R-transform we have Ak =

(
Ak−1

)∗
. Thus, for all k ∈ ω, Ak is a set of nested sequences of pairs of natural 

numbers. For a sequence s ∈ Ak we define the maps flatten and prioritiesMap such that flatten(s) ∈ A�
0 and 

prioritiesMap(s) ∈ω∗ .
The formal definitions of the functions flatten and prioritiesMap are given in the following code listing.5 The 

data structure NestedList is an abstraction of a list which naturally allows to consider Ak , that is sequences of sequences 
of. . . of sequences.

-- run at http://www.fpcomplete.com/user/henryk/kolmogorovflatmaps
data NestedList a = Elem a | List [NestedList a]

deriving (Show)
-- straightforwardly define flatten
flatten :: NestedList a -> [a]
flatten (Elem x) = [x]
flatten (List x) = concatMap flatten x
-- prioritiesMap defines through auxialliary prioritiesMap’
prioritiesMap (x) = prioritiesMap’(x,0)

prioritiesMap’ :: (NestedList a, Int) -> [Int]
prioritiesMap’ (Elem a,n) = [n]
prioritiesMap’ (List (x:[]), n) = prioritiesMap’ (x,n+1)
prioritiesMap’ (List (x:y:xs),n) = prioritiesMap’ (x,0) ++ prioritiesMap’ (List( y:xs),n)
prioritiesMap’ (List [],n) = []

The map flatten takes a nested sequence in Ak and returns the “flattened” sequence, that is all the braces are 
removed, for example

flatten
(
(((〈2,15〉)), ((〈7,5〉), (〈6,4〉))))= (〈2,15〉, 〈7,5〉, 〈6,4〉).

The function prioritiesMap computes the number of the closing brackets after each pair of natural numbers:

5 Code can be run locally on a computer or on-line on fpcomplete server; the service allows on-line modifications, in particular playing with more 
examples, see the webpage http :/ /www.fpcomplete .com /user /henryk /kolmogorovflatmaps.

http://www.fpcomplete.com/user/henryk/kolmogorovflatmaps
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Fig. 7. An illustration of treeMap.

prioritiesMap
(
(((〈2,15〉)), ((〈7,5〉), (〈6,4〉)))

)
= (2,1,3).

We also define treeMap(t, s) where t ∈ Tr(ω)

k,2k−1 and s ∈ Ak . Each vertex on an even depth in the ω-branching tree t
can be identified with a sequence of pairs of natural numbers. Then, if s ∈ Ak , the function treeMap(t, s) computes first 
flatten(s) and returns the sequence of priorities assigned to the vertices along the path of t indicated by flatten(s). 
Fig. 7 shows an example of a tree t such that

treeMap
(
t, (((〈2,15〉)), ((〈7,5〉), (〈6,4〉))))= (2,1,3).

Define Ek = (Es)s∈Ak such that for t ∈ Tr(ω)

k,2k−1 we have t ∈ Es iff for

• v = prioritiesMap(s),
• b = treeMap(t, s),
• L =min{k ∈ω | v(k) �= b(k)}

v �= b holds, and either b(L) =� or

min(b(L), v(L))≡ 0 (mod 2) (8)

It is simple to verify that the sets Es are indeed clopen in the space Tr(ω)

k,2k−1.

Theorem 5.10. ∀k ≥ 1 �k(Ek) =W(ω)

k,2k−1 .

Proof. The proof is based on Matryoshka games. Consider a tree t ∈ Tr(ω)

k,2k−1 and assume that a player P ∈ {∃, ∀} has a 
winning strategy σ on the tree t . We claim that P has a winning strategy in the Matryoshka game Gk with promise Ek . 
From this fact the theorem will follow by an application of Corollary 5.3 and Proposition 5.1. For the simplicity we assume 
that P = ∃, the opposite case is analogous.

We will simulate the game on t in the Matryoshka game Gk . A play in Gk consists of playing pairs of numbers (corre-
sponding to moves in t) in the copies of G0 and additionally of deciding whether to exit a j-layer of the game or not. We 
say that a play in Gk is fair if whenever the players encounter a priority k+ j in t then they exit exactly j first layers of Gk
(i.e. the layer j+1 is reached) and if they encounter a symbol ⊥ or � then the players exit all the layers of Gk .
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Let ∃ use the original strategy σ in the copies of G0 and play “fairly” as long as ∀ does. If ∀ also plays “fairly” then 
the play is winning for ∃: either � is reached in t and ∃ wins since t ∈ Es or the play is infinite and ∃ wins by the parity 
condition—the priorities visited in Gk agree with those visited in t , see (7) at page 123.

If ∀ does not play “fairly” (i.e. when a priority k+ j is reached in t he does not exit the l-layer of Gk with l ≤ j or he 
exits the ( j+1)-layer of Gk) then ∃ uses the following counter-strategy: whenever possible she exits the current layer of Gk . 
There are two possible developments of such a play. The first case is that ∀ allows to exit the whole game and then ∃ wins 
thanks to (8). Now assume that ∀ never allows the game to reach a terminal position. In that case, let j be maximal such 
that the j-layer of Gk is visited infinitely often. By (7) we know that the limit superior (i.e. lim sup) of the priorities visited 
in Gk is k+ j−1 and since ∀ is the owner of the vertices in the j-layer of Gk so k+ j−1 ≡ 0 (mod 2). Therefore, ∃ wins the 
play by the parity condition. �

As a consequence of Corollary 5.9 and Theorem 5.10 we obtain the desired completeness result.

Theorem 1.6. Wk−1,2k−1 is complete for the k-th level of the hierarchy of R-sets.

We note that this implies that every game tree language Wi,k is an R-set belonging to the finite levels of the 
R-hierarchy. Thus, by application of Kolmogorov’s results (Theorem 4.17), we have obtained an alternative proof of The-
orem 1.3 on the measurability of Wi,k .

Remarks The notion of R-sets is a robust concept and admits natural variations. One can equivalently work in arbitrary 
(not necessarily zero-dimensional) Polish spaces and start from a basis of, e.g. Borel sets rather than clopens. The family 
of operations �k = (co-R)k(

⋃◦ ⋂) can be replaced by, e.g. either (co-R)k(
⋃

) or (co-R)k(
⋂

). Similarly, one can consider 
binary rather than countably branching Matryoshka games. The notion of R-sets remains unchanged in these alternative 
setups.

6. A remark on continuity of measures on Wi,k

As we mentioned in the Subsection 1.3 of Introduction, a natural method of proving continuity would be through an 
application of the Boundedness Principle (see, e.g. Section 34.B in [23]). In this Section we verify that indeed the method 
works for W0,1 but not for W1,3 nor higher indices.

6.1. The Boundedness Principle for W0,1

In this section we prove the statement of Theorem 1.5 for W0,1, i.e. for the particular case of i = 0 and k = 1.
Consider a Borel measure μ such that μ(W0,1) > 0. We will prove the following proposition.

Proposition 6.1. For every Borel set G ⊆W0,1 , there exists a countable ordinal α < ω1 such that G ⊆Wα
0,1 .

The desired continuity property then follows from the above proposition as follows. Let G ⊆W0,1 be a Borel set such 
that μ(G) =W0,1. Such a set G exists since W0,1 is a measurable set. Then μ(G) ≤μ(Wα

0,1) ≤μ(W0,1) =μ(G).
The rest of this section is devoted to a proof of Proposition 6.1.
For a tree t ∈ Tr0,1 we define

rank(t)=min{α < ω1 | t ∈Wα
0,1}

or rank(t) =ω1 if the minimum is not well-defined. Note that since by Theorem 2.9 the equality Wi,k =⋃
α<ω1

Wα
0,1 holds, 

rank(t) =ω1 if and only if t /∈W0,1.
We now establish the following technical fact.

Proposition 6.2. For i = 0 and k = 1 the rank rank is a co-analytic rank ([23, §34.B]), that is there exist a co-analytic relation 
≤�1

1⊆ Tr0,1 × Tr0,1 and an analytic relation ≤�1
1⊆ Tr0,1 × Tr0,1 such that for every s ∈ Tr0,1 and t ∈W0,1 holds

rank(s)≤ rank(t) ⇔ s≤�1
1 t ⇔ s≤�1

1 t

Proof. This technically looking statement actually follows quite easily either through a direct definition of appropriate 
relations ≤�1

1⊆ Tr0,1 × Tr0,1, ≤�1
1⊆ Tr0,1 × Tr0,1 on Tr0,1 or through an application of the Borel derivative method, see [23, 

Section 34.D and Theorem 34.10]. We decide below for the second method, because it is conceptually simpler. Formally, 
a derivative works on partial trees (that is, restrictions of t ∈ Tr0,1 to certain prefix-closed subsets of the binary tree) and 
assigns to a partial tree t another partial tree D(t) ⊆ t .

First note that the set D0 of partial trees t on which ∃ has a winning strategy that visits at most once priority 1 and 
either ends up in a finite vertex without extensions in t or wins in the infinity in the usual sense of the parity condition, 
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Fig. 8. The tree f (t).

is a Borel subset of partial trees: by König’s lemma it is enough to have longer and longer finite (i.e. specified up to a finite 
level of the tree) strategies visiting 1 at most once. Thus

D0 =
{

t |
⋂

n

{t↓n ∈ Fn}
}

where t↓n denotes the partial tree obtained by removing all the vertices of t of depth ≥ n and Fn is the set of partial trees 
of depth at most n which have a strategy σ∃ for ∃ such that any play consistent with σ∃ visits 1 at most once. The sets Fn

are clearly Borel sets, hence D0 is Borel.
Now, we define the derivative D as follows: D takes as input a partial tree t and returns the partial tree obtained by 

removing from t a vertex w ∈ dom(t), and all the descendants of w in t , for all w such that t�w (the subtree of t rooted 
at w) is in D0.

Clearly, such a derivative is decreasing (i.e. D(t) ⊆ t , for all t). Thus, by iterating D on input t , we eventually reach a 
fixed-point t′:

t ⊆ D(t)⊆ D(D(t))⊆ . . . t′ = D(t′)

We then observe that t′ = ε if and only if t ∈W0,1. The number of applications of D to t until reaching ε (denoted |t|D
in [23, Section 34.D]) is exactly rank(t). Also, as a mapping from partial trees to partial trees, D is clearly a Borel function 
(because D0 is Borel). Hence D is a Borel derivative and from [23, Theorem 34.10] follows that rank is a �1

1-rank. �
Since rank is a co-analytic rank on W0,1, the statement of Proposition 6.1 is an instance of the Boundedness Principle 

([23, Theorem 35.23]).

6.2. Failure of the Boundedness Principle for higher ranks

In this section we show that the method from Section 6.1 does not generalize to higher indices. Namely, we will prove 
the following

Proposition 6.3. There exists a Borel (actually closed) set G ⊆W1,3 such that for all countable ordinals α < ω1 it holds that G �
Wα

1,3 .

The rest of this section contains a proof of Proposition 6.3.

Proof. For a tree t ∈ Tr1,2 let us denote with tree dual(t) ∈ Tr2,3 the dual tree, obtained by replacing a label (P , i) by 
(P , i + 1), see Section 3.2. Clearly, t ∈W1,2 if and only if dual(t) /∈W2,3.

Now, consider the set of trees G ⊆ Tr1,3 defined as G = { f (t) | t ∈ Tr1,2}, where f : Tr1,2 → Tr1,3 is defined as f (t) def=
(∃, 1)

(
t, dual(t)

)
, as shown at Fig. 8.

Note that G ⊆ Tr1,3 is a closed set since it is specified by a closed constraint: t ∈ G if and only if for each v ∈ {0, 1}∗ , if 
t(0v) = (P , i) then t(1v) = (P , i + 1). In particular, G is a Borel set.

Observe that for each t ∈ Tr1,2 either t ∈W1,2 or dual(t) ∈W2,3. Hence, f (t) is always a tree winning for ∃. Therefore 
G ⊆W1,3.

Note that, if t ∈W1,2 then ∃ can win in f (t) by moving to the left subtree (i.e. t) and then playing a winning strategy 
on t . Such a strategy does not visit any vertex having priority 3 and therefore, in accordance with the definition of W1,3, 
we have that f (t) ∈W1

1,3.

Now consider, for an arbitrary countable ordinal α, a tree t such that dual(t) ∈Wα
2,3 ⊆W2,3 but dual(t) /∈Wβ

2,3 for any 
β < α.

Since dual(t) ∈W2,3, we have that t /∈W1,2 and therefore any winning strategy for ∃ in f (t) has to move to the right 
subtree (i.e. dual(t)). Therefore, it holds that f (t) ∈Wα

1,3 and f (t) /∈Wβ

1,3 for any β < α.
Since α is an arbitrary countable ordinal, the proof of Proposition 6.3 is completed. �
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[26] N. Lusin, W. Sierpiński, Sur quelques proprietes des ensembles (A), Bull. Acad. Sci. Crac. (1918) 35–48.
[27] A.A. Lyapunov, R-sets, Tr. Mat. Inst. Steklova 40 (1953) 3–67.
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