Deciding complexity of languages via games

Michał Skrzypczak

University of Warsaw

Part 1

Things

Finite / infinite words:

Finite / infinite words: (seen as strings, terms, and logical structures)

Finite / infinite words: (seen as strings, terms, and logical structures)

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leqslant , a(x) for $a \in A$

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees:

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees: (seen as XML, terms, and logical structures)

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees: (seen as XML, terms, and logical structures)

1 / 21

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: $s_{\rm L}(x), s_{\rm R}(x), \leq \leq_{\rm lex}, a(x)$ for $a \in A$

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: $s_{\rm L}(x), s_{\rm R}(x), \leq \leq_{\rm lex}, a(x)$ for $a \in A$

Monadic Second-order Logic:

1 / 21

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: $s_{L}(x), s_{R}(x), \leq s_{lex}, a(x)$ for $a \in A$

Monadic Second-order Logic: $\exists_r \quad \varphi \lor \psi \quad \neg \psi$

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(x), \leq , a(x) for $a \in A$

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: $s_{\rm L}(x), s_{\rm R}(x), \leq \leq_{\rm lex}, a(x)$ for $a \in A$

Monadic Second-order Logic: $\exists_x \quad \varphi \lor \psi \quad \neg \psi \quad \exists_X \quad x \in X$

1 / 21

2 / 21

Fin. words

logic

Fin. words MSO

logic

Fin. words MSO

$$\mathcal{L}(\varphi) = \{ w \mid w \models \varphi \}$$

logic

Fin. words MSO

	logic	automata	
Fin. words	MSO	DFA	

	logic	automata	
Fin. words	MSO	DFA	
	$\mathrm{L}(\mathcal{A})$	$= \{ w \mid \mathcal{A} \text{ accepts } w \}$	

	logic	automata	
Fin. words	MSO	DFA	

	logic	automata	algebra	
Fin. words	MSO	DFA	monoids	

	logic	automata	algebra	
Fin. words	MSO	DFA	monoids	
		h: L	$A^* \to M$, $F \subseteq M$	

2 / 21

	logic	automata	algebra	
Fin. words	MSO	DFA	monoids	
		h:	$A^* \to M, \ F \subseteq M$	
			$\mathcal{L}(h) = h^{-1}(F)$	

	logic	automata	algebra	
Fin. words	MSO	DFA	monoids	

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	
				$\mathcal{L}(e) \cong e$	

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	

Inf. words

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO				

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity			

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.		

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
	logic	automata	algebra	expressions	•••
------------	-------	-------------	------------	------------------	-----
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	

Fin. trees

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO				

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up			

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.		

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees					

Michał Skrzypczak Deciding complexity of languages via games

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO				

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity			

	logic	automata	algebra	expressions	
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity	ω -clones		

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity	ω -clones		

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity	ω -clones	—	

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity	ω -clones	—	

 \rightsquigarrow MSO is universal

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity	ω -clones	—	

 \rightsquigarrow MSO is universal

vow complicated structures require complicated devices

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Inf. trees	MSO	nondet. parity	ω -clones	—	

∽ MSO is universal

 \leadsto complicated structures require complicated devices

vvv infinite trees inherently require non-determinism

Juggling representations:

Juggling representations:

Input: L(φ) / L(A) / L(h) / . . . for a given language L

Juggling representations:

Input: $L(\varphi) / L(A) / L(h) / \dots$ for a given language LOutput: $L(\varphi) / L(A) / L(h) / \dots$ for L

Juggling representations:

Input: $L(\varphi) / L(A) / L(h) / \dots$ for a given language LOutput: $L(\varphi) / L(A) / L(h) / \dots$ for L

Effective operations:

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language L Output: L(φ) / L(A) / L(h) / ... for L

Effective operations:

 ${\rm Input:} \quad L \text{ and } M$

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^{c} (also $h(L),\ldots$)

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Input: L

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Input: LOutput: Is L: non-empty, infinite, uncountable, measure $1, \ldots$

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Input: LOutput: Is L: non-empty, infinite, uncountable, measure $1, \ldots$

Effective characterisations:

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language L Output: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Input: L

Output: Is L: non-empty, infinite, uncountable, measure $1, \ldots$

Effective characterisations:

Input: L

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Input: L

Output: Is L: non-empty, infinite, uncountable, measure $1, \ldots$

Effective characterisations:

Input: L

Output: Is L definable in a simple way (e.g. in FO)

Juggling representations:

Input: L(φ) / L(A) / L(h) / ... for a given language LOutput: L(φ) / L(A) / L(h) / ... for L

Effective operations:

Input: L and MOutput: $L\cup M$, $L\cap M$, Lackslash M, L^c (also $h(L),\ldots$)

Deciding properties:

Input: L

Output: Is L: non-empty, infinite, uncountable, measure $1, \ldots$

Effective characterisations:

Input: L

Output: Is L definable in a simple way (e.g. in FO)

Part 2

Effective characterisations by patterns

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

$$A^* = \sim \varnothing$$
$$(ab)^* = \sim \left[bA^* \cup A^* a \cup A^* a a A^* \cup A^* b b A^* \right]$$

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

 $\text{iff } L = \mathcal{L}(e) \text{ for a star-free regexp:} \quad e ::= \varnothing \mid A \mid ee \mid e \cup e \mid \sim e \\$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k+1}$$

 $\text{iff } L = \mathcal{L}(e) \text{ for a star-free regexp:} \quad e ::= \varnothing \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k+1}$$

[If QD(φ) = k then $a^{2^k} \models \varphi$ iff $a^{2^k+1} \models \varphi$]

 $\text{iff } L = \mathcal{L}(e) \text{ for a star-free regexp:} \quad e ::= \varnothing \mid A \mid ee \mid e \cup e \mid \sim e \\$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k+1}$$
iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k + 1}$$

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971]) TFAE for $L \subseteq A^*$:

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k + 1}$$

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971]) TFAE for $L \subseteq A^*$:

-L is definable in FO

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k + 1}$$

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for $L \subseteq A^*$:

- L is definable in FO
- the minimal automaton \mathcal{A}_L for L is counter-free

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k + 1}$$

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for $L \subseteq A^*$:

- L is definable in FO
- the minimal automaton \mathcal{A}_L for L is counter-free
- the syntactic monoid M_L for L is group-free

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k + 1}$$

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971]) TFAE for $L \subseteq A^*$:

- L is definable in FO
- the minimal automaton \mathcal{A}_L for L is counter-free
- the syntactic monoid M_L for L is group-free
- the syntactic monoid M_L for L satisfies $s^{\sharp} = s \cdot s^{\sharp}$

iff L = L(e) for a star-free regexp: $e ::= \emptyset \mid A \mid ee \mid e \cup e \mid \sim e$

By Ehrenfeucht-Fraïssé

$$a^{2^k} \equiv_k a^{2^k + 1}$$

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971]) TFAE for $L \subseteq A^*$:

- L is definable in FO
- the minimal automaton \mathcal{A}_L for L is counter-free
- the syntactic monoid M_L for L is group-free
- the syntactic monoid M_L for L satisfies $s^{\sharp} = s \cdot s^{\sharp}$

" pattern method for rigid representations

\boldsymbol{L} is definable in $\ensuremath{\operatorname{FO}}$

iff

the minimal automaton \mathcal{A}_L for L is counter-free

iff

the minimal automaton \mathcal{A}_L for L is counter-free

iff

the minimal automaton \mathcal{A}_L for L is counter-free

1. Let $L = L(\mathcal{A})$ for a counter-free \mathcal{A}

iff

the minimal automaton \mathcal{A}_L for L is counter-free

1. Let $L = L(\mathcal{A})$ for a counter-free \mathcal{A} $\checkmark \checkmark$ write φ in FO such that $L = L(\varphi)$

iff

the minimal automaton \mathcal{A}_L for L is counter-free

1. Let $L = L(\mathcal{A})$ for a counter-free \mathcal{A} \rightsquigarrow write φ in FO such that $L = L(\varphi)$ $\rightsquigarrow L$ is definable in FO

iff

the minimal automaton \mathcal{A}_L for L is counter-free

1. Let $L = L(\mathcal{A})$ for a counter-free \mathcal{A} \rightsquigarrow write φ in FO such that $L = L(\varphi)$ $\rightsquigarrow L$ is definable in FO

2. Let A_L contain a counter

iff

the minimal automaton \mathcal{A}_L for L is counter-free

1. Let $L = L(\mathcal{A})$ for a counter-free \mathcal{A} \rightsquigarrow write φ in FO such that $L = L(\varphi)$ $\rightsquigarrow L$ is definable in FO

2. Let A_L contain a counter

iff

the minimal automaton \mathcal{A}_L for L is counter-free

1. Let $L = L(\mathcal{A})$ for a counter-free \mathcal{A} \rightsquigarrow write φ in FO such that $L = L(\varphi)$ $\rightsquigarrow L$ is definable in FO

2. Let A_L contain a counter (A_L is minimal!)

iff

the minimal automaton \mathcal{A}_L for L is counter-free

2. Let A_L contain a counter (A_L is minimal!)

iff

the minimal automaton \mathcal{A}_L for L is counter-free

2. Let \mathcal{A}_L contain a counter $(\mathcal{A}_L \text{ is minimal!})$ $\cdots uw^{(n+1)\cdot 2^k}v \in L$ and $uw^{(n+1)\cdot (2^k+1)}v \notin L$

iff

the minimal automaton \mathcal{A}_L for L is counter-free

 \equiv_k

iff

the minimal automaton \mathcal{A}_L for L is counter-free

Michał Skrzypczak

1. Take a rigid representation of \boldsymbol{L}

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:

Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek, Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing, Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, ...

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

• 2.a works under assumption of lack of obstruction

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

- 2.a works under assumption of lack of obstruction
- algebraic methods limited to varieties or lattices of languages

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

- 2.a works under assumption of lack of obstruction
- algebraic methods limited to varieties or lattices of languages

(Birkhoff)

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

- 2.a works under assumption of lack of obstruction
- algebraic methods limited to varieties or lattices of languages
- rigid representations needed

(Birkhoff)

Rigid representations

Rigid representations

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Det. lang of inf. trees	—	det. top-down	—	—	
Inf. trees	MSO	nondet. parity	ω -clones		

Rigid representations

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Det. lang of inf. trees	—	det. top-down	—	—	
Inf. trees	MSO	nondet. parity	ω -clones		
Rigid representations

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Det. lang of inf. trees	—	det. top-down	—	—	
Inf. trees	MSO	nondet. parity	ω -clones	_	

Not mentioned: thin trees, Boolean combinations of open sets, ...

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\alpha = a_0 \quad a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_6 \quad \cdots$

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\mathcal{A} \text{ accepts } \alpha \text{ iff } \lim \sup_{n \to \infty} \Omega(q_n) \equiv 0 \pmod{2}$

8 / 21

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\mathcal{A} \text{ accepts } \alpha \text{ iff } \underbrace{\limsup_{n \to \infty} \Omega(q_n) \equiv 0 \pmod{2}}_{\text{parity condition}}$

8 / 21

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\mathcal{A} \text{ accepts } \alpha \text{ iff } \underbrace{\limsup_{n \to \infty} \Omega(q_n) \equiv 0 \pmod{2}}_{\text{parity condition}}$

$$\mathcal{L}(\mathcal{A}) \stackrel{\mathsf{def}}{=} \left\{ \alpha \in A^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \right\}$$

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\mathcal{A} \text{ accepts } \alpha \text{ iff } \underbrace{\limsup_{n \to \infty} \Omega(q_n) \equiv 0 \pmod{2}}_{\text{parity condition}}$

$$\mathcal{L}(\mathcal{A}) \stackrel{\mathsf{def}}{=} \left\{ \alpha \in A^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \right\}$$

 $\left[\text{ For later use: the index of } \mathcal{A} \text{ is } \operatorname{rg}(\Omega) = \left\{ i, i+1, \dots, j \right\} \subseteq \mathbb{N} \right]$

 \mathcal{A} reads $\alpha = a_0 a_1 \cdots$ and produces $\rho = q_0 q_1 \cdots$

 $\mathcal{A} \text{ accepts } \alpha \text{ iff } \underbrace{\limsup_{n \to \infty} \Omega(q_n) \equiv 0 \pmod{2}}_{\text{parity condition}}$

$$\mathcal{L}(\mathcal{A}) \stackrel{\mathsf{def}}{=} \left\{ \alpha \in A^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \right\}$$

[For later use: the index of \mathcal{A} is $rg(\Omega) = \{i, i+1, \dots, j\} \subseteq \mathbb{N}$]

Part 3

Games on graphs

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$,

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$,

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^\omega$

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^\omega$

$$\rightsquigarrow$$
 a play $\pi = v_0 v_1 v_2 \cdots$

9 / 21

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^\omega$

9 / 21

$$\rightsquigarrow$$
 a play $\pi = v_0 v_1 v_2 \cdots$

 \exists wins π iff $\pi \in W$

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^\omega$

9 / 21

$$\leadsto$$
 a play $\pi = v_0 v_1 v_2 \cdots$

 \exists wins π iff $\pi \in W$

 \forall wins π iff $\pi \notin W$

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^\omega$

$$\rightsquigarrow$$
 a play $\pi = v_0 v_1 v_2 \cdots$

 $\exists \text{ wins } \pi \text{ iff } \pi \in W \qquad \qquad \forall \text{ wins } \pi \text{ iff } \pi \notin W$

···→ each play has a winner

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^{\omega}$

 \leadsto a play $\pi = v_0 v_1 v_2 \cdots$

 $\exists \text{ wins } \pi \text{ iff } \pi \in W \qquad \forall \text{ wins } \pi \text{ iff } \pi \notin W$ $\dashrightarrow \Rightarrow \text{ each play has a winner}$

But: for certain $W \subseteq V^{\omega}$ none of the players has a winning strategy!

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^{\omega}$

 \leadsto a play $\pi = v_0 v_1 v_2 \cdots$

 $\exists \text{ wins } \pi \text{ iff } \pi \in W \qquad \forall \text{ wins } \pi \text{ iff } \pi \notin W$ $\leadsto \text{ each play has a winner}$

But: for certain $W \subseteq V^{\omega}$ none of the players has a winning strategy! E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^{\omega}$

 \leadsto a play $\pi = v_0 v_1 v_2 \cdots$

But: for certain $W \subseteq V^{\omega}$ none of the players has a winning strategy! E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

9 / 21

 \mathcal{G} has: vertices $V = V_{\exists} \sqcup V_{\forall}$, initial vertex $v_0 \in V$, edges $E \subseteq V \times V$

+ winning condition $W \subseteq V^{\omega}$

 \leadsto a play $\pi = v_0 v_1 v_2 \cdots$

 $\exists \text{ wins } \pi \text{ iff } \pi \in W \qquad \forall \text{ wins } \pi \text{ iff } \pi \notin W$ $\dashrightarrow \text{ each play has a winner}$

But: for certain $W \subseteq V^{\omega}$ none of the players has a winning strategy! E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins...

Theorem (Büchi, Landweber [1969]) If $W \subseteq V^{\omega}$ is regular then:

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

1. $W = L(\mathcal{A})$

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:

 \times

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:
- 3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:
- 3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

 \leadsto the winner of ${\mathcal G}$ can use ${\mathcal A}$ as a memory structure
Theorem (Büchi, Landweber [1969])

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:
- 3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

 \leadsto the winner of ${\mathcal G}$ can use ${\mathcal A}$ as a memory structure

Theorem (Büchi, Landweber [1969])

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:
- 3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

 \leadsto the winner of ${\mathcal G}$ can use ${\mathcal A}$ as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, ...)

Theorem (Büchi, Landweber [1969])

- If $W \subseteq V^{\omega}$ is regular then:
- it is decidable who wins the game
- there exists a finite memory winning strategy
- such a strategy can be effectively constructed

Proof

- 1. $W = L(\mathcal{A})$
- **2.** Consider $\mathcal{G} \times \mathcal{A}$:
- 3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

 \leadsto the winner of ${\mathcal G}$ can use ${\mathcal A}$ as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, ...) (Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Part 4

First examples

Input: Regular $L \subseteq A^{\omega}$ and i < j

Input: Regular $L \subseteq A^{\omega}$ and i < j

Output: Can L be recognised by a det. parity aut. \mathcal{A}

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \dots, j\}$ (i.e. index $\{i, \dots, j\}$)? Game:

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \dots, j\}$ (i.e. index $\{i, \dots, j\}$)? Game:

∀:

Ξ:

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \dots, j\}$ (i.e. index $\{i, \dots, j\}$)? Game:

$\forall : a_0$ $\exists :$

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \dots, j\}$ (i.e. index $\{i, \dots, j\}$)? Game: $\forall : a_0^{\omega} A$ $\exists :$

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\bigotimes}^{\bigotimes} A$ a_0 a_1 a_2 a_3 a_4 a_5 ∀ : a_6 . . . $\exists : \quad \begin{array}{ccc} p_0 & p_1 & p_2 & p_3 & p_4 \\ & & & & \\$ p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\bigotimes}^{\bigotimes} A$ a_0 a_1 a_2 a_3 a_4 a_5 ∀ : a_6 . . . : E $p_0 p_1 p_2 p_3 p_4$ $\{i,\ldots,j\}$ p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition **1.** W is regular

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\bigotimes}^{\bigotimes} A$ a_0 a_1 a_2 a_3 a_4 a_5 ∀ : a_6 . . . **H** : $p_0 p_1 p_2 p_3 p_4$ $\{i,\ldots,i\}$ p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition **1.** W is regular

2. \exists wins \Rightarrow her strategy is a det. parity aut. for L

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\bigotimes}^{\bigotimes} A$ a_0 a_1 a_2 a_3 a_4 a_5 ∀ : a_6 . . . : E $p_0 p_1 p_2 p_3 p_4$ (i,\ldots,i) p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition **1.** W is regular

2. \exists wins \Rightarrow her strategy is a det. parity aut. for $L \\ \rightsquigarrow a$ representation for L

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\bigotimes}A$ a_0 a_1 a_2 a_3 a_4 a_5 ∀ : a_6 . . . : E $p_0 p_1 p_2 p_3 p_4$ $\langle i, \dots, i \rangle$ p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition **1.** W is regular

- **2.** \exists wins \Rightarrow her strategy is a det. parity aut. for $L \\ \rightsquigarrow a$ representation for L
- **3.** \forall wins \Rightarrow his strategy shows that no such automaton exists

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\bigotimes}^{\bigotimes} A$ a_0 a_1 a_2 a_3 a_4 a_5 Υ: a_6 . . . **H**: $p_0 p_1 p_2 p_3 p_4$ $\{i, \dots, i\}$ p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition **1.** W is regular

- **2.** \exists wins \Rightarrow her strategy is a det. parity aut. for $L \\ \rightsquigarrow$ a representation for L
- **3.** \forall wins \Rightarrow his strategy shows that no such automaton exists \longrightarrow a witness of hardness for L

(Wadge+Wagner hierarchy)

Input: Regular $L \subseteq A^{\omega}$ and i < jOutput: Can L be recognised by a det. parity aut. \mathcal{A} with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)? Game: ${}_{\&}A$ a_0 a_1 a_2 a_3 a_4 Υ: a_5 a_6 . . . : E $p_0 p_1 p_2 p_3 p_4$ $\langle i, \dots, j \rangle$ p_5 p_6 . . . $W \stackrel{\text{def}}{=} \left\{ a_0 p_0 a_1 p_1 \dots \mid \left(a_0 a_1 \dots \in L \right) \longleftrightarrow \left(\limsup_{n \to \infty} p_n \equiv 0 \pmod{2} \right) \right\}$ parity condition **1.** W is regular

- **2.** \exists wins \Rightarrow her strategy is a det. parity aut. for $L \\ \rightsquigarrow a$ representation for L
- **3.** \forall wins \Rightarrow his strategy shows that no such automaton exists \longrightarrow a witness of hardness for L

Input: Regular $L \subseteq A^*$ and k

Input: Regular $L \subseteq A^*$ and k

Output: Can L be defined by a regexp

Input: Regular $L \subseteq A^*$ and kOutput: Can L be defined by a regexp of star-height $\leq k$ (no complementation here!)

```
Input: Regular L \subseteq A^* and k
Output: Can L be defined by a regexp
of star-height \leq k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
```

```
Input: Regular L \subseteq A^* and k

Output: Can L be defined by a regexp

of star-height \leq k (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
```

```
Input: Regular L \subseteq A^* and k

Output: Can L be defined by a regexp

of star-height \leq k (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
```

2.a: reduce to limitedness of some counter-automata (rather easy)

```
Input: Regular L \subseteq A^* and k
Output: Can L be defined by a regexp
of star-height \leq k (no complementation here!)
```

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):

- 2.a: reduce to limitedness of some counter-automata (rather easy)
- 2.b: solve limitedness by hand

```
Input: Regular L \subseteq A^* and k
Output: Can L be defined by a regexp
of star-height \leq k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
```

Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand

Solutions 2', ... (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

```
Input: Regular L \subseteq A^* and k
  Output: Can L be defined by a regexp
                         of star-height \leq k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):
  2.a: reduce to limitedness of some counter-automata (rather easy)
  2.b: solve limitedness by hand
Solutions 2', ... (Colcombet [2009]; Toruńczyk [2011]): understand 2.b
Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!
```
Task:

```
Input: Regular L \subseteq A^* and k
  Output: Can L be defined by a regexp
                          of star-height \leq k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):
  2.a: reduce to limitedness of some counter-automata (rather easy)
  2.b: solve limitedness by hand
Solutions 2', ... (Colcombet [2009]; Toruńczyk [2011]): understand 2.b
Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!
  • construct a game \mathcal{G} with regular W
```

Task:

```
Input: Regular L \subseteq A^* and k

Output: Can L be defined by a regexp

of star-height \leq k (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand
```

Solutions 2', ... (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

- \bullet construct a game ${\mathcal G}$ with regular W
- \bullet if \exists wins ${\cal G}$ then her memory gives limitedness

Task:

Input: Regular $L \subseteq A^*$ and kOutput: Can L be defined by a regexp of star-height $\leq k$ (no complementation here!) Solution 1 (Hashiguchi [1988]): complicated Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand

Solutions 2', ... (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

- \bullet construct a game ${\mathcal G}$ with regular W
- \bullet if \exists wins ${\cal G}$ then her memory gives limitedness
- \bullet if \forall wins ${\cal G}$ then there is ${\bf no}$ limitedness

Part 5

More examples (infinite trees)

Rigid representations

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Det. lang of inf. trees	—	det. top-down	—	—	
Inf. trees	MSO	nondet. parity	ω -clones	—	

Rigid representations

	logic	automata	algebra	expressions	•••
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Det. lang of inf. trees	—	det. top-down	—	—	
Inf. trees	MSO	nondet. parity	ω -clones	—	

 \leadsto infinite trees inherently require non-determinism

Rigid representations

	logic	automata	algebra	expressions	• • •
Fin. words	MSO	DFA	monoids	regexp	
Inf. words	MSO	det. parity	Wilke alg.	ω -regexp	
Fin. trees	MSO	det. bottom-up	forest alg.	tree regexp	
Det. lang of inf. trees	—	det. top-down	_	_	
Inf. trees	MSO	nondet. parity	ω -clones	_	

vvv infinite trees inherently require non-determinism (Niwiński, Walukiewicz [1996]; Carayol, Löding [2010]) (Bilkowski, S. [2013]; Blumensath [2013])

Input: Regular language of inf. trees L and i < j

Input: Regular language of inf. trees L and i < j

Output: Can L be recognised by a non-det. parity tree aut.

Input: Regular language of inf. trees L and i < j

Output: Can L be recognised by a non-det. parity tree aut.

with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)?

Input: Regular language of inf. trees L and i < jOutput: Can L be recognised by a non-det. parity tree aut. with $rg(\Omega) \subseteq \{i, \dots, j\}$ (i.e. index $\{i, \dots, j\}$)?

Theorem (Colcombet, Löding [2008])

Reduction to domination of cost functions

Input: Regular language of inf. trees L and i < jOutput: Can L be recognised by a non-det. parity tree aut. with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)?

Theorem (Colcombet, Löding [2008])

Reduction to domination of cost functions

[not known to be decidable]

Input: Regular language of inf. trees L and i < j

Output: Can L be recognised by a non-det. parity tree aut.

with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)?

Theorem (Colcombet, Löding [2008])

Reduction to domination of cost functions

not known to be decidable

finite memory determinacy??? (Fijalkow, Horn, Kuperberg, S. [2015])

Input: Regular language of inf. trees L and i < j

Output: Can L be recognised by a non-det. parity tree aut.

with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)?

Theorem (Colcombet, Löding [2008])

Reduction to domination of cost functions

not known to be decidable

finite memory determinacy??? (Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013]) Solution of the Büchi case: $L = L(\mathcal{B})^c$, i = 1, j = 2, $rg(\Omega^{\mathcal{B}}) = \{1, 2\}$

Input: Regular language of inf. trees L and i < j

Output: Can L be recognised by a non-det. parity tree aut.

with $rg(\Omega) \subseteq \{i, \ldots, j\}$ (i.e. index $\{i, \ldots, j\}$)?

Theorem (Colcombet, Löding [2008])

Reduction to domination of cost functions

not known to be decidable

finite memory determinacy??? (Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013]) Solution of the Büchi case: $L = L(\mathcal{B})^c$, $i = 1, j = 2, rg(\Omega^{\mathcal{B}}) = \{1, 2\}$ [framework of domination games]

Theorem (S., Walukiewicz 2014)

The same, directly by a game ${\mathcal F}$

Theorem (S., Walukiewicz 2014)

The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$

Theorem (S., Walukiewicz 2014)

The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$

 \exists wins \Rightarrow L is (1,2)-definable

Theorem (S., Walukiewicz 2014)

The same, directly by a game ${\cal F}$

$$W \equiv A \lor \left(B \land C \right)$$

 \exists wins \Rightarrow L is (1,2)-definable

 \forall wins \Rightarrow L is **not** (1,2)-definable

Theorem (S., Walukiewicz 2014)

The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$

 \exists wins \Rightarrow L is (1, 2)-definable

 \forall wins \Rightarrow L is **not** (1,2)-definable

Theorem (S., Walukiewicz 2014)

The same, directly by a game ${\cal F}$

$$W \equiv A \lor \left(B \land C \right)$$

 \exists wins \Rightarrow L is (1,2)-definable

 \forall wins \Rightarrow L is **not** (1,2)-definable

Theorem (S., Walukiewicz 2014) The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$

 \exists wins \Rightarrow L is (1,2)-definable \forall wins \Rightarrow L is **not** (1,2)-definable

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz 2014) The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$ $\exists \text{ wins} \Rightarrow L \text{ is } (1,2)\text{-definable}$ $\forall \text{ wins} \Rightarrow L \text{ is not } (1,2)\text{-definable}$

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016]) More, directly by a game \mathcal{F}'

Theorem (S., Walukiewicz 2014)The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$ \exists wins $\Rightarrow L$ is (1,2)-definable \forall wins $\Rightarrow L$ is not (1,2)-definable

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016]) More, directly by a game \mathcal{F}' $W \equiv (A \lor B) \land C'$

Theorem (S., Walukiewicz 2014) The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$ \exists wins $\Rightarrow L$ is (1, 2)-definable \forall wins $\Rightarrow L$ is **not** (1, 2)-definable But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016]) More, directly by a game \mathcal{F}' $W \equiv (A \lor B) \land C'$

 $\exists \ {\rm wins} \Rightarrow L \ {\rm is} \ (1,2) {\rm -definable}$ and ${\rm Borel}$

Theorem (S., Walukiewicz 2014) The same, directly by a game \mathcal{F} $W \equiv A \lor (B \land C)$ \exists wins $\Rightarrow L$ is (1, 2)-definable \forall wins $\Rightarrow L$ is **not** (1, 2)-definable But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])More, directly by a game \mathcal{F}' $W \equiv (A \lor B) \land C'$ \exists wins $\Rightarrow L$ is (1,2)-definable \forall wins $\Rightarrow L$ is not (1,2)-definableand Boreland non-Borel

Part 6

Last example(s)

Let L be regular lang. of inf. trees. Then effectively either:

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt(0, 2)-definable and $L \in \Pi_2^0$

Let L be regular lang. of inf. trees. Then effectively either:

- **1.** L is weak-alt(0, 2)-definable and $L \in \Pi_2^0$
- **2.** L isn't weak-alt(0, 2)-definable and $L \notin \Pi_2^0$

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt(0, 2)-definable and $L \in \Pi_2^0$

2. L isn't weak-alt
$$(0, 2)$$
-definable and $L \notin \Pi_2^0$

weak index

Let L be regular lang. of inf. trees. Then effectively either: **1.** L is weak-alt(0, 2)-definable and $L \in \Pi_2^0$ **2.** L isn't weak-alt(0, 2)-definable and $L \notin \Pi_2^0$ weak index topological complexity

Let L be regular lang. of inf. trees. Then effectively either: **1.** L is weak-alt(0,2)-definable and $L \in \Pi_2^0$ **2.** L isn't weak-alt(0,2)-definable and $L \notin \Pi_2^0$ weak index topological complexity **Proof**

Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^{c} .

Let L be regular lang. of inf. trees. Then effectively either: **1.** L is weak-alt(0, 2)-definable and $L \in \Pi_2^0$ **2.** L isn't weak-alt(0, 2)-definable and $L \notin \Pi_2^0$ weak index topological complexity **Proof** Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^c .

Consider a game $\mathcal F$ on $\mathcal B\times \mathcal A\times \mathcal A$
Theorem (Cavallari, Michalewski, S. [2017])

Let L be regular lang. of inf. trees. Then effectively either: **1.** L is weak-alt(0, 2)-definable and $L \in \Pi_2^0$ **2.** L isn't weak-alt(0, 2)-definable and $L \notin \Pi_2^0$ weak index topological complexity **Proof** Take two non-det. parity tree automata: \mathcal{A} for L and \mathcal{B} for L^c . Consider a game \mathcal{F} on $\mathcal{B} \times \mathcal{A} \times \mathcal{A}$

Gameplay...

Gamep	lay.	
-------	------	--

 \mathcal{B} -states p \mathcal{A} -states q \mathcal{A} -states q'

.

Winning condition

(WR) ∀ restarted infinitely many times

(WR) ∀ restarted infinitely many times(WB) B-states p are accepting

 $W \equiv ((WR) \land (WB)) \lor (\neg(WR) \land (WA))$

 $W \equiv ((WR) \land (WB)) \lor (\neg(WR) \land (WA))$

vvv regular condition over infinite words

$$W \equiv ((WR) \land (WB)) \lor (\neg(WR) \land (WA))$$

 \leadsto regular condition over infinite words

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in $\mathcal F$

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in $\mathcal F$

Add some pumping

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in $\mathcal F$

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in $\mathcal F$

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L

 $\dashrightarrow L \in \mathbf{\Pi}_2^0$

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

```
Take a finite memory strategy of \forall in \mathcal{F}
```

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in \Pi^0_2$

```
2. If \exists wins \mathcal{F} then L is not \mathbf{\Pi}_2^0
```

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

```
Take a finite memory strategy of \forall in \mathcal{F}
```

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in \Pi^0_2$

```
2. If \exists wins \mathcal{F} then L is not \Pi_2^0
```

Proof

Take a strategy of \exists in $\mathcal F$

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

```
Take a finite memory strategy of \forall in \mathcal F
```

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in \Pi^0_2$

```
2. If \exists wins \mathcal{F} then L is not \mathbf{\Pi}_2^0
```

Proof

Take a strategy of \exists in $\mathcal F$

Confront it with a family of quasi-strategies of \forall

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

```
Take a finite memory strategy of \forall in \mathcal{F}
```

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in \Pi^0_2$

```
2. If \exists wins \mathcal{F} then L is not \Pi_2^0
```

Proof

```
Take a strategy of \exists in \mathcal F
```

Confront it with a family of quasi-strategies of \forall

```
\dashrightarrow a reduction proving that L \notin \mathbf{\Pi}_2^0
```

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

```
Take a finite memory strategy of \forall in \mathcal F
```

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in \Pi^0_2$

```
2. If \exists wins \mathcal{F} then L is not \Pi_2^0
```

Proof

```
Take a strategy of \exists in \mathcal F
```

Confront it with a family of quasi-strategies of \forall

 \leadsto a reduction proving that $L\notin \mathbf{\Pi}_2^0$

 $\dashrightarrow L$ is **not** weak-alt(0, 2)-definable

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in $\mathcal F$

```
Add some pumping
```

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in \mathbf{\Pi}_2^0$

```
2. If \exists wins \mathcal{F} then L is not \mathbf{\Pi}_2^0
```

Proof

```
Take a strategy of \exists in \mathcal F
```

Confront it with a family of quasi-strategies of \forall

 \leadsto a reduction proving that $L\notin \mathbf{\Pi}_2^0$

 $\leadsto L$ is **not** weak-alt(0, 2)-definable

A complete proof

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in \mathcal{F}

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in {\bf \Pi}_2^0$

2. If \exists wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of \exists in $\mathcal F$

Confront it with a family of quasi-strategies of \forall

 \dashrightarrow a reduction proving that $L \notin \mathbf{\Pi}_2^0$

 $\leadsto L$ is **not** weak-alt(0, 2)-definable

A complete proof **not** using properties on which the game \mathcal{F} is based

1. If \forall wins \mathcal{F} then L is weak-alt(0, 2)-definable

Proof

Take a finite memory strategy of \forall in $\mathcal F$

Add some pumping

 \leadsto a weak alternating (0,2) automaton for L \leadsto $L\in {\bf \Pi}_2^0$

2. If \exists wins \mathcal{F} then L is **not** Π_2^0

Proof

Take a strategy of \exists in \mathcal{F}

Confront it with a family of quasi-strategies of \forall

 \dashrightarrow a reduction proving that $L \notin \mathbf{\Pi}_2^0$

 $\leadsto L$ is **not** weak-alt(0, 2)-definable

A complete proof **not** using properties on which the game \mathcal{F} is based

[dealternation]

Theorem (Michalewski, Mio, S. [2017])

Given a game automaton $\mathcal A$ over infinite trees,

Theorem (Michalewski, Mio, S. [2017])

Given a game automaton \mathcal{A} over infinite trees, one can decide if $L(\mathcal{A})$ is meager.

Theorem (Michalewski, Mio, S. [2017])

Given a game automaton ${\cal A}$ over infinite trees, one can decide if $L({\cal A})$ is meager.

Proof

Making the Banach-Mazur game regular

Theorem (Michalewski, Mio, S. [2017])

Given a game automaton ${\cal A}$ over infinite trees, one can decide if $L({\cal A})$ is meager.

Proof

Making the Banach-Mazur game regular

Theorem (Michalewski, Mio, S. [2017])

Given a game automaton ${\cal A}$ over infinite trees, one can decide if $L({\cal A})$ is meager.

Proof

Making the Banach-Mazur game regular

Open problem: what about general regular tree languages?

Summary

Summary

→ characterising which languages are simple
- → characterising which languages are simple
- → pattern method (rigid representatons: det. aut. / algebra)

- → characterising which languages are simple
- → pattern method (rigid representatons: det. aut. / algebra)

- → characterising which languages are simple
- \rightarrow pattern method (rigid representatons: det. aut. / algebra)

- → characterising which languages are simple
- → pattern method (rigid representatons: det. aut. / algebra)

→ games (may deal with non-determinism)

- → characterising which languages are simple
- \rightarrow pattern method (rigid representatons: det. aut. / algebra)

pattern found $\longrightarrow L$ is hard

 $\leadsto L$ is simple

→ games (may deal with non-determinism)

Summary → characterising which languages are simple → pattern method (rigid representations: det. aut. / algebra) pattern found pattern missing $\leadsto L$ is simple $\longrightarrow L$ is hard → games (may deal with non-determinism) strategy of \exists strategy of \forall $\longrightarrow L$ is hard $\longrightarrow L$ is simple

Summary → characterising which languages are simple

→ no general recipe for design

Summary → characterising which languages are simple → pattern method (rigid representatons: det. aut. / algebra) pattern found pattern missing $\longrightarrow L$ is hard $\longrightarrow L$ is simple \rightarrow games (may deal with non-determinism) strategy of \exists strategy of \forall $\longrightarrow L$ is hard $\longrightarrow L$ is simple

→ no general recipe for design

Conjecture: Every class of languages has a game characterisation