
Deciding complexity of languages via games

Michał Skrzypczak

University of Warsaw

Part 1

Regular languages of things

Things

labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words:

(seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees:

(seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic:

Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ

DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

a a b c c b ¨ ¨ ¨

Signature: spxq, ď, apxq for a P A

Finite / infinite trees: (seen as XML, terms, and logical structures)

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Signature: sLpxq, sRpxq, ĺ,ďlex, apxq for a P A

Monadic Second-order Logic: Dx ϕ_ψ ψ DX x P X

Michał Skrzypczak Deciding complexity of languages via games 1 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words

mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso

det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity

Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg.

ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees

mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso

det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up

forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg.

tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees

mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso

nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity

ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones

—

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Regular languages of things

Fin. words

logic

mso

Lpϕq “ tw | w |ù ϕu

automata

DFA

LpAq “ tw | A accepts wu

algebra

monoids

h : A˚ ÑM , F ĎM

Lphq “ h´1pF q

expressions

regexp

Lpeq – e

¨ ¨ ¨

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Inf. trees mso nondet. parity ω-clones —

ù mso is universal

ù complicated structures require complicated devices

ù infinite trees inherently require non-determinism

Michał Skrzypczak Deciding complexity of languages via games 2 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:

Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L

Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:

Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M

Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:

Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:

Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:
Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Working with languages

Juggling representations:
Input: Lpϕq / LpAq / Lphq / . . . for a given language L
Output: Lpϕq / LpAq / Lphq / . . . for L

Effective operations:
Input: L and M
Output: LYM , LXM , LzM , Lc (also hpLq, . . .)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, . . .

Effective characterisations:

Input: L

Output: Is L definable in a simple way (e.g. in fo)

Effective characterisations:

Michał Skrzypczak Deciding complexity of languages via games 3 / 21

Part 2

Effective characterisations by patterns

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])

TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:

– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:
– L is definable in fo

– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free

– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free

– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”

Michał Skrzypczak Deciding complexity of languages via games 4 / 21

Given L Ď A˚, is L definable in fo?

iff L “ Lpeq for a star-free regexp: e ::“ H | A | ee | eYe | „e

A˚ “ „H

pabq˚ “ „
“

bA˚ YA˚aYA˚aaA˚ YA˚bbA˚
‰

By Ehrenfeucht-Fraïssé
a2k

”k a
2k`1

[If QDpϕq “ k then a2k
|ù ϕ iff a2k`1 |ù ϕ]

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L Ď A˚:
– L is definable in fo
– the minimal automaton AL for L is counter-free
– the syntactic monoid ML for L is group-free
– the syntactic monoid ML for L satisfies s7 “ s ¨ s7

“pattern method for rigid representations”
Michał Skrzypczak Deciding complexity of languages via games 4 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free

w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A

ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq

ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo

Michał Skrzypczak Deciding complexity of languages via games 5 / 21

L is definable in fo
iff

the minimal automaton AL for L is counter-free
w

wn

1. Let L “ LpAq for a counter-free A
ù write ϕ in fo such that L “ Lpϕq
ù L is definable in fo

2. Let AL contain a counter

u

(AL is minimal!)

P F R F

v v

ù uwpn`1q¨2k
v P L and uwpn`1q¨

`

2k`1
˘

v R L

”k

ù L R fok ù L R fo
Michał Skrzypczak Deciding complexity of languages via games 5 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, . . .)
2. Look for a pattern

(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern

(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:

Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:

‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction

‚ algebraic methods limited to varieties or lattices of languages
(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)

‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, . . .)

2. Look for a pattern
(e.g. graph gadget, violation of equation, . . .)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojańczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwiński, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, . . .

Limitations:
‚ 2.a works under assumption of lack of obstruction
‚ algebraic methods limited to varieties or lattices of languages

(Birkhoff)‚ rigid representations needed

Michał Skrzypczak Deciding complexity of languages via games 6 / 21

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

Not mentioned: thin trees, Boolean combinations of open sets, . . .

Michał Skrzypczak Deciding complexity of languages via games 7 / 21

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

Not mentioned: thin trees, Boolean combinations of open sets, . . .

Michał Skrzypczak Deciding complexity of languages via games 7 / 21

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

Not mentioned: thin trees, Boolean combinations of open sets, . . .

Michał Skrzypczak Deciding complexity of languages via games 7 / 21

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

Not mentioned: thin trees, Boolean combinations of open sets, . . .

Michał Skrzypczak Deciding complexity of languages via games 7 / 21

Deterministic parity automata

A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Deterministic parity automata
A reads α “ a0a1 ¨ ¨ ¨ and produces ρ “ q0q1 ¨ ¨ ¨

α “ a0 a1 a2 a3 a4 a5 a6 ¨ ¨ ¨

ρ “ ¨ ¨ ¨q0 q1 q2 q3 q4 q5 q6 q7

Ω : ¨ ¨ ¨1 2 0 2 1 0 2 1

A accepts α iff lim supnÑ8Ωpqnq ” 0 pmod 2q

parity condition

LpAq def“

α P Aω | A accepts α
(

[For later use: the index of A is rgpΩq “

i, i`1, . . . , j
(

Ď N]

Michał Skrzypczak Deciding complexity of languages via games 8 / 21

Part 3

Games on graphs

Games of: infinite duration, perfect information, finite arena

G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@,

initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V ,

edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW

@@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW

ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!

E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V “ VDDD \ V@@@, initial vertex v0 P V , edges E Ď V ˆ V

DDD

DDD

@@@

+ winning condition W Ď V ω

ù a play π “ v0v1v2 ¨ ¨ ¨

DDD wins π iff π PW @@@ wins π iff π RW
ù each play has a winner

But: for certain W Ď V ω none of the players has a winning strategy!
E.g. for infinite XOR, see (Kopczyński, Niwiński [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. . .

Michał Skrzypczak Deciding complexity of languages via games 9 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:

‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game

‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy

‚ such a strategy can be effectively constructed
Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof

1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq

2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA:

DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A

3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)

(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Büchi, Landweber [1969])
If W Ď V ω is regular then:
‚ it is decidable who wins the game
‚ there exists a finite memory winning strategy
‚ such a strategy can be effectively constructed

Proof
1. W “ LpAq
2. Consider G ˆA: DDD

DDD

@@@

ˆ A
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])
Parity games are effectively, positionally determined.

ù the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, . . .)
(Kopczyński [2006]; Zimmermann [2016]; Colcombet, Göller [2016])

Michał Skrzypczak Deciding complexity of languages via games 10 / 21

Part 4

First examples

Task:

Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A

with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?
Game:

@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:

@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0

PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0

P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition

1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L

ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists

ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:
Input: Regular L Ď Aω and i ă j

Output: Can L be recognised by a det. parity aut. A
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Game:
@@@ :
DDD :

a0
PA

p0
P
ti, . . . , ju

a1

p1

a2

p2

a3

p3

a4

p4

a5

p5

a6

p6

¨ ¨ ¨

¨ ¨ ¨

W
def
“

!

a0p0a1p1 ¨ ¨ ¨ |
`

a0a1 ¨ ¨ ¨ P L
˘

ðñ
`

lim supnÑ8 pn ” 0 pmod 2q
˘

)

parity condition1. W is regular

2. DDD wins ñ her strategy is a det. parity aut. for L
ù a representation for L

3. @@@ wins ñ his strategy shows that no such automaton exists
ù a witness of hardness for L

(Wadge+Wagner hierarchy)

Michał Skrzypczak Deciding complexity of languages via games 11 / 21

Task:

Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k

Output: Can L be defined by a regexp
of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W

‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness

‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L Ď A˚ and k
Output: Can L be defined by a regexp

of star-height ďk (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Solution 2 (Kirsten [2005]):
2.a: reduce to limitedness of some counter-automata (rather easy)
2.b: solve limitedness by hand

Solutions 2’, . . . (Colcombet [2009]; Toruńczyk [2011]): understand 2.b

Solution 3 (Bojańczyk [2015]): solve 2.b directly by a game!

‚ construct a game G with regular W
‚ if DDD wins G then her memory gives limitedness
‚ if @@@ wins G then there is no limitedness

Michał Skrzypczak Deciding complexity of languages via games 12 / 21

Part 5

More examples (infinite trees)

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

ù infinite trees inherently require non-determinism
(Niwiński, Walukiewicz [1996]; Carayol, Löding [2010])

(Bilkowski, S. [2013]; Blumensath [2013])

Michał Skrzypczak Deciding complexity of languages via games 13 / 21

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

ù infinite trees inherently require non-determinism

(Niwiński, Walukiewicz [1996]; Carayol, Löding [2010])
(Bilkowski, S. [2013]; Blumensath [2013])

Michał Skrzypczak Deciding complexity of languages via games 13 / 21

Rigid representations

logic automata algebra expressions ¨ ¨ ¨

Fin. words mso DFA monoids regexp

Inf. words mso det. parity Wilke alg. ω-regexp

Fin. trees mso det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees — det. top-down — —

Inf. trees mso nondet. parity ω-clones —

ù infinite trees inherently require non-determinism
(Niwiński, Walukiewicz [1996]; Carayol, Löding [2010])

(Bilkowski, S. [2013]; Blumensath [2013])
Michał Skrzypczak Deciding complexity of languages via games 13 / 21

Task (Rabin-Mostowski index problem):

Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.

with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]

finite memory determinacy???
(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i ă j

Output: Can L be recognised by a non-det. parity tree aut.
with rgpΩq Ď ti, . . . , ju (i.e. index ti, . . . , ju)?

Theorem (Colcombet, Löding [2008])
Reduction to domination of cost functions

[not known to be decidable]
finite memory determinacy???

(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

[framework of domination games]

Michał Skrzypczak Deciding complexity of languages via games 14 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F

W ” A_
`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable

@@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1

W ”
`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])
Solution of the Büchi case: L “ LpBqc, i “ 1, j “ 2, rgpΩBq “ t1, 2u

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W ” A_

`

B ^ C
˘

DDD wins ñ L is p1, 2q-definable @@@ wins ñ L is not p1, 2q-definable

(R0)

(R1)
a a a a a a a a

(R1)

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F 1 W ”

`

A_B
˘

^ C 1

DDD wins ñ L is p1, 2q-definable
and Borel

@@@ wins ñ L is not p1, 2q-definable
and non-Borel

Michał Skrzypczak Deciding complexity of languages via games 15 / 21

Part 6

Last example(s)

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak´altp0, 2q-definable and L P Π0
2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index

topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity

Proof
Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. L is weak´altp0, 2q-definable and L P Π0

2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for Lc.

Consider a game F on B ˆAˆA

B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

Michał Skrzypczak Deciding complexity of languages via games 16 / 21

Gameplay. . .

B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b bRound 0

@@@: restart

DDD: a, . . .

@@@: L

a a aRound 1

@@@: stay

DDD: c, . . .

@@@: R

c c cRound 2

Michał Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. . . B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b bRound 0

@@@: restart

DDD: a, . . .

@@@: L

a a aRound 1

@@@: stay

DDD: c, . . .

@@@: R

c c cRound 2

Michał Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. . . B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b bRound 0

@@@: restart

DDD: a, . . .

@@@: L

a a aRound 1

@@@: stay

DDD: c, . . .

@@@: R

c c cRound 2

Michał Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. . . B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b bRound 0

@@@: restart

DDD: a, . . .

@@@: L

a a aRound 1

@@@: stay

DDD: c, . . .

@@@: R

c c cRound 2

Michał Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. . . B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b bRound 0

@@@: restart

DDD: a, . . .

@@@: L

a a aRound 1

@@@: stay

DDD: c, . . .

@@@: R

c c cRound 2

Michał Skrzypczak Deciding complexity of languages via games 17 / 21

Winning condition

B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times

(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting

(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition B-states p A-states q A-states q1

@@@: stay

DDD: b, . . .

@@@: R

b b b

(WR) @@@ restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states q1 are accepting

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘

ù regular condition over infinite words

ù we can solve F

Michał Skrzypczak Deciding complexity of languages via games 18 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping

ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L

ù L P Π0
2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@

ù a reduction proving that L R Π0
2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof

not using properties
on which

the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If @@@ wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of @@@ in F

Add some pumping
ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If DDD wins F then L is not Π0
2

Proof
Take a strategy of DDD in F

Confront it with a family of quasi-strategies of @@@
ù a reduction proving that L R Π0

2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[dealternation]

Michał Skrzypczak Deciding complexity of languages via games 19 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,
one can decide if LpAq is meager.

Proof
Making the Banach-Mazur game regular �

Open problem: what about general regular tree languages?

Michał Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,

one can decide if LpAq is meager.

Proof
Making the Banach-Mazur game regular �

Open problem: what about general regular tree languages?

Michał Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,
one can decide if LpAq is meager.

Proof
Making the Banach-Mazur game regular �

Open problem: what about general regular tree languages?

Michał Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,
one can decide if LpAq is meager.

Proof
Making the Banach-Mazur game regular

�

Open problem: what about general regular tree languages?

Michał Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,
one can decide if LpAq is meager.

Proof
Making the Banach-Mazur game regular �

Open problem: what about general regular tree languages?

Michał Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,
one can decide if LpAq is meager.

Proof
Making the Banach-Mazur game regular �

Open problem: what about general regular tree languages?

Michał Skrzypczak Deciding complexity of languages via games 20 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

ÑÑÑ characterising which languages are simple

ÑÑÑ pattern method
`

rigid representatons: det. aut. / algebra
˘

pattern found
ù L is hard

pattern missing
ù L is simple

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of DDD
ù L is hard

strategy of @@@
ù L is simple

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michał Skrzypczak Deciding complexity of languages via games 21 / 21

