Deciding complexity of languages via games

Michat Skrzypczak

University of Warsaw

LI FIT-

Part 1

Regular languages of things

Things

Michat Skrzypczak Deciding complexity of languages via games 1/ 21

Things labelled by an alphabet A

Michat Skrzypczak Deciding complexity of languages via games 1/ 21

Things labelled by an alphabet A

Finite / infinite words:

Michat Skrzypczak Deciding complexity of languages via games 1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

Michat Skrzypczak Deciding complexity of languages via games 1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Michat Skrzypczak Deciding complexity of languages via games 1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Signature: s(z), <, a(zr)foracA

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(z), <, a(zr)foracA

Finite / infinite trees:

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Signature: s(z), <, a(zr)foracA

Finite / infinite trees: (seen as XML, terms, and logical structures)

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Signature: s(z), <, a(zr)foracA

Finite / infinite trees: (seen as XML, terms, and logical structures)

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Signature: s(z), <, a(zr)foracA

Finite / infinite trees: (seen as XML, terms, and logical structures)

a(z) forae A

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

Signature: s(z), <, a(zr)foracA

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: sp(x), sg(x), =X,<lex, a(x)forae A

Monadic Second-order Logic:

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Signature: s(z), <, a(zr)foracA

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: sp(x), sg(x), =X,<lex, a(x)forae A

Monadic Second-order Logic: 1, gpvw —"Qb

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Things labelled by an alphabet A

Finite / infinite words: (seen as strings, terms, and logical structures)

OnOnOnOnOn0mE

Signature: s(z), <, a(zr)foracA

Finite / infinite trees: (seen as XML, terms, and logical structures)

Signature: sp(x), sg(x), =X,<lex, a(x)forae A

Monadic Second-order Logic: 1, v — dx zeX

Michat Skrzypczak Deciding complexity of languages via games

1/ 21

Regular languages of things

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

Fin. words

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic

Fin. words MSO

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic

Fin. words MSO

L(p) ={w | w [¢}

Michat Skrzypczak

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic

Fin. words MSO

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata

Fin. words MSO DFA

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata

Fin. words MSO DFA

L(A) = {w | A accepts w}

Michat Skrzypczak Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata

Fin. words MSO DFA

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra

Fin. words MSO DFA monoids

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra

Fin. words MSO DFA monoids

h: A* > M, Fc M

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra

Fin. words MSO DFA monoids

h: A* > M, Fc M
L(h) = h=1(F)

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra

Fin. words MSO DFA monoids

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions

Fin. words MSO DFA monoids regexp

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
L(e) e

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions

Fin. words MSO DFA monoids regexp

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions

Fin. words MSO DFA monoids regexp

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata

algebra expressions

Fin. words MSO DFA

Inf. words

Michat Skrzypczak

monoids regexp

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata

algebra expressions

Fin. words MSO DFA

Inf. words MSO

Michat Skrzypczak

monoids regexp

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity

Michat Skrzypczak

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg.

Michat Skrzypczak

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Michat Skrzypczak

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees

Michat Skrzypczak

Deciding complexity of languages via games

2/ 21

Regular languages of things

algebra expressions

logic automata
Fin. words MSO DFA
Inf. words MSO det. parity

Fin. trees MSO

Michat Skrzypczak

monoids regexp

Wilke alg. w-regexp

Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids
Inf. words MSO det. parity Wilke alg.

Fin. trees MSO det. bottom-up

Michat Skrzypczak Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg.

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp
Fin. trees MSO det. bottom-up forest alg. tree regexp
Inf. trees

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Inf. trees MSO

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp
Fin. trees MSO det. bottom-up forest alg. tree regexp
Inf. trees MSO nondet. parity

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Inf. trees MSO nondet. parity w-clones

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Inf. trees MSO nondet. parity w-clones =

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Inf. trees MSO nondet. parity w-clones =

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Inf. trees MSO nondet. parity w-clones =

v~ MSO is universal

Michat Skrzypczak Deciding complexity of languages via games 2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Inf. trees MSO nondet. parity w-clones =

v~ MSO is universal

w~> complicated structures require complicated devices

Michat Skrzypczak Deciding complexity of languages via games

2/ 21

Regular languages of things

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp
Fin. trees MSO det. bottom-up forest alg. tree regexp
Inf. trees MSO nondet. parity w-clones =

v~ MSO is universal

w~> complicated structures require complicated devices

v~ infinite trees inherently require non-determinism

Michat Skrzypczak Deciding complexity of languages via games

2/ 21

Working with languages

Michat Skrzypczak Deciding complexity of languages via games 3/ 21

Working with languages

Juggling representations:

Michat Skrzypczak Deciding complexity of languages via games 3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L

Michat Skrzypczak Deciding complexity of languages via games 3/ 21

Working with languages

Juggling representations:

Input: L(y) / L(A) / L(h) /...
Output: L(p) / L(A) / L(h) / ...

Michat Skrzypczak

for a given language L
for L

Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:

Michat Skrzypczak Deciding complexity of languages via games 3/ 21

Working with languages

Juggling representations:

Input: L(y) / L(A) / L(h) /...
Output: L(p) / L(A) / L(h) / ...

Effective operations:
Input: L and M

Michat Skrzypczak

for a given language L
for L

Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:

Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)

Michat Skrzypczak Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:
Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)

Deciding properties:

Michat Skrzypczak Deciding complexity of languages via games 3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L
Effective operations:
Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)
Deciding properties:
Input: L

Michat Skrzypczak Deciding complexity of languages via games 3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L
Effective operations:
Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)
Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, ...

Michat Skrzypczak Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:

Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, ...

Effective characterisations:

Michat Skrzypczak Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:

Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, ...

Effective characterisations:

Input: L

Michat Skrzypczak Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:

Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, ...

Effective characterisations:
Input: L
Output: Is L definable in a simple way (e.g. in FO)

Michat Skrzypczak Deciding complexity of languages via games

3/ 21

Working with languages

Juggling representations:
Input: L(y) / L(A) / L(h) / ... for a given language L
Output: L(yp) / L(A) / L(h) /... for L

Effective operations:

Input: L and M
Output: LuM, Ln M, L\M, L¢ (also h(L), ...)

Deciding properties:
Input: L

Output: Is L: non-empty, infinite, uncountable, measure 1, ...

Effective characterisations:

Input: L
Output: Is L definable in a simple way (e.g. in FO)

Michat Skrzypczak Deciding complexity of languages via games

3/ 21

Part 2

Effective characterisations by patterns

Given L € A*, is L definable in FO?

Michat Skrzypczak Deciding complexity of languages via games 4/ 21

Given L € A*, is L definable in FO?

iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

Michat Skrzypczak Deciding complexity of languages via games 4/ 21

Given L € A*, is L definable in FO?

iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

(ab)* = ~[bA* U A*a U A*aaA* U A*bbA*]

Michat Skrzypczak Deciding complexity of languages via games 4/ 21

Given L € A*, is L definable in FO?

iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

Michat Skrzypczak Deciding complexity of languages via games 4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Michat Skrzypczak Deciding complexity of languages via games 4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
a? = a2 1

[If QD () = k then a*" |= ¢ iff o'+ | o]

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Michat Skrzypczak Deciding complexity of languages via games 4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L < A*:

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

Given L A%, is L definable in F0O?
iff L = L(e) for a star-free regexp: eu=g | A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L < A*:
— L is definable in O

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L < A*:
— L is definable in O

— the minimal automaton Ay, for L is counter-free

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L € A*:
— L is definable in FO
— the minimal automaton Ay, for L is counter-free

— the syntactic monoid My, for L is group-free

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L < A*:
— L is definable in FO
— the minimal automaton Ay, for L is counter-free
— the syntactic monoid My, for L is group-free

— the syntactic monoid M7, for L satisfies st =g st

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

Given L c A*, is L definable in r0?
iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé

k k
o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
TFAE for L € A*:
— L is definable in FO
— the minimal automaton Ay, for L is counter-free
— the syntactic monoid My, for L is group-free
— the syntactic monoid M7, for L satisfies st =g st

b 1
pattern method for rigid representations

Michat Skrzypczak Deciding complexity of languages via games

4/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff
the minimal automaton Ay, for L is counter-free

w

>

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff
the minimal automaton Ay, for L is counter-free

w

>

1. Let L = L(.A) for a counter-free A

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff
the minimal automaton Ay, for L is counter-free

w

>

n

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff
the minimal automaton Ay, for L is counter-free

w

>

n

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)
v~ L is definable in FO

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff
the minimal automaton Ay, for L is counter-free

w

>

n

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)
v~ L is definable in FO

2. Let A; contain a counter

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)
v~ L is definable in FO

2. Let A; contain a counter

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)
v~ L is definable in FO

2. Let Ay, contain a counter (Ag is minimall!)

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)

v~ L is definable in FO

2. Let Ay, contain a counter (Ag is minimall!)

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)

v~ L is definable in FO

2. Let Ay, contain a counter (Ag is minimall!)

o uw D2y e I and uw(”+1)'(2k+1)v ¢ L

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)

v~ L is definable in FO

2. Let Ay, contain a counter (Ag is minimall!)
o w2y € T and ua®@ D (241, ¢ L

-

=k

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

L is definable in FO
iff

the minimal automaton Ay, for L is counter-free

1. Let L = L(.A) for a counter-free A
v~ write ¢ in FO such that L = L(yp)

v~ L is definable in FO

2. Let Ay, contain a counter (Ag is minimall!)

o uw D2y e I and uw(”+1)'(2k+1)v ¢ L
R
=k
v [¢ FOp, v L ¢ FO

Michat Skrzypczak Deciding complexity of languages via games 5/ 21

Proof strategy overview

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L
(e.g. minimal automaton, syntactic algebra, ...)

2. Look for a pattern

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard

Examples:

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojanczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwinski, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, ...

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L

2.b If pattern found, pump it to show that L is hard

Limitations:

e 2.a works under assumption of lack of obstruction

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard
Limitations:

e 2.a works under assumption of lack of obstruction

e algebraic methods limited to varieties or lattices of languages

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard
Limitations:
e 2.a works under assumption of lack of obstruction

e algebraic methods limited to varieties or lattices of languages
(Birkhoff)

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard
Limitations:
e 2.a works under assumption of lack of obstruction

e algebraic methods limited to varieties or lattices of languages

e rigid representations needed (Birkhoff)

Michat Skrzypczak Deciding complexity of languages via games 6/ 21

Rigid representations

Michat Skrzypczak Deciding complexity of languages via games 7/ 21

Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MsoO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Det. lang

of inf. trees det. top-down - -

Inf. trees MSO nondet. parity w-clones =

Michat Skrzypczak Deciding complexity of languages via games 7/ 21

Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MsoO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Det. lang

of inf. trees det. top-down - -

Inf. trees MSO nondet. parity w-clones =

Michat Skrzypczak Deciding complexity of languages via games 7/ 21

Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MsoO -d-ef.-lafr.i’iy- Wilke alg. w-regexp
Fin. trees MSO det. bottom-up forest alg. tree regexp
ofinf. trees T demtopdown — —
Inf. trees MSO nondet. parity w-clones =

Not mentioned: thin trees, Boolean combinations of open sets, ...

Michat Skrzypczak Deciding complexity of languages via games

7/ 21

Deterministic parity automata

Michat Skrzypczak Deciding complexity of languages via games 8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

Michat Skrzypczak Deciding complexity of languages via games 8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

Michat Skrzypczak Deciding complexity of languages via games 8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o= ao ai as as a4 as ae
A _— A _— A _—A
0 Q1)) i

pP= g qr

Michat Skrzypczak Deciding complexity of languages via games 8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o = ag aq as as a4 as ag

= QOAQ1AQQAQ3AQ4AQ5AQ6AQ7

(111 1 1 1 |

Q 1 2 0 2 1 0 2 1
Michat Skrzypczak Deciding complexity of languages via games

8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o = ag aq as as a4 as ag
= QOAQ1AQQAQ3AQ4AQ5AQ6AQ7
(111 1 1 1 |

Q 1 2 0 2 1 0 2 1

A accepts o iff limsup,,_,, 2(¢,) =0 (mod 2)

Michat Skrzypczak Deciding complexity of languages via games

8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o = ag aq as as a4 as ag
= QOAQ1AQQAQ3AQ4AQ5AQ6AQ7
(111 1 1 1 |

Q 1 2 0 2 1 0 2 1

A accepts o iff limsup,,_,, 2(¢,) =0 (mod 2)

~

parity condition

Michat Skrzypczak Deciding complexity of languages via games

8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o = ag aq as as a4 as ag
= QOAQ1AQQAQ3AQ4AQ5AQ6AQ7
(111 1 1 1 |

Q 1 2 0 2 1 0 2 1

A accepts o iff limsup,,_,, 2(¢,) =0 (mod 2)

~

parity condition

L(A) & {ae A¥ | A accepts a}

Michat Skrzypczak Deciding complexity of languages via games

8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o = ag aq as as a4 as ag
= QOAQ1AQQAQ3AQ4AQ5AQ6AQ7
(111 1 1 1 |
Q 1 2 0 2 1 0 2 1

A accepts o iff limsup,,_,, 2(¢,) =0 (mod 2)

parity condition
L(A) & {ae A¥ | A accepts a}

[For later use: the index of A is rg(Q) = {i,i+1,...,j} SN]

Michat Skrzypczak Deciding complexity of languages via games

8/ 21

Deterministic parity automata

A reads o = apaq - -+ and produces p = qoq1 - - -

o = ag aq as as a4 as ag
= QOAQ1AQQAQ3AQ4AQ5AQ6AQ7
(111 1 1 1 |
Q 1 2 0 2 1 0 2 1

A accepts o iff limsup,,_,, 2(¢,) =0 (mod 2)

parity condition
L(A) & {ae A¥ | A accepts a}

[For later use: the index of A is rg(Q) = {i,i+1,...,j} SN]

Michat Skrzypczak Deciding complexity of languages via games

8/ 21

Part 3

Games on graphs

Games of: infinite duration, perfect information, finite arena

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V = V3 u Vg,

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg € V,

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

—(@3)

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V
e + winning condition W < V¥

—(@3)

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V
e + winning condition W < V¥

H v~ a play m = vgvivg - - -

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena
G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V
e + winning condition W < V¥

H v~ a play m = vgvivg - - -

Jwins 7 iff re W

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

w~> each play has a winner

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

w~> each play has a winner

But: for certain W < V“ none of the players has a winning strategy!

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

w~> each play has a winner

But: for certain W < V“ none of the players has a winning strategy!

E.g. for infinite XOR, see (Kopczynski, Niwinski [2014])

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

w~> each play has a winner

But: for certain W < V“ none of the players has a winning strategy!

E.g. for infinite XOR, see (Kopczynski, Niwinski [2014])

Also: a winning strategy may require unlimitted memory!

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

w~> each play has a winner

But: for certain W < V“ none of the players has a winning strategy!

E.g. for infinite XOR, see (Kopczynski, Niwinski [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. ..

Michat Skrzypczak Deciding complexity of languages via games 9/ 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:

e it is decidable who wins the game

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game

e there exists a finite memory winning strategy

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy

e such a strategy can be effectively constructed

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy

e such a strategy can be effectively constructed
Proof

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy
e such a strategy can be effectively constructed
Proof
1. W =L(A)

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])

If W < V¥ is regular then:

e it is decidable who wins the game

e there exists a finite memory winning strategy

e such a strategy can be effectively constructed
Proof

1. W =L(A)

2. Consider G x A:

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy
e such a strategy can be effectively constructed
Proof

1. W =L(A) e
2. Consider G x A: e’ X A
)

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy
e such a strategy can be effectively constructed
Proof

1. W =L(A) e
2. Consider G x A: e’ X A
3. Apply: 0

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy

e such a strategy can be effectively constructed
Proof

1. W =L(A) a
2. Consider G x A: e’ X A
3. Apply: 0

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

v~ the winner of G can use A as a memory structure

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy

e such a strategy can be effectively constructed
Proof

1. W =L(A) e
2. Consider G x A: e’ X A
3. Apply: 0

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

v~ the winner of G can use A as a memory structure

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy

e such a strategy can be effectively constructed
Proof

1. W =L(A) a
2. Consider G x A: e’ X A
3. Apply: 0

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

v~ the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, .. .)

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy
e such a strategy can be effectively constructed
Proof
1. W =L(A)
2. Consider G x A:
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

v~ the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, .. .)
(Kopczynski [2006]; Zimmermann [2016]; Colcombet, Goller [2016])

Michat Skrzypczak Deciding complexity of languages via games 10 / 21

Part 4

First examples

Task:

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game:

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game:

V:
3 <

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game:

V: ao
3 ¢

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

G :
ame LA
V: ao
3 <

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Game;
me LA
V: ao
El: Po

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

G :
ame LA
V: ao
3: pO . .
S o000 37)

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al
3 < Po ' .
S5 0000

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input:

Regular L € A¥ and i < j

Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,. ..

Game;
me LA
V: ao al
3: Po P1
i, 5)

Michat Skrzypczak

, 7 (e index {i,...,j})?

Deciding complexity of languages via games

11 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as a4 as ag
| ¢ Po p1 P2 P38 P4 D5 De
{5}
Michat Skrzypczak Deciding complexity of languages via games

11 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as a4 as ag
| ¢ Po p1 P2 P38 P4 D5 De
{5}
Michat Skrzypczak Deciding complexity of languages via games

11 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as as as ag
J: Po P P2 p3 Da D5 P6
i, .5}

WL {aopoa1p1 -+ | (aoar -+ € L) <= (limsup,_,,,pp =0 (mod 2))}

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as as as ag
J: Po P P2 p3 Da D5 P6
i, .5}

WL {aopoa1p1 -+ | (aoar -+ € L) <= (limsup,_,,,pp =0 (mod 2))}

~

parity condition

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as as as ag
J: Po P P2 p3 Da D5 P6
i, .5}

WL {aopoa1p1 -+ | (aoar -+ € L) <= (limsup,_,,,pp =0 (mod 2))}

~

1. W is regular parity condition

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(Q) < {i,...,4} (i.e index {i,...,j})?
Game: A
7

V: ao al as as a4 as ag
J: Po P P2 p3 Da D5 P6
iy g}

WL {aopoa1p1 -+ | (aoar -+ € L) <= (limsup,_,,,pp =0 (mod 2))}

~

1. W is regular parity condition

2. 1 wins = her strategy is a det. parity aut. for L

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as a4 as ag
J: Po P P2 p3 Da D5 P6
iy g}

W = Lagpoarpr -+ | (aoar -~ € L) <= (limsup, o pn =0 (mod 2))}

~

parity condition

1. W is regular

2. 1 wins = her strategy is a det. parity aut. for L

w~> a representation for L

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A

with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Game: A
Z

V: ao al as as a4 as ag
J: Po P P2 p3 Da D5 P6
iy g}

W = Lagpoarpr -+ | (aoar -~ € L) <= (limsup, o pn =0 (mod 2))}

~

parity condition

1. W is regular

2. 1 wins = her strategy is a det. parity aut. for L

w~> a representation for L

3. V wins = his strategy shows that no such automaton exists

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:
Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Game:
A
V: ao al as as a4 as ag
1: Po P12 D3 P4 P5 D6
S o000 37)

W = Lagpoarpr -+ | (aoar -~ € L) <= (limsup, o pn =0 (mod 2))}

1. W is regular parity condition

2. 1 wins = her strategy is a det. parity aut. for L
w~> a representation for L
3. V wins = his strategy shows that no such automaton exists

> a witness of hardness for L

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task: (Wadge+Wagner hierarchy)

Input: Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Game:
A
V: ao al as as a4 as ag
1: Po P12 D3 P4 P5 D6
S o000 37)

W = Lagpoarpr -+ | (aoar -~ € L) <= (limsup, o pn =0 (mod 2))}

1. W is regular parity condition

2. 1 wins = her strategy is a det. parity aut. for L
w~> a representation for L
3. V wins = his strategy shows that no such automaton exists

> a witness of hardness for L

Michat Skrzypczak Deciding complexity of languages via games 1 / 21

Task:

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)

Solution 1 (Hashiguchi [1988]): complicated

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand

Solutions 2’, ... (Colcombet [2009]; Toruficzyk [2011]): understand 2.b

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand
Solutions 2’, ... (Colcombet [2009]; Toruficzyk [2011]): understand 2.b

Solution 3 (Bojanczyk [2015]): solve 2.b directly by a gamel!

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand
Solutions 2’, ... (Colcombet [2009]; Toruficzyk [2011]): understand 2.b
Solution 3 (Bojanczyk [2015]): solve 2.b directly by a gamel!

e construct a game G with regular W

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand
Solutions 2’, ... (Colcombet [2009]; Toruficzyk [2011]): understand 2.b
Solution 3 (Bojanczyk [2015]): solve 2.b directly by a gamel!

e construct a game G with regular W

e if 3 wins G then her memory gives limitedness

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Task:
Input: Regular L € A* and &
Output: Can L be defined by a regexp

of star-height <k (no complementation here!)
Solution 1 (Hashiguchi [1988]): complicated
Solution 2 (Kirsten [2005]):

2.a: reduce to limitedness of some counter-automata (rather easy)

2.b: solve limitedness by hand
Solutions 2’, ... (Colcombet [2009]; Toruficzyk [2011]): understand 2.b
Solution 3 (Bojanczyk [2015]): solve 2.b directly by a gamel!

e construct a game G with regular W
e if 3 wins G then her memory gives limitedness

e if Y wins G then there is no limitedness

Michat Skrzypczak Deciding complexity of languages via games 12 / 21

Part 5

More examples (infinite trees)

Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO det. parity Wilke alg. w-regexp

Fin. trees MSO det. bottom-up forest alg. tree regexp

Det. lang
of inf. trees .dff'.fc.)e_.dﬂv.n.
Inf. trees MSO nondet. parity w-clones —

Michat Skrzypczak Deciding complexity of languages via games 13 / 21

Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO -d-ef.-i)fr_iiy- Wilke alg. w-regexp
Fin. trees MSO det. bottom-up forest alg. tree regexp
of I|3neft tlraer:a% - -d-e f;f‘."i’.d o - -
Inf. trees MSO nondet. parity w-clones =

~~> infinite trees inherently require non-determinism

Michat Skrzypczak Deciding complexity of languages via games

13/ 21

Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MSO -d-ef.-i)fr_iiy- Wilke alg. w-regexp
Fin. trees MSO det. bottom-up forest alg. tree regexp
of I|3neft tl:ler(‘ei - -d-e f;f‘."i’.d o - -
Inf. trees MSO nondet. parity w-clones =

~~> infinite trees inherently require non-determinism
(Niwinski, Walukiewicz [1996]; Carayol, Loding [2010])
(Bilkowski, S. [2013]; Blumensath [2013])

Michat Skrzypczak Deciding complexity of languages via games

13/ 21

Task (Rabin-Mostowski index problem):

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees L and i < j

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.
with rg(2) < {i,...,75} (i.e. index {i,...,5})?
Theorem (Colcombet, Léding [2008])

Reduction to domination of cost functions

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Theorem (Colcombet, Léding [2008])
Reduction to domination of cost functions
[not known to be decidable]

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Theorem (Colcombet, Léding [2008])
Reduction to domination of cost functions
[not known to be decidable]

~

finite memory determinacy?7??
(Fijalkow, Horn, Kuperberg, S. [2015])

Michat Skrzypczak Deciding complexity of languages via games

14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Theorem (Colcombet, Léding [2008])
Reduction to domination of cost functions
[not known to be decidable]

~

finite memory determinacy?7??
(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Task (Rabin-Mostowski index problem):
Input: Regular language of inf. trees . and ¢ < j
Output: Can L be recognised by a non-det. parity tree aut.
with rg(2) < {i,...,75} (i.e. index {i,...,5})?

Theorem (Colcombet, Léding [2008])
Reduction to domination of cost functions
[not known to be decidable]

~

finite memory determinacy?7??
(Fijalkow, Horn, Kuperberg, S. [2015])

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

[framework of domination games]

Michat Skrzypczak Deciding complexity of languages via games 14 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C’)

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C’)

3 wins = L is (1, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C)

3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game ¥ W =Av (B A C)

3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C)

3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C)
3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

But it seemed that we can get more (ranks)!

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C’)
3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F’

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C)
3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])
More, directly by a game F’ W= (AvB)aC

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C)
3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable
But it seemed that we can get more (ranks)!
Theorem (S., Walukiewicz [2016])
More, directly by a game F’ W= (AvB)aC

3 wins = L is (1, 2)-definable

and Borel

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Theorem (Colcombet, Kuperberg, Léding, Vanden Boom [2013])
Solution of the Biichi case: L = L(B), i =1, j = 2, rg(Q5) = {1,2}

Theorem (S., Walukiewicz 2014)
The same, directly by a game F W =Av (B A C)
3 wins = L is (1, 2)-definable YV wins = L is not (1, 2)-definable

But it seemed that we can get more (ranks)!

Theorem (S., Walukiewicz [2016])

More, directly by a game F’ W= (AvB)aC
3 wins = L is (1, 2)-definable Y wins = L is not (1, 2)-definable
and Borel and non-Borel

Michat Skrzypczak Deciding complexity of languages via games 15 / 21

Part 6

Last example(s)

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:

Michat Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9

Michat Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9
2. L isn't weak—alt(0,2)-definable and L ¢ TT)

Michat Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9
2. L isn't weak—alt(0,2)-definable and L ¢ TT)

-
weak index

Michat Skrzypczak Deciding complexity of languages via games

16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9
2. L isn't weak—alt(0,2)-definable and L ¢ TT)

-_—

weak index topological complexity

Michat Skrzypczak Deciding complexity of languages via games 16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9
2. L isn't weak—alt(0,2)-definable and L ¢ TT)

-_—

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for L°.

Michat Skrzypczak Deciding complexity of languages via games

16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9
2. L isn't weak—alt(0,2)-definable and L ¢ TT)

-_—

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for L°.

Consider a game F on B x A x A

Michat Skrzypczak Deciding complexity of languages via games

16 / 21

Theorem (Cavallari, Michalewski, S. [2017])
Let L be regular lang. of inf. trees. Then effectively either:
1. Lis weak—alt(0,2)-definable and L e IT9
2. L isn't weak—alt(0,2)-definable and L ¢ TT)

-_—

weak index topological complexity
Proof

Take two non-det. parity tree automata: A for L and B for L°.

Consider a game F on B x A x A

B-states p A-states ¢ .A-states ¢’

Michat Skrzypczak Deciding complexity of languages via games

16 / 21

Gameplay. . .

Michat Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. . . B-states p A-states ¢ A-states ¢/

Michat Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. .. B-states p A-states ¢ .A-states ¢/

Round 0

Michat Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. .. B-states p A-states ¢ .A-states ¢/

Round 0 4

Round 1 4

Michat Skrzypczak Deciding complexity of languages via games 17 / 21

Gameplay. .. B-states p A-states ¢ .A-states ¢/

Round 0 4

Round 1 4

Round 2 1

Michat Skrzypczak Deciding complexity of languages via games 17 / 21

Winning condition

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition

B-states p A-states ¢ .A-states ¢

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition g gates p Astates g Astates ¢/

(WR) V restarted infinitely many times

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition g gates p Astates g Astates ¢/

(WR) V restarted infinitely many times
(WB) B-states p are accepting

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition g gates p Astates g Astates ¢/

(WR) V restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states ¢’ are accepting

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition g gates p Astates g Astates ¢/

(WR) V restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states ¢’ are accepting

W = ((WR) A (WB)) v (=(WR) A (WA))

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition g gates p Astates g Astates ¢/

(WR) V restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states ¢ are accepting

W = ((WR) A (WB)) v (=(WR) A (WA))

v~ regular condition over infinite words

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Winning condition g gates p Astates g Astates ¢/

(WR) V restarted infinitely many times
(WB) B-states p are accepting
(WA) A-states ¢ are accepting

W = ((WR) A (WB)) v (ﬂ(WR) A (WA))
v~ regular condition over infinite words

> we can solve F

Michat Skrzypczak Deciding complexity of languages via games 18 / 21

Two lemmata:

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:
1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:
1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:
1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping

> a weak alternating (0,2) automaton for L

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable
Proof

Take a finite memory strategy of V in F

Add some pumping

> a weak alternating (0,2) automaton for L
wo L e T

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping

> a weak alternating (0,2) automaton for L
wo L e T

2. If 3 wins F then L is not IT3

Michat Skrzypczak Deciding complexity of languages via games

19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping
> a weak alternating (0,2) automaton for L
wo L e T

2. If 3 wins F then L is not IT3

Proof
Take a strategy of 3 in F

Michat Skrzypczak Deciding complexity of languages via games

19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping
> a weak alternating (0,2) automaton for L
wo L e T

2. If 3 wins F then L is not IT3

Proof
Take a strategy of 3 in F

Confront it with a family of quasi-strategies of V

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping
> a weak alternating (0,2) automaton for L
wo L e T

2. If 3 wins F then L is not IT3

Proof
Take a strategy of 3 in F

Confront it with a family of quasi-strategies of V
w~ a reduction proving that L ¢ II9

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping

> a weak alternating (0,2) automaton for L
wo L e T

2. If 3 wins F then L is not IT3

Proof
Take a strategy of 3 in F

Confront it with a family of quasi-strategies of V
w~ a reduction proving that L ¢ II9
v L is not weak—alt(0, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping
) A complete proof
> a weak alternating (0,2) automaton for L

wo L e T

2. If 3 wins F then L is not IT3

Proof
Take a strategy of 3 in F
Confront it with a family of quasi-strategies of V
w~ a reduction proving that L ¢ II9
v L is not weak—alt(0, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping

) A complete proof
> a weak alternating (0,2) automaton for L

not using properties

wo L e T
» on which
2. If 3 wins F then L is not IT3 the game F is based
Proof

Take a strategy of 3 in F

Confront it with a family of quasi-strategies of V
w~ a reduction proving that L ¢ II9
v L is not weak—alt(0, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Two lemmata:

1. If V wins F then L is weak—alt(0, 2)-definable

Proof
Take a finite memory strategy of V in F

Add some pumping

) A complete proof
> a weak alternating (0,2) automaton for L

not using properties

v L e TI3 _
» on which
2. If 3 wins F then L is not IT3 the game F is based
Proof
Take a strategy of 3 in F [dealternation]

Confront it with a family of quasi-strategies of V
w~ a reduction proving that L ¢ II9
v L is not weak—alt(0, 2)-definable

Michat Skrzypczak Deciding complexity of languages via games 19 / 21

Another example

Michat Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])

Given a game automaton A over infinite trees,

Michat Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,

one can decide if L(.A) is meager.

Michat Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,

one can decide if L(.A) is meager.

Proof
Making the Banach-Mazur game regular

Michat Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,

one can decide if L(.A) is meager.

Proof
Making the Banach-Mazur game regular |

Michat Skrzypczak Deciding complexity of languages via games 20 / 21

Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,

one can decide if L(.A) is meager.

Proof
Making the Banach-Mazur game regular |

Open problem: what about general regular tree languages?

Michat Skrzypczak Deciding complexity of languages via games 20 / 21

Summary

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

—

pattern found
v~ [is hard

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

— T

pattern found pattern missing

v~ [is hard v~ [is simple

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

— T

pattern found pattern missing

v~ [is hard v~ [is simple

— games (may deal with non-determinism)

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

— T

pattern found pattern missing

v~ [is hard v~ [is simple

— games (may deal with non-determinism)

—

strategy of 4
v~ [is hard

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

— T

pattern found pattern missing

v~ [is hard v~ [is simple

— games (may deal with non-determinism)

— T

strategy of 4 strategy of V

v~ [is hard v~ Lis simple

Michat Skrzypczak Deciding complexity of languages via games 21 / 21

—

—

—

—

Summary

characterising which languages are simple

pattern method (rigid representatons: det. aut. /algebra)

—

pattern found
v~ [is hard

T~

pattern missing

v~ [is simple

games (may deal with non-determinism)

—

strategy of 4
v~ [is hard

no general recipe for design

Michat Skrzypczak

T

strategy of V

v~ [is simple

Deciding complexity of languages via games

21 / 21

Summary

—> characterising which languages are simple

—> pattern method (rigid representatons: det. aut. /algebra)

— T

pattern found pattern missing

v~ [is hard v~ [is simple

— games (may deal with non-determinism)

— T

strategy of 4 strategy of V

v~ [is hard v~ Lis simple
—> no general recipe for design

Conjecture: Every class of languages has a game characterisation

Michat Skrzypczak Deciding complexity of languages via games

21 / 21

