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Part 2

Effective characterisations by patterns



Given L € A*, is L definable in FO?
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iff L = L(e) for a star-free regexp: e:u=g|A|ee|eve|~e

By Ehrenfeucht-Fraissé
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o2 =, a2*+1

Theorem (Schutzenberger [1965]; McNaughton, Papert [1971])
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— L is definable in FO
— the minimal automaton Ay, for L is counter-free
— the syntactic monoid My, for L is group-free
— the syntactic monoid M7, for L satisfies st =g st

b 1
pattern method for rigid representations
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2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard

Examples:
Benedikt, Blumensath, Bojanczyk, Colcombet, Facchini, Idziaszek,
Murlak, Niwinski, Pin, Place, Schutzenberger, Segoufin, Straubing,

Thérien, Thomas, Walukiewicz, Wilke, Zeitoun, ...
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Proof strategy overview

1. Take a rigid representation of L

(e.g. minimal automaton, syntactic algebra, ...)
2. Look for a pattern

(e.g. graph gadget, violation of equation, ...)

2.a If no pattern found, construct a simple representation of L
2.b If pattern found, pump it to show that L is hard
Limitations:
e 2.a works under assumption of lack of obstruction

e algebraic methods limited to varieties or lattices of languages

e rigid representations needed (Birkhoff)
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Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MsoO det. parity Wilke alg.  w-regexp

Fin. trees MSO det. bottom-up  forest alg. tree regexp

Det. lang

of inf. trees det. top-down - -

Inf. trees MSO  nondet. parity w-clones =
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Rigid representations

logic automata algebra expressions
Fin. words MSO DFA monoids regexp
Inf. words MsoO -d-ef.-lafr.i’iy- Wilke alg.  w-regexp
Fin. trees MSO det. bottom-up  forest alg. tree regexp
ofinf. trees T demtopdown  —  —
Inf. trees MSO  nondet. parity w-clones =

Not mentioned: thin trees, Boolean combinations of open sets, ...
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Part 3

Games on graphs



Games of: infinite duration, perfect information, finite arena
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Games of: infinite duration, perfect information, finite arena

G has: vertices V' = V3 1 Vg, initial vertex vg e V, edges E SV x V

e + winning condition W < V¥
H v~ a play m = vgvivg - - -
1 wins 7 iff e W YV wins 7 iff w ¢ W

w~> each play has a winner

But: for certain W < V“ none of the players has a winning strategy!

E.g. for infinite XOR, see (Kopczynski, Niwinski [2014])

Also: a winning strategy may require unlimitted memory!

And: it may not be decidable which of the players wins. ..
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Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
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e it is decidable who wins the game
e there exists a finite memory winning strategy

e such a strategy can be effectively constructed
Proof

1. W =L(A) a
2. Consider G x A: e’ X A
3. Apply: 0

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

v~ the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, .. .)
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Theorem (Biichi, Landweber [1969])
If W < V¥ is regular then:
e it is decidable who wins the game
e there exists a finite memory winning strategy
e such a strategy can be effectively constructed
Proof
1. W =L(A)
2. Consider G x A:
3. Apply:

Theorem (Mostowski [1991]; Emmerson, Jutla [1991])

Parity games are effectively, positionally determined.

v~ the winner of G can use A as a memory structure

(Chatterjee, Henzinger, Kupferman, Piterman, Vardi, .. .)
(Kopczynski [2006]; Zimmermann [2016]; Colcombet, Goller [2016])
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Part 4

First examples



Task:
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Task:
Input:  Regular L € A“ and i < j
Output: Can L be recognised by a det. parity aut. A
with rg(2) < {i,...,75}  (i.e. index {i,...,5})?

Game:
A
V: ao al as as a4 as ag
1: Po P12 D3 P4 P5 D6
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W = Lagpoarpr -+ | (aoar -~ € L) <= (limsup, o pn =0 (mod 2))}

1. W is regular parity condition

2. 1 wins = her strategy is a det. parity aut. for L
w~> a representation for L
3. V wins = his strategy shows that no such automaton exists

> a witness of hardness for L
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2.b: solve limitedness by hand
Solutions 2’, ... (Colcombet [2009]; Toruficzyk [2011]): understand 2.b
Solution 3 (Bojanczyk [2015]): solve 2.b directly by a gamel!

e construct a game G with regular W
e if 3 wins G then her memory gives limitedness

e if Y wins G then there is no limitedness

Michat Skrzypczak Deciding complexity of languages via games 12 / 21



Part 5

More examples (infinite trees)
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[ framework of domination games ]
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More, directly by a game F’ W= (AvB)aC
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Part 6

Last example(s)
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(WB) B-states p are accepting
(WA) A-states ¢ are accepting
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Another example

Theorem (Michalewski, Mio, S. [2017])
Given a game automaton A over infinite trees,

one can decide if L(.A) is meager.

Proof
Making the Banach-Mazur game regular |

Open problem: what about general regular tree languages?
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Conjecture: Every class of languages has a game characterisation
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