Connecting decidability and complexity for MSO logic

Michał Skrzypczak

University of Warsaw

Part 0

MSO logic

History — why MSO logic?

Alfred Tarski has proposed (in lectures) consideration of an intermediate type of definition, in which sets of natural numbers but no other sets are allowed. Thus we will have variables a,b,c,\cdots which represent natural numbers, and variables A,B,C,\cdots which represent sets of natural numbers. The term restricted set theory will refer to the use of just these types of variables. A definition using such variables will be called a restricted set-theoretical definition. As examples of definitions of this type, we may give

$$a < b \leftrightarrow (\forall A)[b \in A \land (\land x)(x \in A \rightarrow x' \in A) \land a \notin A]$$

and

$$a \equiv 0 \pmod{2} \leftrightarrow (\bigwedge A)[0 \in A \land (\bigwedge x)(x \in A \rightarrow x'' \in A) \rightarrow a \in A].$$

Specifically, Tarski has proposed the following two problems.

PROBLEM 1. Is it possible to give a restricted set-theoretical definition of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural numbers based on the notion of successor and using restricted set theory?

Alfred Tarski has proposed (in lectures) consideration of an intermediate type of definition, in which sets of natural numbers but no other sets are allowed. Thus we will have variables a, b, c, \cdots which represent natural numbers, and variables A, B, C, \cdots which represent sets of natural numbers. The term restricted set theory will refer to the use of just these types of variables. A definition using such variables will be called a restricted set-theoretical definition. As examples of definitions of this type, we may give

$$a < b \leftrightarrow (\forall A)[b \in A \land (\land x)(x \in A \rightarrow x' \in A) \land a \notin A]$$

and

$$a \equiv 0 \pmod{2} \leftrightarrow (\bigwedge A)[0 \in A \land (\bigwedge x)(x \in A \rightarrow x'' \in A) \rightarrow a \in A].$$

Specifically, Tarski has proposed the following two problems.

PROBLEM 1. Is it possible to give a restricted set-theoretical definition of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural numbers based on the notion of successor and using restricted set theory?

Alfred Tarski has proposed (in lectures) consideration of an intermediate type of definition, in which sets of natural numbers but no other sets are allowed. Thus we will have variables a, b, c, \cdots which represent natural numbers, and variables A, B, C, \cdots which represent sets of natural numbers. The term restricted set theory will refer to the use of just these types of variables. A definition using such variables will be called a restricted set-theoretical definition. As examples of definitions of this type, we may give

$$a < b \leftrightarrow (VA)[b \in A \land (\Lambda x)(x \in A \rightarrow x' \in A) \land a \notin A]$$

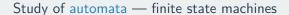
and

$$a \equiv 0 \pmod{2} \leftrightarrow (\bigwedge A)[0 \in A \land (\bigwedge x)(x \in A \rightarrow x'' \in A) \rightarrow a \in A].$$

Specifically, Tarski has proposed the following two problems.

PROBLEM 1. Is it possible to give a restricted set-theoretical defini-

PROBLEM 2. Is there a decision method for the arithmetic of natural numbers based on the notion of successor and using restricted set theory?



2 / 21

Study of automata — finite state machines

J. Richard Büchi [1960]

"Weak second-order arithmetic and finite automata"

Zeitschrift für math. Logik und Grundlagen der Math., 6:66-92, 1960.

Study of automata — finite state machines

J. Richard Büchi [1960]

"Weak second-order arithmetic and finite automata" Zeitschrift für math. Logik und Grundlagen der Math., 6:66–92, 1960.

Calvin C. Elgot [1961]

"Decision problems of finite automata design and related arithmetics" *Trans. Amer. Math. Soc.*, 98:21–51, January 1961.

Study of automata — finite state machines

J. Richard Büchi [1960]

"Weak second-order arithmetic and finite automata" Zeitschrift für math. Logik und Grundlagen der Math., 6:66–92, 1960.

Calvin C. Elgot [1961]

"Decision problems of finite automata design and related arithmetics" *Trans. Amer. Math. Soc.*, 98:21–51, January 1961.

Boris A. Trakhtenbrot [1962]

"Finite automata and the logic of one-place predicates" *Siberian Math. J.*, 3:103–131, 1962.

(English translation in: AMS Transl. 59 (1966) 23–55.)

Structures

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

$$\alpha \colon \omega \to A$$

$$\alpha \in A^\omega$$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

 $\alpha \in A^{\omega}$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

 $\alpha \colon \omega \to A$

 $\alpha \in A^{\omega}$

Signature: s(x), a(x) for $a \in A$ (or \leq)

Words:

(or ≤)

no arithmetic !!!

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

 $(or \leqslant)$

no arithmetic !!!

 $\alpha \colon \omega \to A$

 $\alpha \in A^{\omega}$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$ (or \leq)

no arithmetic !!!

 $\alpha \colon \omega \to A$

 $\alpha \in A^{\omega}$

$$t = \underbrace{\begin{pmatrix} b & & \\ b & & \\ b & & \\ \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} a & \\ b & \\ \\ \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} a & \\ \\ \\ \\ \end{pmatrix}}_{a} \underbrace{\begin{pmatrix} c & \\ \\ \\ \\ \\ \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} c & \\ \\ \\ \\ \\ \\ \end{pmatrix}}_{b}$$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

 $(or \leqslant)$

 $\alpha \colon \omega \to A$

 $\alpha \in A^\omega$

no arithmetic !!!

$$t \colon \{0,1\}^{<\omega} \to A$$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

 $(or \leqslant)$

$\alpha \colon \omega \to A$

 $\alpha \in A^\omega$

no arithmetic !!!

$$t = \begin{pmatrix} b & b & c \\ b & b & c \\ b & b & c \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{pmatrix} \begin{pmatrix} c & c \\ b & c \\ b & c \\ \end{pmatrix}$$

$$t \colon \{0,1\}^{<\omega} \to A$$

$$t \in A^{(\{0,1\}^{<\omega})}$$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

$$\alpha \in A^{\omega}$$

 $\alpha \colon \omega \to A$

Signature: s(x), a(x) for $a \in A$ (or \leq)

no arithmetic !!!

Trees:

$$t: \{0,1\}^{<\omega} \to A$$
$$t \in A^{(\{0,1\}^{<\omega})}$$

Signature: $s_0(x)$, $s_1(x)$, a(x) for $a \in A$

Words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

 $\alpha \in A^\omega$

 $\alpha \colon \omega \to A$

Signature: s(x), a(x) for $a \in A$ (or \leq)

no arithmetic !!!

$$t \colon \{0,1\}^{<\omega} \to A$$

$$t \in A^{(\{0,1\}^{<\omega})}$$

Signature:
$$s_0(x)$$
, $s_1(x)$, $a(x)$ for $a \in A$ (or \leq , \leq_{lex})

First-order (FO) logic:

First-order (FO) logic:

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \mathsf{predicates}$$

First-order (FO) logic:

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \mathsf{predicates}$$

[x, y - nodes of the structure]

```
First-order (FO) logic: \exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates} [x, y - \text{nodes of the structure}]
```

Monadic second-order (MSO) logic:

First-order (FO) logic:

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

[X, Y - sets of nodes of the structure]

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$
 [$x, y - \text{nodes of the structure}$]

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

[X, Y - sets of nodes of the structure]

 \longrightarrow expressive power subsuming LTL, CTL*, modal μ -calculus, ...

First-order (FO) logic:

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

[X, Y - sets of nodes of the structure]

 \longrightarrow expressive power subsuming LTL, CTL*, modal μ -calculus, ...

If φ is over A then define set of words / trees over A:

$$L(\varphi) \stackrel{\mathsf{def}}{=} \{ M \mid M \models \varphi \}$$

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

[X, Y - sets of nodes of the structure]

 \longrightarrow expressive power subsuming LTL, CTL*, modal μ -calculus, ...

If φ is over A then define set of words / trees over A:

$$L(\varphi) \stackrel{\mathsf{def}}{=} \{ M \mid M \models \varphi \}$$

called the language of φ

— safety: $\forall x. \neg a(x)$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Longrightarrow x \leqslant y))$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Longrightarrow x \leqslant y))$

Examples - trees

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

$$\exists X. \ (\exists x. \ x \in X) \land$$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

$$\exists X. \ (\exists x. \ x \in X) \land \\ (\forall x. \ x \in X \Rightarrow a(x)) \land$$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

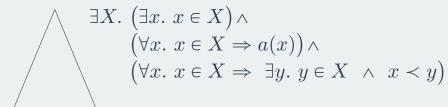
$$\exists X. \ (\exists x. \ x \in X) \land (\forall x. \ x \in X \Rightarrow a(x)) \land (\forall x. \ x \in X \Rightarrow \exists y. \ y \in X \land x < y)$$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Longrightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

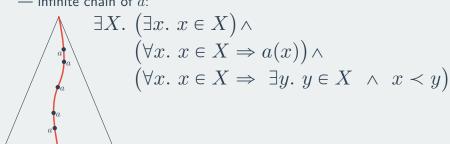


- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow (\exists x. \ x \in X \land \forall y \ (y \in X \Longrightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$



Truth value:

- input a formula φ on $\hspace{1.5cm}$ words $\hspace{1.5cm}/\hspace{1.5cm}$ trees $\hspace{1.5cm}$ (with no letter predicates)
- output whether $\left(\omega,s\right)\models\varphi\quad/\quad\left(\{0,1\}^{<\omega},s_0,s_1\right)\models\varphi$

Truth value:

- input a formula φ on words / trees (with no letter predicates)
- output whether $\left(\omega,s\right)\models\varphi$ / $\left(\{0,1\}^{<\omega},s_0,s_1\right)\models\varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)

Truth value:

- input a formula φ on $\hspace{1cm}$ words $\hspace{1cm}/\hspace{1cm}$ trees $\hspace{1cm}$ (with no letter predicates)
- output whether $\left(\omega,s\right)\models\varphi$ / $\left(\{0,1\}^{<\omega},s_0,s_1\right)\models\varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)
- output is there a $\,$ word $\,$ / $\,$ tree $\,$ that satisfies φ

Universality:

- input a formula φ on words / trees (over an alphabet A)
- output whether all the $% \left\vert \phi \right\vert =0$ words $\left\vert \right\vert$ trees $% \left\vert \right\vert$ satisfy φ

Truth value:

- input a formula φ on words / trees $\left(\text{with no letter predicates} \right)$
- output whether $\left(\omega,s\right)\models\varphi$ / $\left(\{0,1\}^{<\omega},s_0,s_1\right)\models\varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)
- output is there a $\,$ word $\,$ / $\,$ tree $\,$ that satisfies φ

Universality:

- input a formula φ on \qquad words / trees \qquad (over an alphabet A)
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

These are all the same:

Truth value:

- input a formula φ on words / trees (with no letter predicates)
- output whether $\left(\omega,s\right)\models\varphi\quad/\quad\left(\{0,1\}^{<\omega},s_0,s_1\right)\models\varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)
- output is there a $\,$ word $\,$ / $\,$ tree $\,$ that satisfies φ

Universality:

- input a formula φ on \qquad words $\ / \qquad$ trees \qquad $\left($ over an alphabet A $\right)$
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

These are all the same: for φ over A consider

Truth value:

- input a formula φ on words / trees $\left(\mathsf{with\ no\ letter\ predicates} \right)$
- output whether $\left(\omega,s\right)\models\varphi$ / $\left(\{0,1\}^{<\omega},s_0,s_1\right)\models\varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)

Universality:

- input a formula φ on $\hspace{1cm}$ words $\hspace{1cm}/\hspace{1cm}$ trees $\hspace{1cm}$ (over an alphabet A)
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

These are all the same: for φ over A consider

$$\exists X_a \dots X_z. \ (X' \text{s are a partition}) \land \varphi[a(x) \to x \in X_a, \dots]$$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

Proofs: Automata ${\cal A}$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

Proofs: Automata A

ullet ${\cal A}$ reads a structure M and accepts or rejects

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

ullet ${\cal A}$ reads a structure M and accepts or rejects

• Define the language of A: (set of words or trees)

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \mathsf{accepts}\ M \}$$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \text{ accepts } M \}$$

• Construct automata recognising basic sets:

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \text{ accepts } M \}$$

• Construct automata recognising basic sets:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \text{ accepts } M \}$$

• Construct automata recognising basic sets:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

Implement logical operations in automata:

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \mathsf{accepts}\ M \}$$

• Construct automata recognising basic sets:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

• Implement logical operations in automata:

Connectives:
$$\mathcal{A}$$
, \mathcal{B} over $A \leadsto \neg \mathcal{A}$ and $\mathcal{A} \lor \mathcal{B}$ over A

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(A) \stackrel{\mathsf{def}}{=} \{ M \mid A \text{ accepts } M \}$$

• Construct automata recognising basic sets:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

• Implement logical operations in automata:

Connectives:
$$\mathcal{A}$$
, \mathcal{B} over $A \leadsto \neg \mathcal{A}$ and $\mathcal{A} \lor \mathcal{B}$ over A

such that
$$L(\neg \mathcal{A}) = L(\mathcal{A})^c$$
,
$$L(\mathcal{A} \vee \mathcal{B}) = L(\mathcal{A}) \cup L(\mathcal{B})$$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \text{ accepts } M \}$$

Construct automata recognising basic sets:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

• Implement logical operations in automata:

Connectives:
$$\mathcal{A}$$
, \mathcal{B} over $A \leadsto \neg \mathcal{A}$ and $\mathcal{A} \lor \mathcal{B}$ over A

such that
$$L(\neg \mathcal{A}) = L(\mathcal{A})^c$$
 ,
$$L(\mathcal{A} \vee \mathcal{B}) = L(\mathcal{A}) \cup L(\mathcal{B})$$

Projection: A over $A \times \{0,1\} \rightsquigarrow \exists X(A)$ over A that guesses X

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{0, 1\}^{<\omega}, s_0, s_1)$ is decidable.

Proofs: Automata A

- ullet ${\cal A}$ reads a structure M and accepts or rejects
- Define the language of A: (set of words or trees)

$$L(\mathcal{A}) \stackrel{\mathsf{def}}{=} \{ M \mid \mathcal{A} \text{ accepts } M \}$$

• Construct automata recognising basic sets:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

Implement logical operations in automata:

Connectives:
$$A$$
, B over $A \leadsto \neg A$ and $A \lor B$ over A

such that
$$L(\neg \mathcal{A}) = L(\mathcal{A})^c$$
,
$$L(\mathcal{A} \vee \mathcal{B}) = L(\mathcal{A}) \cup L(\mathcal{B})$$

Projection: \mathcal{A} over $A \times \{0,1\} \rightsquigarrow \exists X(\mathcal{A})$ over A that guesses X

ullet Transform arphi into ${\mathcal A}$ and check if ${\rm L}({\mathcal A})=\varnothing$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

There exists an algorithm ${\mathcal P}$

Theorem (Büchi [1962] / Rabin [1969])

The $\mbox{\scriptsize MSO}$ theory of $\left(\omega,s\right)$ / $\left(\{0,1\}^{<\omega},s_0,s_1\right)$ is decidable.

There exists an algorithm ${\cal P}$ such that for every formula φ

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

There exists an algorithm $\mathcal P$ such that for every formula φ the execution $\mathcal P(\varphi)$ terminates

Theorem (Büchi [1962] / Rabin [1969])

The $\mbox{\scriptsize MSO}$ theory of $\left(\omega,s\right)$ / $\left(\{0,1\}^{<\omega},s_0,s_1\right)$ is decidable.

There exists an algorithm $\mathcal P$ such that for every formula φ the execution $\mathcal P(\varphi)$ terminates and returns **TRUE** iff φ is true

Part 1

Topological complexity

$$(2 \leqslant |A| < \infty)$$

$$(2 \leqslant |A| < \infty)$$

$$\operatorname{words} - A^\omega$$

$$(2 \leqslant |A| < \infty)$$

words —
$$A^{\omega}$$

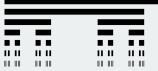
words —
$$A^{\omega}$$
 $A^{(\{L,R\}^{<\omega})}$ — trees

words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^{<\omega})}$ — trees $\{0,1\}^{\omega}$

words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^{<\omega})}$ — trees $\{0,1\}^{\omega}$

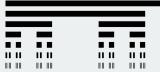
words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^{<\omega})}$ — trees $\{0,1\}^{\omega}$

words —
$$A^{\omega}$$
 $A^{(\{\mathrm{L},\mathrm{R}\}^{<\omega})}$ — trees $\{0,1\}^{\omega}$

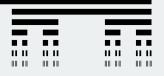


the Cantor set

words —
$$A^{\omega}$$
 $A^{(\{\mathrm{L},\mathrm{R}\}^{<\omega})}$ — trees $\{0,1\}^{\omega}$



the Cantor set



 $L(\varphi) \cong \text{set of points}$

Start from simple sets

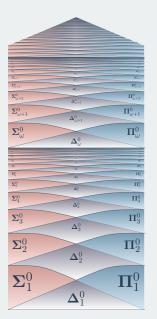
 \leadsto open (Σ_1^0) and closed (Π_1^0)

Start from simple sets \longrightarrow open (Σ_1^0) and closed (Π_1^0)

Apply countable unions (\bigcup) and countable intersections (\bigcap)

Start from simple sets $\longrightarrow \mathsf{open} \ \big(\Sigma_1^0 \big) \ \mathsf{and} \ \mathsf{closed} \ \big(\Pi_1^0 \big)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

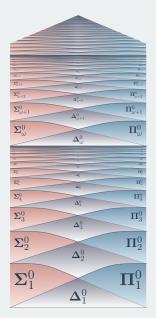


Start from simple sets

 \leadsto open $(\mathbf{\Sigma}_1^0)$ and closed $(\mathbf{\Pi}_1^0)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

 \leadsto Borel sets: $\mathbf{\Sigma}_{\eta}^{0}$, $\mathbf{\Pi}_{\eta}^{0}$ for $\eta<\omega_{1}$



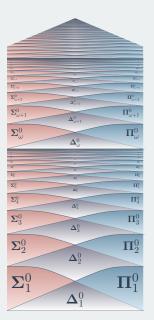
Start from simple sets

 \leadsto open (Σ_1^0) and closed (Π_1^0)

Apply countable unions (\bigcup) and countable intersections (\bigcap)

 \longrightarrow Borel sets: Σ_{η}^0 , Π_{η}^0 for $\eta < \omega_1$

Apply projection and co-projection



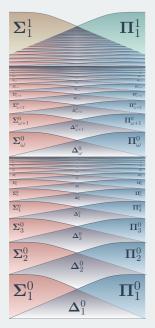
Start from simple sets

 \leadsto open $\left(\mathbf{\Sigma}_{1}^{0}\right)$ and closed $\left(\mathbf{\Pi}_{1}^{0}\right)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

 \leadsto Borel sets: Σ_{η}^0 , Π_{η}^0 for $\eta<\omega_1$

Apply projection and co-projection $\longrightarrow \text{ analytic } \left(\Sigma^1_1 \right) \text{ and co-analytic } \left(\Pi^1_1 \right)$



Start from simple sets

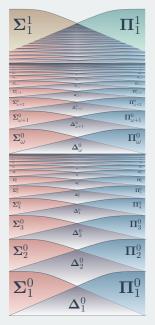
$$\leadsto$$
 open $\left(\Sigma_1^0 \right)$ and closed $\left(\Pi_1^0 \right)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

$$\leadsto$$
 Borel sets: Σ_{η}^{0} , Π_{η}^{0} for $\eta<\omega_{1}$

Apply projection and co-projection $\leadsto \mathsf{analytic} \ \left(\Sigma^1_1 \right) \mathsf{and} \ \mathsf{co}\text{-analytic} \ \left(\Pi^1_1 \right)$

By induction



Start from simple sets

$$\leadsto$$
 open (Σ_1^0) and closed (Π_1^0)

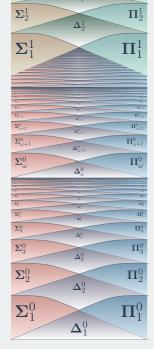
Apply countable unions (U) and countable intersections (\(\))

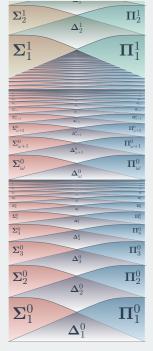
$$\longrightarrow$$
 Borel sets: Σ_{η}^{0} , Π_{η}^{0} for $\eta<\omega_{1}$

Apply projection and co-projection \longrightarrow analytic (Σ_1^1) and co-analytic (Π_1^1)

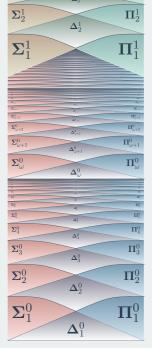
By induction

$$\leadsto$$
 projective sets: Σ^1_n , Π^1_n for $n<\omega$



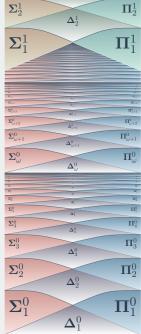


 $\exists X \leadsto \mathsf{projection}\ A \times \{0,1\} \to A$



$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

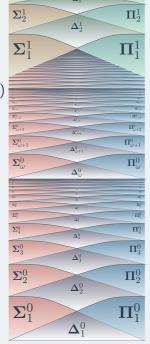
$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \Sigma^1_n \text{ (for some } n\text{)}$$



$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \mathbf{\Sigma}_n^1 \text{ (for some } n\text{)}$$

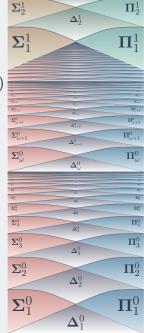
MSO on words \equiv deterministic aut.



$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \mathbf{\Sigma}_n^1 \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut. φ on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

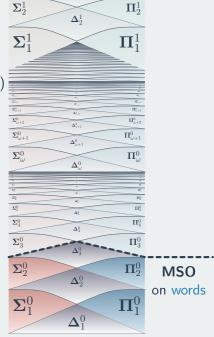


$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \mathrm{MSO} \Longrightarrow \mathrm{L}(\varphi) \in \mathbf{\Sigma}^1_n \ \ \text{(for some } n\text{)}$$

MSO on words \equiv deterministic aut.

 φ on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

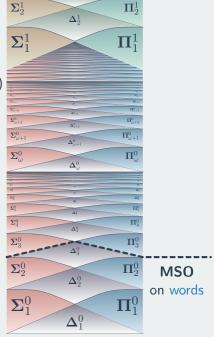


$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \mathbf{\Sigma}_n^1 \ \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut.

$$\varphi$$
 on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

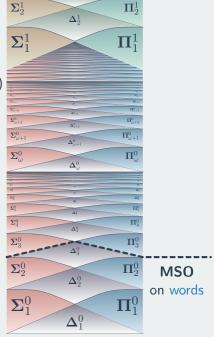


$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \mathbf{\Sigma}_n^1 \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut.

$$\varphi$$
 on words $\Longrightarrow L(\varphi) \in \Delta_3^0$



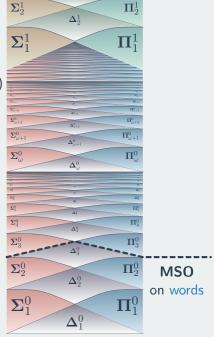
$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \mathbf{\Sigma}_n^1 \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut.

$$\varphi$$
 on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

$$\varphi$$
 on trees $\Longrightarrow L(\varphi) \in \Delta_2^1$



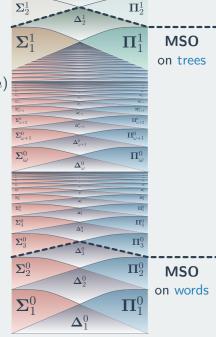
$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \Sigma^1_n \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut.

$$\varphi$$
 on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

$$\varphi$$
 on trees $\Longrightarrow L(\varphi) \in \Delta_2^1$



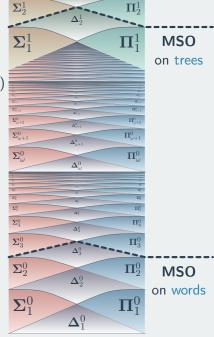
$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \Sigma^1_n \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut.

$$\varphi$$
 on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

$$\varphi$$
 on trees $\Longrightarrow L(\varphi) \in \Delta_2^1$



$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi \in \text{MSO} \Longrightarrow \mathcal{L}(\varphi) \in \mathbf{\Sigma}_n^1 \text{ (for some } n\text{)}$$

MSO on words \equiv deterministic aut.

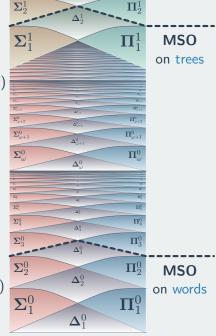
$$\varphi$$
 on words $\Longrightarrow L(\varphi) \in \Delta_3^0$

MSO on trees \equiv non-deterministic aut.

$$\varphi$$
 on trees $\Longrightarrow L(\varphi) \in \Delta_2^1$

Theorem (Niwiński [1985])

There exists a non-Borel (Σ_1^1 -compl.) set definable in MSO.



Take φ — MSO formula on trees

Take φ — MSO formula on trees

$$\longrightarrow$$
 L(φ) \in Δ_2^1

Take φ — MSO formula on trees

$$\qquad \qquad L(\varphi) \in \mathbf{\Delta}_2^1 \quad \text{[there are examples when } L(\varphi) \notin \sigma(\mathbf{\Sigma}_1^1) \text{]}$$

Take φ — MSO formula on trees

$$\qquad \qquad L(\varphi) \in \mathbf{\Delta}_2^1 \quad \text{[there are examples when } L(\varphi) \notin \sigma(\mathbf{\Sigma}_1^1) \text{]}$$

Is $L(\varphi)$ measurable?

Take φ — MSO formula on trees

 $L(\varphi) \in \Delta_2^1$ [there are examples when $L(\varphi) \notin \sigma(\Sigma_1^1)$]

Is $L(\varphi)$ measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Take φ — MSO formula on trees

 $L(\varphi) \in \Delta_2^1$ [there are examples when $L(\varphi) \notin \sigma(\Sigma_1^1)$]

Is $L(\varphi)$ measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Take φ — MSO formula on trees

 $L(\varphi) \in \Delta_2^1$ [there are examples when $L(\varphi) \notin \sigma(\Sigma_1^1)$]

Is $L(\varphi)$ measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Languages $W_{i,j}$ are complete for the levels of **R-hierarchy**.

Take φ — MSO formula on trees

 $L(\varphi) \in \Delta_2^1$ [there are examples when $L(\varphi) \notin \sigma(\Sigma_1^1)$]

Is $L(\varphi)$ measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Languages $W_{i,j}$ are complete for the levels of **R-hierarchy**.

Is the Gale-Stewart game on $L(\varphi)$ determined?

Take φ — MSO formula on trees

 $L(\varphi) \in \Delta_2^1$ [there are examples when $L(\varphi) \notin \sigma(\Sigma_1^1)$]

Is $L(\varphi)$ measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Languages $W_{i,j}$ are complete for the levels of **R-hierarchy**.

Is the Gale-Stewart game on $L(\varphi)$ determined?

777

$$\forall X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Large expressive power: cost functions, distance automata, ...

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula φ_n of MSO+U on words

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula φ_n of MSO+U on words such that $L(\varphi_n)$ is Σ_n^1 -complete.

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula φ_n of MSO+U on words such that $L(\varphi_n)$ is Σ_n^1 -complete.

→ no reasonable automaton model for MSO+U

Part 1'

Topological complexity vs. decidability

The theory MSO of $(\{0,1\}^{\omega}, \leq_{\text{lex}})$ is undecidable.

The theory MSO of $(\{0,1\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

• construct a ultrafilter-like set $Q \subseteq \mathbb{R}$

The theory MSO of $(\{0,1\}^{\omega}, \leq_{\text{lex}})$ is undecidable.

Proof

• construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)

The theory MSO of $(\{0,1\}^{\omega}, \leq_{lex})$ is undecidable.

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

The theory MSO of $(\{0,1\}^{\omega}, \leq_{\text{lex}})$ is undecidable.

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

The theory MSO of $(\{0,1\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

Conjecture (Shelah [1975])

The theory $MSO(\mathcal{B})$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

The theory MSO of $(\{0,1\}^{\omega}, \leq_{\text{lex}})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

Conjecture (Shelah [1975])

The theory $MSO(\mathcal{B})$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory $MSO(\Sigma_2^0)$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

The theory MSO of $(\{0,1\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

Conjecture (Shelah [1975])

The theory $MSO(\mathcal{B})$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory $MSO(\Sigma_2^0)$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

Proof

• MSO on words defines Σ_2^0 -complete sets

The theory MSO of $(\{0,1\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

Conjecture (Shelah [1975])

The theory $MSO(\mathcal{B})$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory $MSO(\Sigma_2^0)$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

- MSO on words defines Σ_2^0 -complete sets
- simulate quantification over $\Sigma_2^0(\{0,1\}^{\omega})$ within $\{0,1\}^{<\omega}$

The theory MSO of $(\{0,1\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

Conjecture (Shelah [1975])

The theory $MSO(\mathcal{B})$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory $MSO(\Sigma_2^0)$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

- MSO on words defines Σ_2^0 -complete sets
- simulate quantification over $\Sigma_2^0(\{0,1\}^{\omega})$ within $\{0,1\}^{<\omega}$
- apply decidability of MSO on trees

The theory MSO of $(\{0,1\}^{\omega}, \leq_{\text{lex}})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \mathbb{R}$ (transfinite induction)
- use Q to simulate relations on ω in $\{0,1\}^{\omega}$

Conjecture (Shelah [1975])

The theory $MSO(\mathcal{B})$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory $MSO(\Sigma_2^0)$ of $(\{0,1\}^{\omega}, \leq_{lex})$ is decidable.

- MSO on words defines Σ_2^0 -complete sets
- simulate quantification over $\Sigma_2^0(\{0,1\}^{\omega})$ within $\{0,1\}^{<\omega}$
- apply decidability of MSO on trees

If \mathcal{L} is an extension of MSO such that

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^ω

then it is consistent with ZFC that:

the \mathcal{L} -theory of $\left(\{0,1\}^{<\omega},s_0,s_1\right)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

Proof

work in the constructible universe of Gödel (V=L)

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{0,1\}^{\omega}$

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

Proof

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{0,1\}^{\omega}$
- $\longrightarrow Q \in \Sigma_6^1$

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

Proof

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{0,1\}^{\omega}$
- $\longrightarrow Q \in \Sigma_6^1$
- \rightsquigarrow Shelah's proof can be repeated in \mathcal{L} on trees

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

Proof

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{0,1\}^{\omega}$
- $\longrightarrow Q \in \Sigma_6^1$
- \rightsquigarrow Shelah's proof can be repeated in \mathcal{L} on trees

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

Corollary (Bojańczyk, Gogacz, Michalewski, S. [2014])

It is consistent with ZEC that

the MSO+U-theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is undecidable.

Corollary (Bojańczyk, Gogacz, Michalewski, S. [2014])

It is consistent with ZEC that

the MSO+U-theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is undecidable.

Theorem (Bojańczyk, Parys, Toruńczyk [2016])

The MSO+U-theory of (ω, s) is undecidable.

Part 2

Reverse mathematics

1. Use Second-order Arithmetics:

- **1.** Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - ${f 1.b}$ Formalise your theorem as a statement ${f \Psi}$ of ${f SO}$
- **2.** Work in RCA_0 :

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties:

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties: $\begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \end{cases}$

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ

```
2.c comprehension for recursive properties: \begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \\ \{n \mid P(n)\} \text{ is a set} \end{cases}
```

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties: $\begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \\ \{n \mid P(n)\} \text{ is a set} \end{cases}$

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is } \Delta^0_1 \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

3. Understand the strength of Ψ :

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties: $\begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \\ \{n \mid P(n)\} \text{ is a set} \end{cases}$

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is } \Delta^0_1 \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

- **3.** Understand the strength of Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties: $\begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \\ \{n \mid P(n)\} \text{ is a set} \end{cases}$

$$\left\{ \begin{array}{c} \text{If } P(n) \text{ is } \Delta^0_1 \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

- **3.** Understand the strength of Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$

- **1.** Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties: $\begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \\ \{n \mid P(n)\} \text{ is a set} \end{cases}$

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is } \Delta^0_1 \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

- **3.** Understand the strength of Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$

$$RCA_0 + A \vdash \Psi$$

$$RCA_0 + A \vdash \Psi$$
 \longrightarrow prove Ψ using A

- **1.** Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - **1.b** Formalise your theorem as a statement Ψ of so
- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction
 - **2.b** induction for Σ_1^0 -formulæ
 - **2.c** comprehension for recursive properties: $\begin{cases} \text{If } P(n) \text{ is } \Delta_1^0 \text{ then} \\ \{n \mid P(n)\} \text{ is a set} \end{cases}$

- **3.** Understand the strength of Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$

$${
m RCA}_0 + A \vdash \Psi$$
 $\qquad \qquad \longrightarrow \mathsf{prove} \ \Psi \mathsf{ using } A$

There exists an algorithm ${\cal P}$

There exists an algorithm ${\cal P}$

 $\exists p.$

There exists an algorithm ${\cal P}$ such that for every formula φ $\exists p.$

 $\exists p. \\ \forall f.$ There exists an algorithm ${\cal P}$ such that for every formula φ

There exists an algorithm ${\cal P}$ $\exists p.$ such that for every formula φ the execution $\mathcal{P}(\varphi)$ terminates

There exists an algorithm ${\cal P}$ $\exists p.$ such that for every formula φ the execution $\mathcal{P}(\varphi)$ terminates

```
There exists an algorithm \mathcal{P} \exists p. such that for every formula \varphi \forall f. the execution \mathcal{P}(\varphi) terminates \exists r. and returns TRUE iff \varphi is true
```

```
There exists an algorithm \mathcal{P} \exists p. such that for every formula \varphi \forall f. the execution \mathcal{P}(\varphi) terminates \exists r. and returns TRUE iff \varphi is true r \downarrow \text{TRUE} \iff \ref{TRUE} \ref{TRUE}?
```

```
\exists p.
There exists an algorithm \mathcal{P}
                                                      \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                                 r \perp \text{TRUE} \iff ???
              and returns \mathbf{TRUE} iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

```
\exists p.
There exists an algorithm \mathcal{P}
                                                    \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                               r \perp \text{TRUE} \iff ???
              and returns TRUE iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

Solution:

```
There exists an algorithm \mathcal{P}
                                                   \exists p.
                                                        \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                                  r \perp \text{TRUE} \iff ???
              and returns \mathbf{TRUE} iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

Solution:

• define depth of a formula: alternations of \exists/\lor and \forall/\land

```
\exists p.
There exists an algorithm \mathcal{P}
                                                      \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                                r \perp \text{TRUE} \iff ???
              and returns TRUE iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

Solution:

- define depth of a formula: alternations of \exists/\lor and \forall/\land
- formulate decidability of depth-n fragments for specific n

```
\exists p.
There exists an algorithm \mathcal{P}
                                                      \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                                r \perp \text{TRUE} \iff ???
              and returns TRUE iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

Solution:

- define depth of a formula: alternations of \exists/\lor and \forall/\land
- formulate decidability of depth-n fragments for specific n
- study these sentences

Part 2.a

Reversing Büchi

(Kołodziejczyk, Michalewski, Pradic, S. [2016])

The MSO theory of (ω,s) is decidable.

The MSO theory of (ω,s) is decidable.

The MSO theory of (ω,s) is decidable.

The $\mbox{\scriptsize MSO}$ theory of $\left(\omega,s\right)$ is decidable.

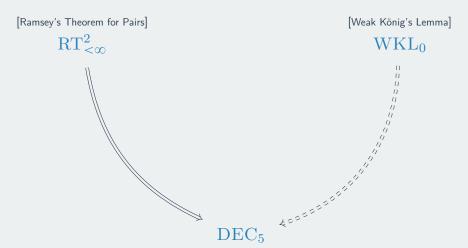
 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \mathsf{depth}$ -n fragment of MSO on words is decidable

[Ramsey's Theorem for Pairs]

$$RT^2_{<\infty}$$

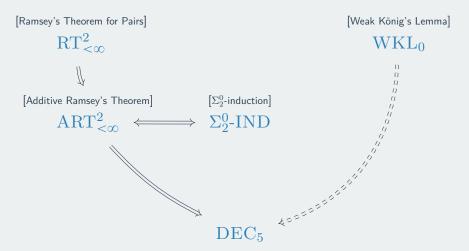
The MSO theory of (ω,s) is decidable.

 $\mathrm{DEC}_n \stackrel{\mathrm{def}}{=} \mathrm{depth}\text{-}n$ fragment of $_{\mathrm{MSO}}$ on words is decidable

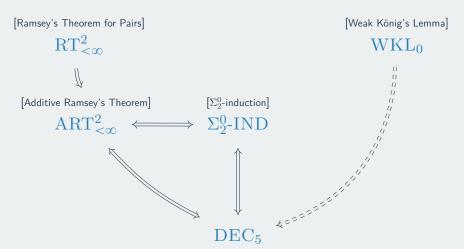


The MSO theory of (ω, s) is decidable.

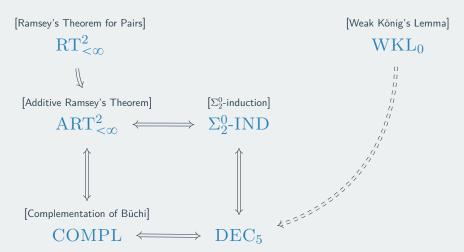
The MSO theory of (ω, s) is decidable.



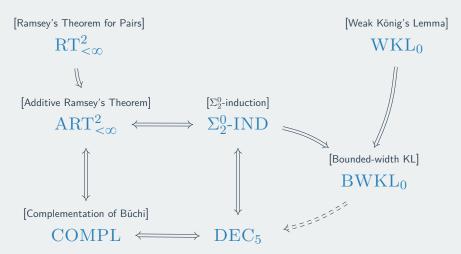
The MSO theory of (ω, s) is decidable.



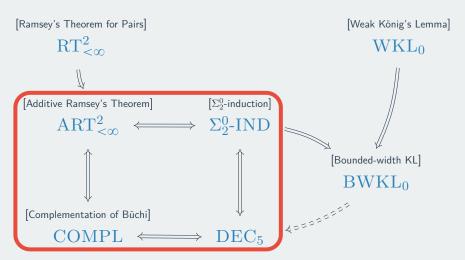
The MSO theory of (ω,s) is decidable.



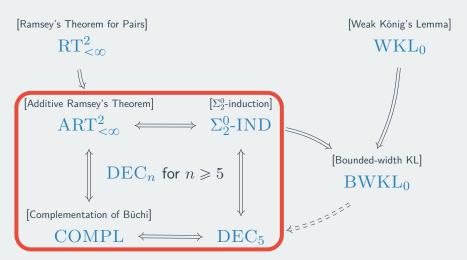
The MSO theory of (ω, s) is decidable.

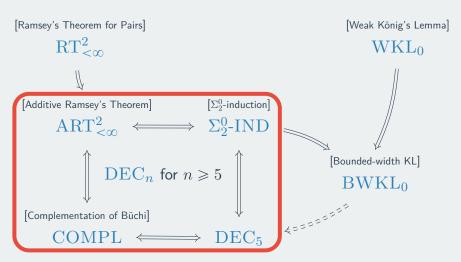


The MSO theory of (ω, s) is decidable.



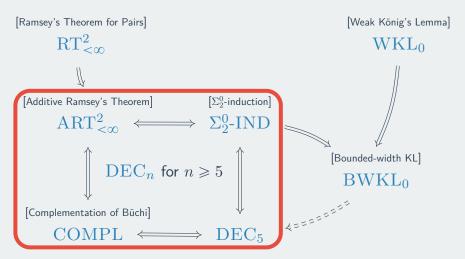
The MSO theory of (ω, s) is decidable.





Theorem (Kołodziejczyk, Michalewski, Pradic, S. [2016])

The following holds over RCA₀:



Part 2.b

Reversing Rabin

(Kołodziejczyk, Michalewski [2016])

The $\mbox{\scriptsize MSO}$ theory of $\left(\{0,1\}^{<\omega},s_0,s_1\right)$ is decidable.

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

 χ -CA $_0$ — comprehension for χ formulæ:

The MSO theory of $(\{0,1\}^{<\omega}, s_0, s_1)$ is decidable.

$$\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$$
 fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ:

If
$$P(n)$$
 is in χ then

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

$$\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$$
 fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ:

$$\left\{ \begin{array}{l}
\text{If } P(n) \text{ is in } \chi \text{ then} \\
\left\{ n \mid P(n) \right\} \text{ is a set}
\end{array} \right.$$

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ:

[In ${
m RCA}_0$ we have $\Delta_1^0\text{-}{
m CA}_0$]

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ:

 $\left\{ \begin{array}{c}
\text{If } P(n) \text{ is in } \chi \text{ then} \\
\left\{ n \mid P(n) \right\} \text{ is a set}
\right\}$

Theorem (Kołodziejczyk, Michalewski [2016])

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In RCA $_0$ we have Δ_0^0 -CA $_0$]

 $\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$

Theorem (Kołodziejczyk, Michalewski [2016])

• $RCA_0 + \Pi_3^1 - CA_0 \vdash DEC_n$ for every n

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In $_{\mathrm{RCA}_0}$ we have Δ_0^0 -CA $_0$]

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

Theorem (Kołodziejczyk, Michalewski [2016])

- $RCA_0 + \Pi_3^1 CA_0 \vdash DEC_n$ for every n
- $RCA_0 + \Delta_3^1 CA_0 \not\vdash DEC_3$

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In $_{\mathrm{RCA}_0}$ we have Δ_0^0 -CA $_0$]

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

Theorem (Kołodziejczyk, Michalewski [2016])

- $RCA_0 + \Pi_3^1 CA_0 \vdash DEC_n$ for every n
- $RCA_0 + \Delta_3^1 CA_0 \not\vdash DEC_3$
- Let Ψ express (essentially) determinacy of $\mathcal{BC}(\Sigma_2^0)$ games

The MSO theory of $(\{0,1\}^{<\omega},s_0,s_1)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In $_{\rm RCA}$ 0 we have Δ_1^0 -CA $_0$]

$$\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

Theorem (Kołodziejczyk, Michalewski [2016])

- $RCA_0 + \Pi_3^1 CA_0 \vdash DEC_n$ for every n
- $RCA_0 + \Delta_3^1 CA_0 \not\vdash DEC_3$
- ullet Let $oldsymbol{\Psi}$ express (essentially) determinacy of $\mathcal{BC}(oldsymbol{\Sigma}_2^0)$ games

then
$${
m RCA}_0 \vdash \left({
m COMPL} \Longleftrightarrow \pmb{\Psi}\right)$$

(where COMPL is Rabin's complementation)

Various aspects of decidability of Monadic Second-order logic

Various aspects of decidability of Monadic Second-order logic

In many cases:

Various aspects of decidability of Monadic Second-order logic

In many cases:

topological complexity \cong undecidability

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity \cong undecidability (of available sets) (of the theory)
```

Various aspects of decidability of Monadic Second-order logic

In many cases:

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

```
expressibility \cong axiomatic strength
```

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

```
expressibility \cong axiomatic strength (of the logic) (needed for decidability)
```

Various aspects of decidability of Monadic Second-order logic

In many cases:

Even for decidable theories:

```
expressibility \cong axiomatic strength (of the logic) (needed for decidability)
```

connections with classical problems of reverse mathematics