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History — why MSoO logic?
(Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an inter-
mediate type of definition, in which sets of natural numbers but no
other sets are allowed. Thus we will have variables g, b, ¢, - - - which
represent natural numbers, and variables 4, B, C, - - - which repre-
sent sets of natural numbers. The term restricted set theory will refer
to the use of just these types of variables. A definition using such
variables will be called a restricted sei-theoretical definition. As exam-
ples of definitions of this type, we may give

a<bs(VABEAA A)xC A2 C A) Aad 4]
and
a=0(mod2) > A0 E A4 A A)xE A—4a" € 4)—aE 4]

Specifically, Tarski has proposed the following two problems.

ProBLEM 1. Is it possible to give a restricted set-theoretical defini-
tion of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural
numbers based on the notion of successor and using restricted set
theory?

Michat Skrzypczak Connecting decidability and complexity for Mso logic 1/ 21



History — why MSoO logic?
(Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an inter-
mediate tvpe of definition, in which sets of natural numbers but no
other sets are allowed. Thus we will have variables g, b, ¢, - - - which
represent natural numbers, and variables 4, B, C, - - - which repre-
sent sets of natural numbers. The term restricted set theory will refer
to the use of just these types of variables. A definition using such
variables will be called a restricted sei-theoretical definition. As exam-
ples of definitions of this type, we may give

a<bs(VABEAA A)xC A2 C A) Aad 4]
and
a=0(mod2) > AN EA A A)xE A" E 4)>aE A

Specifically, Tarski has proposed the following two problems.

ProBLEM 1. Is it possible to give a restricted set-theoretical defini-
tion of addition of natural numbers in terms of successor?

PRrROBLEM 2. Is there a decision method for the arithmetic of natural
numbers based on the notion of successor and using restricted set
theory?

Michat Skrzypczak Connecting decidability and complexity for Mso logic 1/ 21



History — why MSoO logic?
(Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an inter-
mediate type of definition, in which sets of natural numbers but no
other sets are allowed. Thus we will have variables g, b, ¢, - - - which
represent natural numbers, and variables 4, B, C, - - - which repre-
sent sets of natural numbers. The term restricted set theory will refer
to the use of just these types of variables. A definition using such
variables will be called a restricted sei-theoretical definition. As exam-
ples of definitions of this type, we may give

a<bs(VABEAA A)xC A2 C A) Aad 4]
and
a=0(mod2) > AN EA A A)xE A" E 4)>aE A

Specifically, Tarski has proposed the following two problems.

ProBLEM 1. Is it possible to give a restricted set-theoretical defini-
tion_of addition of natural numbers in_terms of successor?

PRrROBLEM 2. Is there a decision method for the arithmetic of natural
numbers based on the notion of successor and using restricted set
theory?

Michat Skrzypczak Connecting decidability and complexity for Mso logic 1/ 21



Study of automata — finite state machines

Michat Skrzypczak Connecting decidability and complexity for Mso logic 2/ 21



Study of automata — finite state machines
J. Richard Biichi [1960]

“Weak second-order arithmetic and finite automata”
Zeitschrift fiir math. Logik und Grundlagen der Math., 6:66-92, 1960.
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Zeitschrift fiir math. Logik und Grundlagen der Math., 6:66-92, 1960.

Calvin C. Elgot [1961]
“Decision problems of finite automata design and related arithmetics”
Trans. Amer. Math. Soc., 98:21-51, January 1961.

Boris A. Trakhtenbrot [1962]
“Finite automata and the logic of one-place predicates”
Siberian Math. J., 3:103-131, 1962.

(English translation in: AMS Transl. 59 (1966) 23-55.)
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= © Vv tﬁ, —1),  predicates

[:U, 1y — nodes of the structure]

Monadic second-order (MsO) logic:

+3X7 reX

[X, Y — sets of nodes of the structure]

v~ expressive power subsuming LTL, CTL*, modal p-calculus, ...

If ¢ is over A then define set of words / trees over A:
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These are all the same: for ¢ over A consider
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Decidability
Theorem (Biichi [1962] / Rabin [1969])
The MSO theory of (w,s) / ({O, 1}=v 50,51) is decidable.
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Decidability
Theorem (Biichi [1962] / Rabin [1969])
The MSO theory of (w,s) / ({O, 1}=v 50,51) is decidable.

There exists an algorithm P
such that for every formula ¢
the execution P(y) terminates

and returns TRUE iff @ is true
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Topology of infinite words / trees
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words — A%

(2< |A| <f>0)

W
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Topology of infinite words / trees

(2< |A| <f»0)

words — A% A({L’R}<w)— trees
W e
{0, 1}
112

| |
— o == the Cantor set mm == —
| N | | N | | N | | N | | N | | | | N | | N |

L(p) = set of points
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Start from simple sets
v open (X9) and closed (I19)

Apply countable unions (| J)
and countable intersections ([)

. 30 770
v~ Borel sets: 30, II; for n < w;

Apply projection and co-projection

v~ analytic (1) and co-analytic (I13)

By induction

> projective sets: X1, IIL for n < w

Michat Skrzypczak
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Upper bounds
on trees

3X ~~ projection A x {0,1} - A

@ € MSO = L(ip) € L (for some n) =
—

MSO on words = deterministic aut. =

¢ on words = L(p) € A

MSO on trees = non-deterministic aut.
¢ on trees = L(p) € A}

v on words

=~
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Upper bounds

3X ~~ projection A x {0,1} - A
@ € MSO = L(ip) € L (for some n) =

MSO on words = deterministic aut.

¢ on words = L(p) € A

MSO on trees = non-deterministic aut.

¢ on trees = L(p) € A}

Theorem (Niwinski [1985])

There exists a non-Borel (21-compl.) v on words

set definable in MSO.
A

1
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wo L) € AL [there are examples when L(yp) ¢ o(21)]

Is () measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Languages W; ; are complete for the levels of R-hierarchy.

Is the Gale-Stewart game on L(p) determined ?
2?7

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 21



Extensions of MSO

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 21



Extensions of MSO

UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 21



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 21



Extensions of MSO
UX. p(X) = Vn 3X o(X) A n<|X]| <.
“©(X) holds for arbitrarily big finite sets”

Large expressive power: cost functions, distance automata, ...
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Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”
Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojariczyk [2004])
The MSO-+U theory of (w, s) is decidable.

Theorem (Hummel, S. [2012])
For every n there is a formula ¢,, of MSO+U on words

such that L(ip,,) is X.-complete.

> No reasonable automaton model for MSO+U
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Part 1’

Topological complexity vs. decidability



Theorem (Shelah [1975]; Gurevich, Shelah [1982])
The theory Mso of ({0, 1}, <jex) is undecidable.
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Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A“
then it is consistent with zZFC that:
the L-theory of ({07 1}=v, 30,81) is undecidable.
Proof

work in the constructible universe of Godel (V=L)

repeat Shelah’s inductive construction of )
e V=L w~ there exists a Al well-order on {0,1}*
o Qe X

> Shelah's proof can be repeated in £ on trees
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Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A“
then it is consistent with zZFC that:
the L-theory of ({0, 1}=v, 30,31) is undecidable.
Proof

work in the constructible universe of Godel (V=L)

repeat Shelah’s inductive construction of )
e V=L w~ there exists a Al well-order on {0,1}*
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Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A¥
then it is consistent with zZFC that:
the L-theory of ({07 1}<w,so,81) is undecidable.

Corollary (Bojanczyk, Gogacz, Michalewski, S. [2014])

It is consistent with zFC that

the MSO-+U-theory of ({O, 1}<"J,30,51) is undecidable.
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Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A¥
then it is consistent with zZFC that:
the L-theory of ({O, 1}<w,so,81) is undecidable.

Corollary (Bojanczyk, Gogacz, Michalewski, S. [2014])
It is consistent with ZFC that

the MSO-+U-theory of ({O, 1}<"J,30,51) is undecidable.

Theorem (Bojanczyk, Parys, Toruniczyk [2016])
The MSO+U-theory of (w,s) is undecidable.
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Part 2

Reverse mathematics



Reverse maths: go from theorems to axioms (Friedman [1975])
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1.a Take (w,0,1,+,-) as universe
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There exists an algorithm P dp.
such that for every formula ¢ Vf.
the execution P(p) terminates dr.
and returns TRUE iff ¢ is true r|TRUE <= 1777

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

Solution:
e define depth of a formula: alternations of 3/v and V/A
e formulate decidability of depth-n fragments for specific n

e study these sentences
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Part 2.a

Reversing Biichi

(Kotodziejczyk, Michalewski, Pradic, S. [2016])



Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.
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Theorem (Kotodziejczyk, Michalewski, Pradic, S. [2016])
The following holds over RCA(:
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Part 2.b

Reversing Rabin

(Kotodziejczyk, Michalewski [2016])



Theorem (Rabin [1969])
The MSO theory of ({0, 1}=% s, 51) is decidable.
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Theorem (Rabin [1969])
The MSO theory of ({0, 1}=% s, 51) is decidable.

DEC,, &f IT! fragment of MSO on trees is decidable

{ If P(n) isin X then }

X-CAy — comprehension for X formulae: (| P(m)} is a set

[In RcAg we have AY-CA]
Theorem (Kotodziejczyk, Michalewski [2016])
° RCAO—l-H:l;—CAO F DEC,, for every n
e RCAg+AL-CAq 1~ DEC;
o Let W express (essentially) determinacy of BC(X9) games

then RCAg - (COMPL < ¥)
(where COMPL is Rabin’s complementation)
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In many cases:
topological complexity =~ undecidability

(of available sets) (of the theory)

v~ tools from descriptive set theory

Even for decidable theories:
expressibility =~ axiomatic strength
(of the logic) (needed for decidability)

v~ connections with classical problems of reverse mathematics
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