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History: why MSsO logic?
(Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an inter-
mediate type of definition, in which sets of natural numbers but no
other sets are allowed. Thus we will have variablesa, b, ¢, - - -+ which
represent natural numbers, and variables 4, B, C, - - - which repre-
sent sets of natural numbers. The term restricted set theory will refer
to the use of just these types of variables. A definition using such
variables will be called a restricted set-theoretical definition. As exam-
ples of definitions of this type, we may give

a<bo(VADBEAA A)xC A—2E A) Aad 4]

and

a=0(mod2) > ANAD[0E A A N)(xaE A4 — 2" € A) >aC A

Specifically, Tarski has proposed the following two problems.

ProBLEM 1. Is it possible to give a restricted set-theoretical defini-
tion of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural
numbers based on the notion of successor and using restricted set
theory?
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Logic
First-order (FO) logic:
= © Vv ¢, —1),  predicates

[:U, 1y — nodes of the structure]

Monadic second-order (MsO) logic:

+3x, reX

[X, Y — sets of nodes of the structure]

v~ expressive power subsuming LTL, CTL*, modal p-calculus, ...

¢ defines a language (set of words / trees):

L(p) & {M | M E ¢}
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tree  that satisfies ¢

trees (over an alphabet A)

trees  satisfy

These are all the same: for ¢ over A consider

31X, ... X.. (X's are a partition) A pla(z) > z € X,, ...
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Proofs: automata A
e Construct automata for basic languages:
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such that for every formula ¢
— _ _
the execution P(y) terminates

and returns TRUE iff ¢ is true.
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Topological complexity



Topology of infinite words / trees

Michat Skrzypczak Connecting decidability and complexity for Mso logic 7/ 24



Topology of infinite words / trees

(QS\A\ <oo)

Michat Skrzypczak Connecting decidability and complexity for Mso logic 7/ 24



Topology of infinite words / trees

(QS\A\ <oo)

words — A%

Michat Skrzypczak Connecting decidability and complexity for Mso logic 7/ 24



Topology of infinite words / trees

(QS\A\ <oo)

words — A% A({L’R}*) — trees

Michat Skrzypczak Connecting decidability and complexity for Mso logic 7/ 24



Topology of infinite words / trees

(QS\A\ <oo)

words — A% A({L’R}*) — trees
N 7p

{0, 1}

Michat Skrzypczak Connecting decidability and complexity for Mso logic 7/ 24



Topology of infinite words / trees

(QS\A\ <oo)

words — A% A({L’R}*) — trees
N 7p
{0, 1}
Il

Michat Skrzypczak Connecting decidability and complexity for Mso logic 7/ 24



Topology of infinite words / trees

(2< |A| <oo)

words — A% A({L’R}*) — trees
W e
{0, 1}
112
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Topology of infinite words / trees

(2< |A| <oo)

words — A% A({L’R}*) — trees
W e
{0, 1}
112

— — — —
- . mm mm the Cantorset == =m - .
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Topology of infinite words / trees

(2< |A| <oo)

words — A% A({L’R}*) — trees
W e
{0, 1}
Il

—— ——
— — — —
- . mm mm the Cantorset == =m - .
EE Em EE Em EE Em EE Em
TR IR TR IR TR IR TR IR

L(p) = set of points
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o L e AYiff L depends on finite prefix
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Apply countable connectives (| J) and ()
v~ open (X9) and closed (I19)

By transfinite induction
v Borel sets: 30, IIY for 1) < w;
[Borel=o(AY)]

Apply projection and co-projection
v~ analytic (21) and co-analytic (I13)

Michat Skrzypczak Connecting decidability and complexity for Mso logic 8/ 24



Descriptive set theory
Start from simple sets

w L e AYiff L depends on finite prefix

Apply countable connectives (| J) and ()
v~ open (X9) and closed (I19)

By transfinite induction
v Borel sets: 30, IIY for 1) < w;
[Borel=o(AY)]

Apply projection and co-projection

v~ analytic (21) and co-analytic (I13)

By induction

Michat Skrzypczak Connecting decidability and complexity for Mso logic 8/ 24



Descriptive set theory
Start from simple sets

w L e AYiff L depends on finite prefix

Apply countable connectives (| J) and ()
v~ open (X9) and closed (I19)

By transfinite induction
v Borel sets: 30, IIY for 1) < w;
[Borel=o(AY)]

Apply projection and co-projection

v~ analytic (21) and co-analytic (I13)

By induction

Michat Skrzypczak Connecting decidability and complexity for Mso logic 8/ 24



Descriptive set theory

Start from simple sets

w L e AYiff L depends on finite prefix

Apply countable connectives (| J) and ()
v~ open (X9) and closed (I19)

By transfinite induction
v Borel sets: 30, IIY for 1) < w;
[Borel=o(AY)]

Apply projection and co-projection

v~ analytic (21) and co-analytic (I13)

By induction

s projective sets: X1, TIL for n < w

Michat Skrzypczak Connecting decidability and complexity for Mso logic

8/ 24



Upper bounds

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds
3X v~ projection A x {0,1} —> A

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
0 =3X1VXs...3Xn. ¥, © EMSO

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(SO) = 7]'(7( e W(L(¢)) 0o .) c E,}l

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(SO) = 7]'(7( e W(L(¢)) 0o .) c E,}l

MSO on words = deterministic aut. A

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
p=3X1VXs2...3X,. ¥, @ eMSO
L(w) = (7 (- m(L®)) ) € 3y

MSO on words = deterministic aut. A

L(A) € BC(inf(q))eeq

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds
3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L) =n(@(--- (L)) e =,
MSO on words = deterministic aut. A
L(A) € BC(inf(q))geq
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(SO) = 71'(7( e W(L(¢)) 0o .) c E}l

MSO on words = deterministic aut. A
L(A) € BC(inf(q))eq
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(SO) = 71'(7( e W(L(¢)) 0o .) c E}l

MSO on words = deterministic aut. A
L(A) € BC(inf(@))geq € Al
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
p=3X1VXy...3X,. ¥, p€EMSO
L(p) =n(@(---m(L(¥)--) € Xy,

MSO on words = deterministic aut. A
L(A) € BC(inf(q))eq € Al
inf(q) = {we A |Vz e w Iy > =.

A reaches ¢ at y on w}

“NU (.} em

T y>x

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(QO) = ﬂ(ﬁ( e W(L(¢)) 0o .) c E}l

MSO on words = deterministic aut. A
L(A) € BC(inf(@))geq € Al
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

on words

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds
3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L) =n(@(--- (L)) e =,
MSO on words = deterministic aut. A
L(4) € BC(inf(q))yeq < Al
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

MSO on trees = non-det. aut. A

on words

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(QO) = ﬂ(ﬁ( e W(L(¢)) 0o .) c 271?,

MSO on words = deterministic aut. A
L(A) € BC(inf(@))geq € Al
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

MSO on trees = non-det. aut. A
L(A) ={t|3p Vn.

v on words

Aj

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(QO) = ﬂ(ﬁ( e W(L(¢)) 0o .) c 271?,

MSO on words = deterministic aut. A
L(A) € BC(inf(@))geq € Al
inf(q) = {we A |Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

MSO on trees = non-det. aut. A
L(A) ={t|3p Vn.

p is accepting on 7r}

v on words

Aj

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
¢ =3X1YXs...3Xn. ¥, © EMSO
L(QO) = ﬂ(ﬁ( e 7T(L(’¢)) 00 .) c 271?,

MSO on words = deterministic aut. A
L(A) € BC(inf(@))geq € Al
inf(q) = {we A¥ | Vz e w Iy > =.
A reaches ¢ at y on w}

=NU{...} emg

T y>x

MSO on trees = non-det. aut. A
L(A) ={t|3p Vn.
p is accepting on 7r}

—r(@({...})) e =

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24




Upper bounds

3X v~ projection A x {0,1} —> A
p=31X1VXy...3X,. ¥, @EMSO
Lip) = m(@(---m (L)) ---) € 2,

MSO on words = deterministic aut. A
L(A) € BC(inf(q))eq € A
inf(q) = {we A |Vz e w Iy > =.

A reaches g at y on w} e

=NU{...} emg

T y>x

MSO on trees = non-det. aut. A
L(A) ={t|3p Vn.
p is accepting on 7r}

—r(@({...})) e =

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Upper bounds

3X v~ projection A x {0,1} —> A
p=31X1VXy...3X,. ¥, @EMSO
Lip) = m(@(---m (L)) ---) € 2,

MSO on words = deterministic aut. A
L(A) € BC(inf(q))eq € A
inf(q) = {we A¥ | Vz e w Iy > =.

A reaches ¢ at y on w} T ——————————

=NU{...} emg

T y>x

MSO on trees = non-det. aut. A
L(A) ={t|3p Vn.
p is accepting on 7r}

—r(@({...})) e =

Michat Skrzypczak Connecting decidability and complexity for Mso logic 9/ 24



Lower bounds

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof

L« {t | t has an infinite chain of a}

1

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof

L« {t | t has an infinite chain of a}

1

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof

L« {t | t has an infinite chain of a}

= {t | Ja € {L,r}“. t, has inf. many a}

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof
L« {t | t has an infinite chain of a}
= {t | Ja € {L,r}“. t, has inf. many a}

—n(...)es!

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof
L« {t | t has an infinite chain of a}
= {t | Ja € {L,r}“. t, has inf. many a}
=m(...)eXx]

+ a reduction for hardness

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof
L« {t | t has an infinite chain of a}
= {t | Ja € {L,r}“. t, has inf. many a}
=m(...)eXx]
+ a reduction for hardness M

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof
L« {t | t has an infinite chain of a}
= {t | Ja € {L,r}“. t, has inf. many a}
=m(...)eXx]
+ a reduction for hardness M

+ many more examples
(Skurczynski [1993])
(Arnold [1999])

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Lower bounds

Theorem (Niwinski [1985])
There exists 31-complete (i.e. non-Borel)

MSO-definable tree language.

Proof
L« {t | t has an infinite chain of a}
= {t | Ja € {L,r}“. t, has inf. many a}
=m(...)eXx]
+ a reduction for hardness M

+ many more examples
(Skurczynski [1993])
(Arnold [1999])

Michat Skrzypczak Connecting decidability and complexity for Mso logic 10 / 24



Topological properties

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]

Is L(,p) measurable?

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]
Is L(,p) measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]
Is L(,p) measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]
Is L(,p) measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

When L(yp) is Borel ?

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]
Is L(,p) measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.
When L(yp) is Borel ?

On-going story: Skurczynski, NiwiAski, Walukiewicz, Facchini, Murlak, S., ...

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]
Is L(,p) measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.
When L(yp) is Borel ?

On-going story: Skurczynski, NiwiAski, Walukiewicz, Facchini, Murlak, S., ...

Is the Gale-Stewart game on L(p) determined ?

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Topological properties [ EMSO on trees]
Is L(,p) measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])
If ¢ € MSO on trees then L(y) is an R-set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.
When L(yp) is Borel ?

On-going story: Skurczynski, NiwiAski, Walukiewicz, Facchini, Murlak, S., ...

Is the Gale-Stewart game on L(p) determined ?
2772

Michat Skrzypczak Connecting decidability and complexity for Mso logic 11 / 24



Part 1’

Topological complexity vs. decidability



Extensions of MSO

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO

UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. p(X) = Vn 3X o(X) A n<|X]| <.
“©(X) holds for arbitrarily big finite sets”

Large expressive power: cost functions, distance automata, ...

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”
Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”
Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojariczyk [2004])
The MSO-+U theory of (w, s) is decidable.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”
Example
The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojariczyk [2004])
The MSO-+U theory of (w, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula ¢,, of MSO+U on words

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”
Example
The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojariczyk [2004])
The MSO-+U theory of (w, s) is decidable.

Theorem (Hummel, S. [2012])
For every n there is a formula ¢,, of MSO+U on words

such that L(ip,,) is X.-complete.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Extensions of MSO
UX. o(X) = Vn. 3X. p(X) A n<|X]| < .

“©(X) holds for arbitrarily big finite sets”
Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojariczyk [2004])
The MSO-+U theory of (w, s) is decidable.

Theorem (Hummel, S. [2012])
For every n there is a formula ¢,, of MSO+U on words

such that L(ip,,) is X.-complete.

> No reasonable automaton model for MSO+U

Michat Skrzypczak Connecting decidability and complexity for Mso logic 12 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof

e construct a ultrafilter-like set @ < {r,r}"

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof

e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof
e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}*

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof
e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}*

Michat Skrzypczak Connecting decidability and complexity for Mso logic

13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof
e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}* [ |

Conjecture (Shelah [1975])
The theory MsO(Borel) of ({L,r}*, <jex) is decidable.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof
e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}* [ |

Conjecture (Shelah [1975])
The theory MsO(Borel) of ({L,r}*, <jex) is decidable.

Theorem (Rabin [1969])
The theory MSO(X9) of ({L,R}*, <jex) is decidable.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof

e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}* [ |

Conjecture (Shelah [1975])
The theory MsO(Borel) of ({L,r}*, <jex) is decidable.

Theorem (Rabin [1969])
The theory MSO(X9) of ({L,R}*, <jex) is decidable.
Proof

e MSO on words defines 39-complete sets

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof

e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}* [ |

Conjecture (Shelah [1975])
The theory MsO(Borel) of ({L,r}*, <jex) is decidable.

Theorem (Rabin [1969])

The theory MSO(X9) of ({L,R}*, <jex) is decidable.
Proof

e MSO on words defines 39-complete sets

e simulate quantification over X9 ({t,r}*) within {r,r}*

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof
e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}* [ |

Conjecture (Shelah [1975])
The theory MsO(Borel) of ({L,r}*, <jex) is decidable.

Theorem (Rabin [1969])

The theory MSO(X9) of ({L,R}*, <jex) is decidable.
Proof

e MSO on words defines 39-complete sets

e simulate quantification over X9 ({t,r}*) within {r,r}*

e apply decidability of MSO on trees

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Shelah [1975], Gurevich, Shelah [1982])
The theory MSO of ({L,r}*, <jex) is undecidable.
Proof
e construct a ultrafilter-like set @ < {r,r}* (transfinite induction)

e use () to simulate relations on w inside {r,&}* [ |

Conjecture (Shelah [1975])
The theory MsO(Borel) of ({L,r}*, <jex) is decidable.

Theorem (Rabin [1969])

The theory MSO(X9) of ({L,R}*, <jex) is decidable.
Proof

e MSO on words defines 39-complete sets

e simulate quantification over X9 ({t,r}*) within {r,r}*

e apply decidability of MSO on trees |

Michat Skrzypczak Connecting decidability and complexity for Mso logic 13 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])

If £ is an extension of MSO such that

Michat Skrzypczak Connecting decidability and complexity for Mso logic 14 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that

L defines 3}-complete sets in A¥

Michat Skrzypczak Connecting decidability and complexity for Mso logic 14 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A¥

then it is consistent with ZFC that:

Michat Skrzypczak Connecting decidability and complexity for Mso logic 14 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A¥
then it is consistent with zZFC that:
the L-theory of ({L,R}*,SL,SR) is undecidable.

Michat Skrzypczak Connecting decidability and complexity for Mso logic 14 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A“
then it is consistent with zZFC that:
the L-theory of ({L,R}*,SL,SR) is undecidable.
Proof

Michat Skrzypczak Connecting decidability and complexity for Mso logic 14 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A“
then it is consistent with zZFC that:
the L-theory of ({L,R}*,SL,SR) is undecidable.
Proof

e work in the constructible universe of Gédel (v=L)

Michat Skrzypczak Connecting decidability and complexity for Mso logic 14 / 24



Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
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then it is consistent with zZFC that:
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Theorem (Bojanczyk, Gogacz, Michalewski, S. [2014])
If £ is an extension of MSO such that
L defines 3}-complete sets in A¥
then it is consistent with zZFC that:
the L-theory of ({L,R}*,SL,SR) is undecidable.

Corollary (Bojaniczyk, Gogacz, Michalewski, S. [2014])
It is consistent with zZFC that

the MSO+U-theory of ({L,R}*, S, sR) is undecidable.

Theorem (Bojanczyk, Parys, Toruniczyk [2016])
The MsO+U-theory of (w,s) is undecidable.

v~ Further results (Bojanczyk et al. [2017]):
The MsO+periodic-theory of (w, s) is undecidable.
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Part 2

Reverse mathematics



Reverse maths: go from theorems to axioms (Friedman [1975])
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Reverse maths: go from theorems to axioms (Friedman [1975])
1. Use Second-order Arithmetics:
1.a Take (w,0,1,+,-) as universe
[the FO theory of (w,0,1, +,-) is undecidable !]
1.b Formalise your theorem as a statement ¥ of So:
e addition and multiplication
e standard first-order logic: dz, v, —, ...
e full second-order logic:

quantification over relations, functions, orders, etc over w

> automaton, algorithm, formula, finite graph, etc are numbers
(first-order objects)
v~ infinite word, real number, countable graph, etc are sets of numbers
(second-order objects)
BUT: No third-order objects (like languages. .. )
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Reverse maths: go from theorems to axioms (Friedman [1975])

2. Work in RCAq:
2.a axioms of Robinson arithmetic — PA without induction

( ~T7 axioms about addition and muItipIication)

2.b restricted form of the induction scheme:

(¢(0) A V. () = d(n + 1)) = Vn. p(n)

only for ¢ € X9 (i.e. recursively enumerable
y 1 y

2.c restricted form of the comprehension scheme:
31X Vn. (n eX < 1/1(71)) i.e. {n](n)} exists
only for ) € A (i.e. decidable)

Rule of thumb: RCA( proves everything about finite combinatorics
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Reverse maths: go from theorems to axioms (Friedman [1975])
3. Understand the strength of your theorem W:

3.a Find additional axioms A that are needed by ¥
— induction for more formulae
comprehension for more formulae

—
—> some known mathematical statement
—

3.b Prove that RCA - (A < U)
RCAg+A - ¥ v prove ¥ using A
(massage the standard proof of ¥)

RCAg =¥ = A v prove that A is needed

(reverse the implication)
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Formalising decidability

There exists an algorithm P dp.
such that for every formula ¢ Vf.
the execution P(p) terminates dr.
and returns TRUE iff ¢ is true r|TRUE <= 1777

Theorem (Tarski [1936])
There is no arithmetic definition of truth.
v~ no formula ¢ such that
Vf. &(f) holds iff [ f] holds
Solution:
e define depth of a formula: alternations of 3/v and V/A
e formulate decidability of depth-n fragments for specific n

e study these sentences

Michat Skrzypczak Connecting decidability and complexity for Mso logic 19 / 24



Part 2.a

Reversing Biichi

(Kotodziejczyk, Michalewski, Pradic, S. [2016])



Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.
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Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.

DEC,, def depth-n fragment of MSO on words is decidable

{Every colouring of [w]?

[Ramsey’s Theorem for Pairs]

RTZ

has infinite monochromatic set

DEC;
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Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.
DEC,, def depth-n fragment of MSO on words is decidable
Every infinite binary tree .
has infinite branch [Weak Konig's Lemma]
WKL

[Ramsey’s Theorem for Pairs]

2
RTZ .
]
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Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.

DEC,, def depth-n fragment of MSO on words is decidable

[Ramsey’s Theorem for Pairs]

RTZ

|

[Additive Ramsey's Theorem]

ART?2 , <—— XJIND

[Complementation of Biichi]

COMPL «——— DEC;

Connecting decidability and complexity for Mso logic

[Weak Kénig's Lemma]

WKLy

20 / 24



Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.

DEC,, def depth-n fragment of MSO on words is decidable

amsey's Theorem for Pairs eak Konig's Lemma
R 's Th for P Weak K 's L.
2
RT2 WKL
[Additive Ramsey's Theorem] [29-induction]

ART?2 , <—— XJIND -

[Bounded-width KL]

BWKL,

[Complementation of Biichi]

COMPL <—— DEC; **
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Theorem (Biichi [1962])
The MSO theory of (w, s) is decidable.

DEC, = depth-n fragment of MSO on words is decidable

[Ramsey’s Theorem for Pairs] [Weak Kénig's Lemma]
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Why 29-IND?
Fact (RCA)
¥9-IND is equivalent to:

For every n and a € {0,1,...,n}¥

there exists a maximal k < n (%)

that appears infinitely many times in «.

(VSN

x) follows from Additive Ramsey's Theorem

é

*) can be expressed in MSO on words

é

(*)
(*)
(%) can be verified by a Biichi automaton
(*)

é

*) is needed to make any sense out of parity automata

(McNaughton and Safra constructions)
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Part 2.b

Reversing Rabin

(Kotodziejczyk, Michalewski [2016])



Theorem (Rabin [1969])
The MSO theory of ({L,R}*, St, SR) is decidable.
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Theorem (Rabin [1969])
The MSO theory of ({L,R}*, St, SR) is decidable.

DEC,, &f IT! fragment of MSO on trees is decidable

{ If P(n) isin X then }

X-CAy — comprehension for X formulae: (| P(m)} is a set

[In RcAg we have AQ-CA]

-CAy = X-IND
Theorem (Kotodziejczyk, Michalewski [2016]) {X ! X }

° RCAO—l—H%—CAO F DEC,, for every n
° RCAO+A§—CAO }7é DECg
o Let W express (essentially) determinacy of BC(X9) games

then RCAg - (COMPL < ¥)
(where COMPL is Rabin’s complementation)
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Part 2.b

Reversing Shelah

(Kotodziejczyk, Michalewski, Pradic, S. [20187])



Theorem (Shelah [1975])
The MSO theory of (Q, <) is decidable.
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Summary
Various aspects of decidability of Monadic Second-order logic

In many cases:
topological complexity =~ undecidability

(of available sets) (of the theory)

v~ tools from descriptive set theory

Even for decidable theories:
expressibility =~ axiomatic strength
(of the logic) (needed for decidability)

v~ connections with classical problems of reverse mathematics
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