Connecting decidability and complexity for MSO logic

Michał Skrzypczak

Structures

$$\alpha = \underbrace{a} \underbrace{-a} \underbrace{-b} \underbrace{-c} \underbrace{-c} \underbrace{-b} \underbrace{-\cdot} \cdot \cdot$$

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{c} - \underbrace{b} - \cdots$$

$$\alpha \colon \omega \to A$$

$$\alpha \in A^\omega$$

Infinite words:

 $\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$

Signature: s(x), a(x) for $a \in A$

 $\alpha \colon \omega \to A$

 $\alpha \in A^\omega$

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature:
$$s(x)$$
, $a(x)$ for $a \in A$ (or \leq)

$$\alpha \colon \omega \to A$$

$$\alpha \in A^\omega$$

Infinite words:

$$\alpha = \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

$$\begin{array}{ll} \mbox{Signature:} & s(x), \quad a(x) \mbox{ for } a \in A \\ & \mbox{ (or } \leqslant) \end{array}$$

$$\alpha \colon \omega \to A$$

$$\alpha \in A^\omega$$

no arithmetic !!!

Infinite words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

 $\big(\mathsf{or}\leqslant\big)$

no arithmetic !!!

 $\alpha \colon \omega \to A$

 $\alpha \in A^{\omega}$

${\bf Structures} \;\; {\bf over} \; {\bf an} \; {\bf alphabet} \; {\cal A}$

Infinite words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

 $(or \leqslant)$

 $\alpha \colon \omega \to A$

 $\alpha \in A^\omega$

no arithmetic !!!

$$t = \underbrace{\begin{pmatrix} b & & \\ b & & \\ b & & \\ \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} a & \\ b & \\ \\ \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} a & \\ \\ \\ \\ \end{pmatrix}}_{a} \underbrace{\begin{pmatrix} c & \\ \\ \\ \\ \\ \end{pmatrix}}_{b} \underbrace{\begin{pmatrix} c & \\ \\ \\ \\ \\ \\ \end{pmatrix}}_{b}$$

Infinite words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

Signature: s(x), a(x) for $a \in A$

(or ≤)

$\alpha \colon \omega \to A$

 $\alpha \in A^{\omega}$

no arithmetic !!!

$$t: \{L,R\}^* \to A$$

${\bf Structures} \ \ {\bf over \ an \ alphabet} \ {\cal A}$

Infinite words:

$$\alpha = \underbrace{a} \underbrace{-a} \underbrace{-b} \underbrace{-c} \underbrace{-b} \underbrace{-\cdots}$$

Signature: s(x), a(x) for $a \in A$

 $(or \leqslant)$

$\alpha \colon \omega \to A$

 $\alpha \in A^\omega$

no arithmetic !!!

$$t: \{L,R\}^* \to A$$

$$t \in A^{(\{\mathtt{L},\mathtt{R}\}^{\textstyle{*}})}$$

${\bf Structures} \ \ {\bf over} \ \ {\bf an \ \ alphabet} \ A$

Infinite words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

$$\alpha \in A^{\omega}$$

 $\alpha \colon \omega \to A$

Signature: s(x), a(x) for $a \in A$ (or \leq)

no arithmetic !!!

Infinite trees:

Signature: $s_L(x)$, $s_R(x)$, a(x) for $a \in A$

Infinite words:

$$\alpha = \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b} - \cdots$$

 $\alpha \colon \omega \to A$

 $\alpha \in A^{\omega}$

Signature:
$$s(x)$$
, $a(x)$ for $a \in A$ (or \leq)

no arithmetic!!!

Infinite trees:

 $t: \{L,R\}^* \to A$

 $t \in A^{(\{L,R\}^*)}$

Signature:
$$s_L(x)$$
, $s_R(x)$, $a(x)$ for $a \in A$ (or \leq , \leq_{lex})

Part 0

MSO logic

History: why MSO logic?

2 / 24

History: why MSO logic? (Robinson [1956])

History: why MSO logic? (Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an intermediate type of definition, in which sets of natural numbers but no other sets are allowed. Thus we will have variables a, b, c, \cdots which represent natural numbers, and variables A, B, C, \cdots which represent sets of natural numbers. The term restricted set theory will refer to the use of just these types of variables. A definition using such variables will be called a restricted set-theoretical definition. As examples of definitions of this type, we may give

$$a < b \leftrightarrow (\forall A)[b \in A \land (\land x)(x \in A \rightarrow x' \in A) \land a \notin A]$$

and

$$a \equiv 0 \pmod{2} \leftrightarrow (\bigwedge A)[0 \in A \land (\bigwedge x)(x \in A \rightarrow x'' \in A) \rightarrow a \in A].$$

Specifically, Tarski has proposed the following two problems.

PROBLEM 1. Is it possible to give a restricted set-theoretical definition of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural numbers based on the notion of successor and using restricted set theory?

History: why MSO logic? (Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an intermediate type of definition, in which sets of natural numbers but no other sets are allowed. Thus we will have variables a, b, c, \cdots which represent natural numbers, and variables A, B, C, \cdots which represent sets of natural numbers. The term restricted set theory will refer to the use of just these types of variables. A definition using such variables will be called a restricted set-theoretical definition. As examples of definitions of this type, we may give

$$a < b \leftrightarrow (\forall A)[b \in A \land (\land x)(x \in A \rightarrow x' \in A) \land a \notin A]$$

and

$$a \equiv 0 \pmod{2} \leftrightarrow (\bigwedge A)[0 \in A \land (\bigwedge x)(x \in A \rightarrow x'' \in A) \rightarrow a \in A].$$

Specifically, Tarski has proposed the following two problems.

PROBLEM 1. Is it possible to give a restricted set-theoretical definition of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural numbers based on the notion of successor and using restricted set theory?

History: why MSO logic? (Robinson [1956])

Alfred Tarski has proposed (in lectures) consideration of an intermediate type of definition, in which sets of natural numbers but no other sets are allowed. Thus we will have variables a, b, c, \cdots which represent natural numbers, and variables A, B, C, \cdots which represent sets of natural numbers. The term restricted set theory will refer to the use of just these types of variables. A definition using such variables will be called a restricted set-theoretical definition. As examples of definitions of this type, we may give

$$a < b \leftrightarrow (\forall A)[b \in A \land (\land x)(x \in A \rightarrow x' \in A) \land a \notin A]$$

and

$$a \equiv 0 \pmod{2} \leftrightarrow (\bigwedge A) \big[0 \in A \land (\bigwedge x) (x \in A \rightarrow x'' \in A) \rightarrow a \in A \big].$$

Specifically, Tarski has proposed the following two problems.

PROBLEM 1. Is it possible to give a restricted set-theoretical definition of addition of natural numbers in terms of successor?

PROBLEM 2. Is there a decision method for the arithmetic of natural numbers based on the notion of successor and using restricted set theory?

First-order (FO) logic:

First-order (FO) logic:

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \mathsf{predicates}$$

First-order (FO) logic:
$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

```
First-order (FO) logic: \exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}
```

[x, y - nodes of the structure]

Monadic second-order (MSO) logic:

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$
 [$x, y \longrightarrow \text{nodes of the structure}$]

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, x \in X$$

[X, Y - sets of nodes of the structure]

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, \quad x \in X$$

[X, Y - sets of nodes of the structure]

 \longrightarrow expressive power subsuming LTL, CTL*, modal μ -calculus, ...

$$\exists_x, \quad \varphi \lor \psi, \quad \neg \psi, \quad \text{predicates}$$

$$[x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$+ \exists_X, \quad x \in X$$

[X, Y - sets of nodes of the structure]

 \longrightarrow expressive power subsuming LTL, CTL*, modal μ -calculus, ...

 φ defines a language (set of words / trees):

$$L(\varphi) \stackrel{\mathsf{def}}{=} \{ M \mid M \models \varphi \}$$

— safety: $\forall x. \neg a(x)$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Longrightarrow x \leqslant y))$

Examples – trees

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

Examples - words

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

$$\exists X. \ (\exists x. \ x \in X) \land$$

Examples - words

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

$$\exists X. \ (\exists x. \ x \in X) \land (\forall x. \ x \in X \Rightarrow a(x)) \land$$

Examples - words

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

$$\exists X. \ (\exists x. \ x \in X) \land (\forall x. \ x \in X \Rightarrow a(x)) \land (\forall x. \ x \in X \Rightarrow \exists y. \ y \in X \land x < y)$$

Examples – words

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \leq y \lor y \leq x)$$

Examples – words

- safety: $\forall x. \neg a(x)$
- well-foundedness: $\forall X. \ (\exists x. \ x \in X) \Longrightarrow$ $(\exists x. \ x \in X \land \forall y \ (y \in X \Rightarrow x \leqslant y))$

Examples - trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

Model checking:

- input a formula φ on words / trees (with no letter predicates)
- output whether $(\omega, s) \models \varphi$ / $(\{L, R\}^*, s_L, s_R) \models \varphi$

Model checking:

- input a formula φ on words / trees $\left(\mathsf{with\ no\ letter\ predicates} \right)$
- output whether $(\omega, s) \models \varphi$ / $(\{L, R\}^*, s_L, s_R) \models \varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)

Model checking:

- input a formula arphi on words / trees $\left({}_{ ext{with no letter predicates}}
 ight)$
- output whether $(\omega, s) \models \varphi$ / $(\{L, R\}^*, s_L, s_R) \models \varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)
- output is there a $\,$ word $\,/\,$ tree $\,$ that satisfies φ

Universality:

- input a formula φ on words / trees (over an alphabet A)
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

Model checking:

- input a formula φ on words / trees $\left(\mathsf{with\ no\ letter\ predicates} \right)$
- output whether $(\omega, s) \models \varphi$ / $(\{L, R\}^*, s_L, s_R) \models \varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)

Universality:

- input a formula φ on words / trees (over an alphabet A)
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

These are all the same:

Model checking:

- input a formula arphi on words / trees $\left({}_{ ext{with no letter predicates}}
 ight)$
- output whether $(\omega, s) \models \varphi$ / $(\{L, R\}^*, s_L, s_R) \models \varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)

Universality:

- input a formula φ on $\hspace{1cm}$ words $\hspace{1cm}/\hspace{1cm}$ trees $\hspace{1cm}$ (over an alphabet $\hspace{1cm} A$)
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

These are all the same: for φ over A consider

Model checking:

- input a formula φ on $\hspace{1cm}$ words $\hspace{1cm}/\hspace{1cm}$ trees $\hspace{1cm}$ (with no letter predicates)
- output whether $(\omega, s) \models \varphi$ / $(\{L, R\}^*, s_L, s_R) \models \varphi$

Satisfiability:

- input a formula φ on words / trees (over an alphabet A)

Universality:

- input a formula φ on $\hspace{1cm}$ words $\hspace{1cm}/\hspace{1cm}$ trees $\hspace{1cm}$ (over an alphabet A)
- output whether all the $% \left\vert \phi \right\vert =0$ words / trees $% \left\vert \phi \right\vert =0$ satisfy φ

These are all the same: for φ over A consider

$$\exists X_a \dots X_z. \ (X' \text{s are a partition}) \land \varphi[a(x) \to x \in X_a, \dots]$$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{L,R\}^*,s_L,s_R)$ is decidable.

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{{\tt L},{\tt R}\}^*,s_{\tt L},s_{\tt R})$ is decidable.

Proofs: automata \mathcal{A}

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata A

• Construct automata for basic languages:

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata A

• Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata A

Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

• Implement logical operations in automata

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata A

• Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

• Implement logical operations in automata

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{L,R\}^*,s_L,s_R)$ is decidable.

Proofs: automata A

• Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata
 - (union, complementation (!), and projection (!))
- ullet Transform arphi into ${\mathcal A}$ and check if ${\rm L}({\mathcal A})=\varnothing$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata A

Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata
 - (union, complementation (!), and projection (!))
- Transform φ into \mathcal{A} and check if $L(\mathcal{A}) = \emptyset$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{\mathtt{L},\mathtt{R}\}^*,s_\mathtt{L},s_\mathtt{R})$ is decidable.

Proofs: automata A

• Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata

 (union, complementation (!), and projection (!))
- Transform φ into \mathcal{A} and check if $L(\mathcal{A}) = \emptyset$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{\mathtt{L},\mathtt{R}\}^*,s_\mathtt{L},s_\mathtt{R})$ is decidable.

Proofs: automata A

Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata $\Big(\mbox{union, complementation (!), and projection (!)} \Big)$
- Transform φ into \mathcal{A} and check if $L(\mathcal{A}) = \emptyset$

There exists an algorithm ${\cal P}$

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω,s) / $(\{L,R\}^*,s_L,s_R)$ is decidable.

Proofs: automata A

Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata $\Big(\mbox{union, complementation (!), and projection (!)} \Big)$
- ullet Transform φ into ${\mathcal A}$ and check if ${\rm L}({\mathcal A})=\varnothing$

There exists an algorithm ${\mathcal P}$ such that for every formula φ

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata A

Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata $\Big(\mbox{union, complementation (!), and projection (!)} \Big)$
- ullet Transform φ into ${\mathcal A}$ and check if ${\rm L}({\mathcal A})=\varnothing$

There exists an algorithm $\mathcal P$ such that for every formula φ the execution $\mathcal P(\varphi)$ terminates

Theorem (Büchi [1962] / Rabin [1969])

The MSO theory of (ω, s) / $(\{L, R\}^*, s_L, s_R)$ is decidable.

Proofs: automata \mathcal{A}

Construct automata for basic languages:

$$L(\mathcal{A}_{\in}) = \{ \{x\} \otimes Y \text{ over } \{0,1\}^2 \mid x \in Y \}$$

- Implement logical operations in automata $\Big(\mbox{union, complementation (!), and projection (!)} \Big)$
- ullet Transform φ into ${\mathcal A}$ and check if ${\rm L}({\mathcal A})=\varnothing$

There exists an algorithm $\mathcal P$ such that for every formula φ the execution $\mathcal P(\varphi)$ terminates and returns TRUE iff φ is true.

Part 1

Topological complexity

$$(2 \leqslant |A| < \infty)$$

$$(2 \leqslant |A| < \infty)$$

$$\operatorname{words} - A^\omega$$

$$(2 \leqslant |A| < \infty)$$

words —
$$A^{\omega}$$

words —
$$A^{\omega}$$
 $A^{(\{L,R\}^*)}$ — trees

words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^*)}$ — trees $\{0,1\}^{\omega}$

words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^*)}$ — trees $\{0,1\}^{\omega}$

words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^*)}$ — trees $\{0,1\}^{\omega}$

words —
$$A^{\omega}$$
 $A^{(\{\mathtt{L},\mathtt{R}\}^*)}$ — trees $\{0,1\}^{\omega}$

the Cantor set

words —
$$A^{\omega}$$
 $A^{(\{\mathrm{L},\mathrm{R}\}^*)}$ — trees $\{0,1\}^{\omega}$

the Cantor set

 $L(\varphi) \cong \text{set of points}$

8 / 24

Start from simple sets

 $\longrightarrow L \in \Delta^0_1$ iff L depends on finite prefix

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

Start from simple sets

 $\longrightarrow L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open $\left(\mathbf{\Sigma}_1^0\right)$ and closed $\left(\mathbf{\Pi}_1^0\right)$

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open $\left(\mathbf{\Sigma}_1^0\right)$ and closed $\left(\mathbf{\Pi}_1^0\right)$

Start from simple sets

 $\longrightarrow L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open $\left(\mathbf{\Sigma}_{1}^{0}\right)$ and closed $\left(\mathbf{\Pi}_{1}^{0}\right)$

By transfinite induction

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\cap)

 \leadsto open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

 \leadsto Borel sets: $oldsymbol{\Sigma}_{\eta}^0$, $oldsymbol{\Pi}_{\eta}^0$ for $\eta < \omega_1$

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

Borel sets:
$$\Sigma_{\eta}^{0}$$
, Π_{η}^{0} for $\eta < \omega_{1}$

$$\left[\text{Borel} = \sigma(\Delta_{1}^{0}) \right]$$

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

Borel sets:
$$\Sigma_{\eta}^{0}$$
, Π_{η}^{0} for $\eta < \omega_{1}$

$$\left[\text{Borel} = \sigma(\Delta_{1}^{0}) \right]$$

Apply projection and co-projection

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

Borel sets:
$$\Sigma_{\eta}^{0}$$
, Π_{η}^{0} for $\eta < \omega_{1}$

$$\left[\text{Borel} = \sigma(\Delta_{1}^{0}) \right]$$

Apply projection and co-projection

 \rightsquigarrow analytic $\left(\Sigma_{1}^{1}\right)$ and co-analytic $\left(\Pi_{1}^{1}\right)$

Start from simple sets

 $L \in \Delta_1^0$ iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\bigcap)

 \leadsto open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

Borel sets:
$$\Sigma_{\eta}^{0}$$
, Π_{η}^{0} for $\eta < \omega_{1}$

$$\left[\text{Borel} = \sigma(\Delta_{1}^{0}) \right]$$

Apply projection and co-projection

ightharpoonup analytic (Σ_1^1) and co-analytic (Π_1^1)

By induction

Start from simple sets

$$\longrightarrow L \in \Delta_1^0$$
 iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\cap)

$$\leadsto$$
 open (Σ_1^0) and closed (Π_1^0)

By transfinite induction

Borel sets:
$$\Sigma_{\eta}^0$$
, Π_{η}^0 for $\eta < \omega_1$

$$\left[\mathsf{Borel} = \sigma(\Delta_1^0) \right]$$

Apply projection and co-projection

$$\rightsquigarrow$$
 analytic $\left(\Sigma_{1}^{1}\right)$ and co-analytic $\left(\Pi_{1}^{1}\right)$

By induction

Start from simple sets

$$L \in \Delta_1^0$$
 iff L depends on finite prefix

Apply countable connectives (\bigcup) and (\cap)

$$\leadsto$$
 open $\left(\mathbf{\Sigma}_{1}^{0}\right)$ and closed $\left(\mathbf{\Pi}_{1}^{0}\right)$

By transfinite induction

$$\longrightarrow$$
 Borel sets: Σ^0_η , Π^0_η for $\eta<\omega_1$
$$\left[\mathrm{Borel} = \sigma(\Delta^0_1) \right]$$

Apply projection and co-projection

$$\rightsquigarrow$$
 analytic $\left(\Sigma_{1}^{1}\right)$ and co-analytic $\left(\Pi_{1}^{1}\right)$

By induction

$$\longrightarrow$$
 projective sets: Σ_n^1 , Π_n^1 for $n < \omega$

 $\exists X \leadsto \mathsf{projection}\ A \times \{0,1\} \to A$

$$\exists X \leadsto \text{projection } A \times \{0,1\} \to A$$

$$\varphi = \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO}$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathsf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathsf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathsf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathsf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words \equiv deterministic aut. ${\cal A}$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathsf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathsf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words \equiv deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q}$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words \equiv deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in \mathcal{Q}}$

$$\inf(q) = \{ w \in A^{\omega} \mid \forall x \in \omega \ \exists y > x.$$

 \mathcal{A} reaches q at y on w

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words \equiv deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in \mathcal{Q}}$

$$\inf(q) = \{ w \in A^{\omega} \mid \forall x \in \omega \ \exists y > x.$$

 \mathcal{A} reaches q at y on w

$$= \bigcap_{x} \bigcup_{y>x} \left\{ \dots \right\} \in \mathbf{\Pi}_2^0$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi)\big)\cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

$$\begin{aligned} \operatorname{MSO} & \text{ on words} \equiv \operatorname{deterministic} \text{ aut. } \mathcal{A} \\ \operatorname{L}(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \boldsymbol{\Delta}_3^0 \\ \inf(q) &= \left\{ w \in A^\omega \mid \forall x \in \omega \; \exists y > x. \\ \mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w \right\} \\ &= \bigcap_{x} \bigcup_{y > x} \left\{ \dots \right\} \in \boldsymbol{\Pi}_2^0 \end{aligned}$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words
$$\equiv$$
 deterministic aut. \mathcal{A}

$$L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in \mathcal{Q}} \in \Delta^0_3$$

$$\inf(q) = \left\{ w \in A^\omega \mid \forall x \in \omega \; \exists y > x. \right\}$$

$$\mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w$$

$$= \bigcap \bigcup \left\{ \dots \right\} \in \Pi^0_2$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words
$$\equiv$$
 deterministic aut. \mathcal{A}
$$\mathrm{L}(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \mathbf{\Delta}_3^0$$

$$\inf(q) = \left\{ w \in A^\omega \mid \forall x \in \omega \; \exists y > x. \right.$$
 $\mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w \right\}$
$$= \bigcap \bigcup \left\{ \dots \right\} \in \mathbf{\Pi}_2^0$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words \equiv deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \Delta^0_3$ $\inf(q) = \left\{ w \in A^\omega \mid \forall x \in \omega \; \exists y > x. \right.$ $\mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w \right\}$ $= \bigcap_{x \in \mathcal{A}} \bigcup_{x \in \mathcal{A}} \left\{ \dots \right\} \in \Pi^0_2$

MSO on trees \equiv non-det. aut. \mathcal{A}

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi)\big)\cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words \equiv deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \Delta^0_3$ $\inf(q) = \left\{ w \in A^\omega \mid \forall x \in \omega \; \exists y > x. \right.$ $\mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w \right\}$ $= \bigcap \bigcup \left\{ \dots \right\} \in \Pi^0_2$

MSO on trees \equiv non-det. aut. \mathcal{A} $L(\mathcal{A}) = \{t \mid \exists \rho \ \forall \pi.$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words
$$\equiv$$
 deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \Delta_3^0$ $\inf(q) = \{w \in A^\omega \mid \forall x \in \omega \ \exists y > x.$

$$\mathcal{A}$$
 reaches q at y on w

$$= \bigcap_{x} \bigcup_{y>x} \left\{ \dots \right\} \in \mathbf{\Pi}_2^0$$

MSO on trees \equiv non-det. aut. \mathcal{A} $L(\mathcal{A}) = \{t \mid \exists \rho \ \forall \pi.$

$$\rho$$
 is accepting on π

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathbf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathbf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words
$$\equiv$$
 deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \Delta_3^0$ $\inf(q) = \{w \in A^\omega \mid \forall x \in \omega \ \exists y > x.$

$$\mathcal{A}$$
 reaches q at y on w

$$=\bigcap_x\bigcup_{y>x}\big\{\dots\big\}\ \in \Pi_2^0$$

MSO on trees
$$\equiv$$
 non-det. aut. \mathcal{A}
 $L(\mathcal{A}) = \{t \mid \exists \rho \ \forall \pi.$

$$\rho$$
 is accepting on π $\Big\}$ $=\pi\big(\overline{\pi}\big(\{\ldots\}\big)\big)\in\Sigma^1_2$

$$\begin{split} \exists X & \leadsto \text{ projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \ldots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathsf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathsf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words
$$\equiv$$
 deterministic aut. \mathcal{A} $L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \Delta^0_3$ $\inf(q) = \{ w \in A^\omega \mid \forall x \in \omega \ \exists y > x.$

$$\mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w \}$$

$$= \bigcap \bigcup \left\{ \dots \right\} \in \mathbf{\Pi}_2^0$$

MSO on trees
$$\equiv$$
 non-det. aut. \mathcal{A}
 $L(\mathcal{A}) = \{t \mid \exists \rho \ \forall \pi.$

$$\rho \text{ is accepting on } \pi \big\} \\ = \pi \big(\overline{\pi} \big(\{ \ldots \} \big) \big) \in \Sigma^1_2$$

$$\begin{split} \exists X & \leadsto \text{projection } A \times \{0,1\} \to A \\ \varphi &= \exists X_1 \forall X_2 \dots \exists X_n. \ \psi, \quad \varphi \in \text{MSO} \\ \mathsf{L}(\varphi) &= \pi \big(\overline{\pi} \big(\cdots \pi \big(\mathsf{L}(\psi) \big) \cdots \big) \in \mathbf{\Sigma}_n^1 \end{split}$$

MSO on words
$$\equiv$$
 deterministic aut. \mathcal{A}
$$L(\mathcal{A}) \in \mathcal{BC}(\inf(q))_{q \in Q} \in \Delta^0_3$$

$$\inf(q) = \left\{ w \in A^\omega \mid \forall x \in \omega \ \exists y > x. \right.$$
 $\mathcal{A} \text{ reaches } q \text{ at } y \text{ on } w \right\}$
$$= \bigcap \bigcup \left\{ \dots \right\} \in \mathbf{\Pi}^0_2$$

MSO on trees
$$\equiv$$
 non-det. aut. \mathcal{A}
$$L(\mathcal{A}) = \{t \mid \exists \rho \ \forall \pi.$$

$$ho$$
 is accepting on $\pi\}$
$$=\pi\big(\overline{\pi}\big(\{\ldots\}\big)\big)\in\mathbf{\Sigma}_2^1$$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

Proof

 $L \stackrel{\mathsf{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

Proof

 $L \stackrel{\mathsf{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

$$L \stackrel{\mathrm{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$$
$$= \{t \mid \exists \alpha \in \{\mathtt{L},\mathtt{R}\}^\omega.\ t\!\upharpoonright_\alpha \text{ has inf. many } a\}$$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

$$L \stackrel{\text{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$$

$$= \{t \mid \exists \alpha \in \{\mathtt{L},\mathtt{R}\}^\omega.\ t \upharpoonright_\alpha \text{ has inf. many } a\}$$

$$= \pi\big(\ldots\big) \in \mathbf{\Sigma}^1_1$$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

$$L \stackrel{\text{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$$

$$= \{t \mid \exists \alpha \in \{\mathtt{L},\mathtt{R}\}^\omega.\ t \upharpoonright_\alpha \text{ has inf. many } a\}$$

$$= \pi\big(\ldots\big) \in \mathbf{\Sigma}^1_1$$

$$+ \text{ a reduction for hardness}$$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

$$L \stackrel{\text{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$$

$$= \{t \mid \exists \alpha \in \{\mathtt{L},\mathtt{R}\}^\omega.\ t \upharpoonright_\alpha \text{ has inf. many } a\}$$

$$= \pi\big(\ldots\big) \in \mathbf{\Sigma}^1_1$$

$$+ \text{ a reduction for hardness} \quad \blacksquare$$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

$$L \stackrel{\text{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$$

$$= \{t \mid \exists \alpha \in \{\mathtt{L},\mathtt{R}\}^\omega.\ t\!\upharpoonright_\alpha \text{ has inf. many } a\}$$

$$= \pi\big(\ldots\big) \in \Sigma^1_1$$

$$+ \text{ a reduction for hardness} \qquad \blacksquare$$

$$+ \text{ many more examples}$$

$$(\mathsf{Skurczy\acute{n}ski}\ [\mathsf{1993}])$$

$$(\mathsf{Arnold}\ [\mathsf{1999}])$$

Theorem (Niwiński [1985])

There exists Σ_1^1 -complete (i.e. **non-Borel**) MSO-definable tree language.

$$L \stackrel{\text{def}}{=} \{t \mid t \text{ has an infinite chain of } a\}$$

$$= \{t \mid \exists \alpha \in \{\mathtt{L},\mathtt{R}\}^\omega.\ t \upharpoonright_\alpha \text{ has inf. many } a\}$$

$$= \pi(\ldots) \in \Sigma^1_1$$

$$+ \text{ a reduction for hardness} \qquad \qquad + \text{ many more examples}$$

$$(\mathsf{Skurczy\acute{n}ski}\ [\mathsf{1993}])$$

$$(\mathsf{Arnold}\ [\mathsf{1999}])$$

Topological properties

Topological properties

 $[\varphi \in \mathrm{MSO} \ \mathrm{on} \ \mathrm{trees}]$

 $[\varphi \in MSO \text{ on trees}]$

Is $L(\varphi)$ measurable?

 $\varphi \in MSO$ on trees

Is $L(\varphi)$ measurable?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathbb{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

When $L(\varphi)$ is Borel?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathcal{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

When $L(\varphi)$ is Borel?

On-going story: Skurczyński, Niwiński, Walukiewicz, Facchini, Murlak, S., ...

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathcal{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

When $L(\varphi)$ is Borel?

On-going story: Skurczyński, Niwiński, Walukiewicz, Facchini, Murlak, S., ...

Is the Gale-Stewart game on $L(\varphi)$ determined?

Theorem (Gogacz, Michalewski, Mio, S. [2014])

If $\varphi \in MSO$ on trees then $L(\varphi)$ is an \mathcal{R} -set.

Theorem (Kolmogorov [1928])

R-sets are universally measurable.

When $L(\varphi)$ is Borel?

On-going story: Skurczyński, Niwiński, Walukiewicz, Facchini, Murlak, S., ...

Is the Gale-Stewart game on $L(\varphi)$ determined?

777

Part 1'

Topological complexity vs. decidability

$$\forall X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Large expressive power: cost functions, distance automata, ...

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

$$\mathsf{U} X. \ \varphi(X) \quad \equiv \quad \forall n. \ \exists X. \ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula φ_n of MSO+U on words

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula φ_n of MSO+U on words such that $L(\varphi_n)$ is Σ_n^1 -complete.

$$\mathsf{U} X.\ \varphi(X) \quad \equiv \quad \forall n.\ \exists X.\ \varphi(X) \ \land \ n < |X| < \infty.$$

" $\varphi(X)$ holds for arbitrarily big finite sets"

Example

The delays between REQUEST and RESPONSE are uniformly bounded.

Conjecture (Bojańczyk [2004])

The MSO+U theory of (ω, s) is decidable.

Theorem (Hummel, S. [2012])

For every n there is a formula φ_n of MSO+U on words such that $L(\varphi_n)$ is Σ_n^1 -complete.

→ no reasonable automaton model for MSO+U

The theory MSO of $(\{L,R\}^{\omega}, \leqslant_{\mathrm{lex}})$ is undecidable.

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

• construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$

The theory MSO of $(\{L,R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

• construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

- construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

- construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

Conjecture (Shelah [1975])

The theory MSO(Borel) of $(\{L, R\}^{\omega}, \leq_{lex})$ is decidable.

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \{L, R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

Conjecture (Shelah [1975])

The theory MSO(Borel) of $(\{L, R\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory MSO(Σ_2^0) of ({L, R} $^{\omega}$, \leq_{lev}) is decidable.

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \{L, R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

Conjecture (Shelah [1975])

The theory MSO(Borel) of $(\{L, R\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory $MSO(\Sigma_2^0)$ of $(\{L, R\}^\omega, \leq_{lex})$ is decidable.

Proof

• MSO on words defines Σ_2^0 -complete sets

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

Conjecture (Shelah [1975])

The theory MSO(Borel) of $(\{L, R\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory MSO(Σ_2^0) of ({L, R} $^{\omega}$, \leq_{lev}) is decidable.

- MSO on words defines Σ_2^0 -complete sets
- simulate quantification over $\Sigma_2^0(\{\mathtt{L},\mathtt{R}\}^\omega)$ within $\{\mathtt{L},\mathtt{R}\}^*$

Theorem (Shelah [1975], Gurevich, Shelah [1982])

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

Conjecture (Shelah [1975])

The theory MSO(Borel) of $(\{L, R\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory MSO(Σ_2^0) of ({L, R} $^{\omega}$, \leq_{lev}) is decidable.

- MSO on words defines Σ_2^0 -complete sets
- simulate quantification over $\Sigma_2^0(\{\mathtt{L},\mathtt{R}\}^\omega)$ within $\{\mathtt{L},\mathtt{R}\}^*$
- apply decidability of MSO on trees

Theorem (Shelah [1975], Gurevich, Shelah [1982])

The theory MSO of $(\{L, R\}^{\omega}, \leq_{lex})$ is undecidable.

Proof

- construct a ultrafilter-like set $Q \subseteq \{L,R\}^{\omega}$ (transfinite induction)
- use Q to simulate relations on ω inside $\{L,R\}^{\omega}$

Conjecture (Shelah [1975])

The theory MSO(Borel) of $(\{L, R\}^{\omega}, \leq_{lex})$ is decidable.

Theorem (Rabin [1969])

The theory MSO(Σ_2^0) of ({L, R} $^{\omega}$, \leq_{lev}) is decidable.

- MSO on words defines Σ_2^0 -complete sets
- simulate quantification over $\Sigma_2^0(\{\mathtt{L},\mathtt{R}\}^\omega)$ within $\{\mathtt{L},\mathtt{R}\}^*$
- apply decidability of MSO on trees

If \mathcal{L} is an extension of MSO such that

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^ω

then it is consistent with ZFC that:

the \mathcal{L} -theory of $\left(\{\mathbf{L},\mathbf{R}\}^*,s_{\mathbf{L}},s_{\mathbf{R}}\right)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

Proof

work in the constructible universe of Gödel (V=L)

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{L,R\}^{\omega}$

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{L,R\}^{\omega}$
- $\longrightarrow Q \in \Sigma_6^1$

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^ω

then it is consistent with ZFC that:

the \mathcal{L} -theory of $\left(\{\mathtt{L},\mathtt{R}\}^*,s_\mathtt{L},s_\mathtt{R}\right)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- ullet repeat Shelah's inductive construction of Q
- V=L \leadsto there exists a Δ^1_2 well-order on $\{\mathtt{L},\mathtt{R}\}^\omega$
- $\leadsto Q \in \Sigma_6^1$
- ullet Shelah's proof can be repeated in ${\mathcal L}$ on trees

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

- work in the constructible universe of Gödel (V=L)
- repeat Shelah's inductive construction of Q
- V=L \longrightarrow there exists a Δ_2^1 well-order on $\{L,R\}^{\omega}$
- $\longrightarrow Q \in \Sigma_6^1$
- \rightsquigarrow Shelah's proof can be repeated in \mathcal{L} on trees

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

Corollary (Bojańczyk, Gogacz, Michalewski, S. [2014])

It is consistent with ZFC that

the MSO+U-theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

Corollary (Bojańczyk, Gogacz, Michalewski, S. [2014])

It is consistent with ZFC that

the MSO+U-theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

Theorem (Bojańczyk, Parys, Toruńczyk [2016])

The MSO+U-theory of (ω, s) is undecidable.

If \mathcal{L} is an extension of MSO such that

 \mathcal{L} defines Σ_6^1 -complete sets in A^{ω}

then it is consistent with ZFC that:

the \mathcal{L} -theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

Corollary (Bojańczyk, Gogacz, Michalewski, S. [2014])

It is consistent with ZFC that

the MSO+U-theory of $(\{L,R\}^*, s_L, s_R)$ is undecidable.

Theorem (Bojańczyk, Parys, Toruńczyk [2016])

The MSO+U-theory of (ω, s) is undecidable.

Further results (Bojańczyk et al. [2017]):

The MSO+periodic-theory of (ω, s) is undecidable.

Part 2

Reverse mathematics

1. Use Second-order Arithmetics:

- **1.** Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

[the FO theory of $(\omega, 0, 1, +, \cdot)$ is **undecidable!**]

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

[the FO theory of $(\omega, 0, 1, +, \cdot)$ is undecidable!]

1.b Formalise your theorem as a statement Ψ of so:

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

```
[the FO theory of (\omega, 0, 1, +, \cdot) is undecidable!]
```

- **1.b** Formalise your theorem as a statement Ψ of so:
 - addition and multiplication

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

```
[the FO theory of (\omega, 0, 1, +, \cdot) is undecidable!]
```

- **1.b** Formalise your theorem as a statement Ψ of so:
 - addition and multiplication
 - standard first-order logic: $\exists x, \vee, \neg, \dots$

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe
 - the FO theory of $(\omega, 0, 1, +, \cdot)$ is undecidable! **1.b** Formalise your theorem as a statement Ψ of so:
 - addition and multiplication
 - standard first-order logic: $\exists x, \vee, \neg, \dots$
 - full second-order logic:

quantification over relations, functions, orders, etc over ω

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

the FO theory of $(\omega, 0, 1, +, \cdot)$ is undecidable!

- **1.b** Formalise your theorem as a statement Ψ of so:
 - addition and multiplication
 - standard first-order logic: $\exists x, \vee, \neg, \dots$
 - full second-order logic:

quantification over relations, functions, orders, etc over ω

was automaton, algorithm, formula, finite graph, etc are numbers

(first-order objects)

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

```
the FO theory of (\omega, 0, 1, +, \cdot) is undecidable!
```

- **1.b** Formalise your theorem as a statement Ψ of so:
 - addition and multiplication
 - standard first-order logic: $\exists x, \vee, \neg, \dots$
 - full second-order logic:

quantification over relations, functions, orders, etc over ω

was automaton, algorithm, formula, finite graph, etc are numbers

(first-order objects)

infinite word, real number, countable graph, etc are sets of numbers (second-order objects)

- 1. Use Second-order Arithmetics:
 - **1.a** Take $(\omega, 0, 1, +, \cdot)$ as universe

```
the FO theory of (\omega, 0, 1, +, \cdot) is undecidable!
```

- **1.b** Formalise your theorem as a statement Ψ of so:
 - addition and multiplication
 - standard first-order logic: $\exists x, \vee, \neg, \dots$
 - full second-order logic:

quantification over relations, functions, orders, etc over ω

was automaton, algorithm, formula, finite graph, etc are numbers

(first-order objects)

infinite word, real number, countable graph, etc are sets of numbers (second-order objects)

BUT: No third-order objects (like languages...)

2. Work in RCA_0 :

- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction

2. Work in RCA₀:

2.a axioms of Robinson arithmetic — PA without induction (\sim 7 axioms about addition and multiplication)

- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

- 2. Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

$$(\psi(0) \land \forall n. \ \psi(n) \Rightarrow \psi(n+1)) \Rightarrow \forall n. \ \psi(n)$$

- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

$$\left(\psi(0) \wedge \forall n. \ \psi(n) \Rightarrow \psi(n+1)\right) \Rightarrow \forall n. \ \psi(n)$$
 only for $\psi \in \Sigma_1^0$ (i.e. recursively enumerable)

- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

$$\left(\psi(0) \wedge \forall n. \ \psi(n) \Rightarrow \psi(n+1)\right) \Rightarrow \forall n. \ \psi(n)$$
 only for $\psi \in \Sigma_1^0$ (i.e. recursively enumerable)

2.c restricted form of the comprehension scheme:

- **2.** Work in RCA₀:
 - 2.a axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

$$\Big(\psi(0) \wedge \forall n. \ \psi(n) \Rightarrow \psi(n+1)\Big) \Rightarrow \forall n. \ \psi(n)$$
 only for $\psi \in \Sigma^0_1$ (i.e. recursively enumerable)

2.c restricted form of the comprehension scheme:

$$\exists X \ \forall n. \ \Big(n \in X \Leftrightarrow \psi(n)\Big) \quad \text{ i.e. } \{n \mid \psi(n)\} \text{ exists}$$

- **2.** Work in RCA_0 :
 - **2.a** axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

$$\left(\psi(0) \wedge \forall n. \ \psi(n) \Rightarrow \psi(n+1)\right) \Rightarrow \forall n. \ \psi(n)$$
 only for $\psi \in \Sigma_1^0$ (i.e. recursively enumerable)

2.c restricted form of the comprehension scheme:

$$\exists X \ \forall n. \ \Big(n \in X \Leftrightarrow \psi(n)\Big) \quad \text{ i.e. } \{n \mid \psi(n)\} \text{ exists}$$
 only for $\psi \in \Delta^0_1$ (i.e. decidable)

- **2.** Work in RCA₀:
 - **2.a** axioms of Robinson arithmetic PA without induction (\sim 7 axioms about addition and multiplication)
 - **2.b** restricted form of the induction scheme:

$$\Big(\psi(0) \wedge \forall n. \ \psi(n) \Rightarrow \psi(n+1)\Big) \Rightarrow \forall n. \ \psi(n)$$
 only for $\psi \in \Sigma^0_1$ (i.e. recursively enumerable)

2.c restricted form of the comprehension scheme:

$$\exists X \ \forall n. \ \Big(n \in X \Leftrightarrow \psi(n)\Big) \quad \text{ i.e. } \{n \mid \psi(n)\} \text{ exists}$$
 only for $\psi \in \Delta^0_1$ (i.e. decidable)

Rule of thumb: RCA₀ proves everything about finite combinatorics

3. Understand the strength of your theorem Ψ :

3. Understand the strength of your theorem Ψ :

3.a Find additional axioms A that are needed by Ψ

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement
 - **→** ...

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement
 - **→** ...
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement
 - **→** ...
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$ $RCA_0 + A \vdash \Psi$ \longrightarrow prove Ψ using A

$$RCA_0 + A \vdash \Psi$$

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement
 - **→** ...
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$ $RCA_0 + A \vdash \Psi$ \longrightarrow prove Ψ using A(massage the standard proof of Ψ)

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement
 - **→** ...
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$ $RCA_0 + A \vdash \Psi$ \longrightarrow prove Ψ using A(massage the standard proof of Ψ) $RCA_0 \vdash \Psi \Rightarrow A \quad \rightsquigarrow \text{ prove that } A \text{ is needed}$

- **3.** Understand the strength of your theorem Ψ :
 - **3.a** Find additional axioms A that are needed by Ψ
 - → induction for more formulæ
 - → comprehension for more formulæ
 - → some known mathematical statement
 - **→** ...
 - **3.b** Prove that $RCA_0 \vdash (A \Longleftrightarrow \Psi)$ $RCA_0 + A \vdash \Psi \longrightarrow prove \Psi using A$ (massage the standard proof of Ψ) $RCA_0 \vdash \Psi \Rightarrow A \quad \leadsto \text{ prove that } A \text{ is needed}$ (reverse the implication)

There exists an algorithm ${\cal P}$

There exists an algorithm ${\cal P}$

 $\exists p.$

There exists an algorithm ${\cal P}$ such that for every formula φ $\exists p.$

 $\exists p. \\ \forall f.$ There exists an algorithm ${\cal P}$ such that for every formula φ

There exists an algorithm ${\cal P}$ $\exists p.$ such that for every formula φ the execution $\mathcal{P}(\varphi)$ terminates

There exists an algorithm ${\cal P}$ $\exists p.$ such that for every formula φ the execution $\mathcal{P}(\varphi)$ terminates

```
There exists an algorithm \mathcal{P} \exists p. such that for every formula \varphi \forall f. the execution \mathcal{P}(\varphi) terminates \exists r. and returns TRUE iff \varphi is true
```

```
There exists an algorithm \mathcal{P} \exists p. such that for every formula \varphi \forall f. the execution \mathcal{P}(\varphi) terminates \exists r. and returns TRUE iff \varphi is true r \downarrow \text{TRUE} \iff \ref{TRUE} \ref{TRUE}?
```

```
There exists an algorithm \mathcal{P} \exists p. such that for every formula \varphi \forall f. the execution \mathcal{P}(\varphi) terminates \exists r. and returns TRUE iff \varphi is true r \downarrow \text{TRUE} \Longleftrightarrow \ref{true}?
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

```
There exists an algorithm \mathcal{P}
                                                   \exists p.
                                                        \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                                  r \perp \text{TRUE} \iff ???
              and returns \mathbf{TRUE} iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

 \rightsquigarrow **no** formula ϕ such that

 $\forall f. \ \phi(f) \text{ holds iff } \llbracket f \rrbracket \text{ holds}$

```
There exists an algorithm \mathcal{P}
                                                  \exists p.
                                                      \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates \exists r.
                                                                r \perp \text{TRUE} \iff ???
              and returns TRUE iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

 \rightsquigarrow **no** formula ϕ such that $\forall f. \ \phi(f) \text{ holds iff } \llbracket f \rrbracket \text{ holds}$

Solution:

There exists an algorithm
$$\mathcal{P}$$
 $\exists p.$ such that for every formula φ $\forall f.$ the execution $\mathcal{P}(\varphi)$ terminates $\exists r.$ and returns TRUE iff φ is true $r \downarrow \text{TRUE} \iff \ref{TRUE} \ref{TRUE}$?

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

 \rightsquigarrow **no** formula ϕ such that

 $\forall f. \ \phi(f) \text{ holds iff } \llbracket f \rrbracket \text{ holds}$

Solution:

• define depth of a formula: alternations of \exists/\lor and \forall/\land

```
\exists p.
There exists an algorithm \mathcal{P}
                                                        \forall f.
    such that for every formula \varphi
         the execution \mathcal{P}(\varphi) terminates
                                                   \exists r.
                                                                  r \downarrow \text{TRUE} \iff ???
              and returns TRUE iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

 \rightsquigarrow **no** formula ϕ such that

 $\forall f. \ \phi(f) \text{ holds iff } \llbracket f \rrbracket \text{ holds}$

Solution:

- define depth of a formula: alternations of \exists/\lor and \forall/\land
- formulate decidability of depth-n fragments for specific n

```
\exists p.
There exists an algorithm \mathcal{P}
                                                        \forall f.
    such that for every formula \varphi
                                                   \exists r.
         the execution \mathcal{P}(\varphi) terminates
                                                                  r \downarrow \text{TRUE} \iff ???
              and returns TRUE iff \varphi is true
```

Theorem (Tarski [1936])

There is no arithmetic definition of truth.

 \rightsquigarrow **no** formula ϕ such that

 $\forall f. \ \phi(f) \text{ holds iff } \llbracket f \rrbracket \text{ holds}$

Solution:

- define depth of a formula: alternations of \exists/\lor and \forall/\land
- formulate decidability of depth-n fragments for specific n
- study these sentences

Part 2.a

Reversing Büchi

(Kołodziejczyk, Michalewski, Pradic, S. [2016])

The MSO theory of (ω,s) is decidable.

The MSO theory of (ω,s) is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \mathsf{depth}\text{-}n$ fragment of $_{\mathrm{MSO}}$ on words is decidable

The MSO theory of (ω,s) is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \mathsf{depth}\text{-}n$ fragment of $_{\mathrm{MSO}}$ on words is decidable

The $\mbox{\scriptsize MSO}$ theory of $\left(\omega,s\right)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \mathsf{depth}\text{-}n$ fragment of MSO on words is decidable

[Ramsey's Theorem for Pairs]

$$RT^2_{<\infty}$$

The MSO theory of (ω,s) is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \mathsf{depth}$ -n fragment of MSO on words is decidable

 $\begin{array}{c} [{\rm Ramsey's\ Theorem\ for\ Pairs}] & \left\{ \begin{array}{c} {\rm Every\ colouring\ of\ } [\omega]^2 \\ {\rm has\ infinite\ monochromatic\ set} \end{array} \right. \end{array}$

The $\mbox{\scriptsize MSO}$ theory of $\left(\omega,s\right)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \mathsf{depth}\text{-}n$ fragment of MSO on words is decidable

[Ramsey's Theorem for Pairs]

$$RT^2_{<\infty}$$

The MSO theory of (ω,s) is decidable.

The MSO theory of (ω, s) is decidable.

The MSO theory of (ω,s) is decidable.

The MSO theory of (ω, s) is decidable.

The MSO theory of (ω, s) is decidable.

The MSO theory of (ω, s) is decidable.

The MSO theory of (ω,s) is decidable.

The MSO theory of (ω, s) is decidable.

The MSO theory of (ω, s) is decidable.

The MSO theory of (ω, s) is decidable.

Theorem (Kołodziejczyk, Michalewski, Pradic, S. [2016])

The following holds over RCA₀:

Theorem (Kołodziejczyk, Michalewski, Pradic, S. [2016])

The following holds over RCA₀:

Fact (RCA_0)

 Σ_2^0 -IND is equivalent to:

Fact (RCA₀)

 Σ_2^0 -IND is equivalent to:

For every
$$n$$
 and $\alpha \in \{0, 1, \dots, n\}^{\omega}$

(*)

Fact (RCA_0)

 Σ_2^0 -IND is equivalent to:

For every n and $\alpha \in \{0,1,\ldots,n\}^\omega$ there exists a maximal $k \leqslant n$

(*

Fact (RCA_0)

 Σ_2^0 -IND is equivalent to:

```
For every n and \alpha \in \{0,1,\ldots,n\}^\omega there exists a maximal k \leqslant n that appears infinitely many times in \alpha.
```

Fact (RCA_0)

 Σ_2^0 -IND is equivalent to:

```
For every n and \alpha \in \{0,1,\ldots,n\}^\omega there exists a maximal k \leqslant n (*) that appears infinitely many times in \alpha.
```

√

√

√

↑

∫

follows from Additive Ramsey's Theorem

Fact (RCA_0)

 Σ_2^0 -IND is equivalent to:

```
For every n and \alpha \in \{0,1,\ldots,n\}^\omega there exists a maximal k \leqslant n (*) that appears infinitely many times in \alpha.
```

- √ (★) follows from Additive Ramsey's Theorem

Fact (RCA_0)

 Σ_2^0 -IND is equivalent to:

For every n and $\alpha \in \{0,1,\ldots,n\}^\omega$ there exists a maximal $k \leqslant n$ (* that appears infinitely many times in α .

Fact (RCA₀)

 Σ_2^0 -IND is equivalent to:

```
For every n and \alpha \in \{0,1,\ldots,n\}^\omega there exists a maximal k \leqslant n (* that appears infinitely many times in \alpha.
```

- (\star) is needed to make any sense out of parity automata

(McNaughton and Safra constructions)

Part 2.b

Reversing Rabin

(Kołodziejczyk, Michalewski [2016])

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

 χ -CA $_0$ — comprehension for χ formulæ:

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of $_{\mathrm{MSO}}$ on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ:

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n\stackrel{\mathsf{def}}{=}\Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
- CA_0 — comprehension for χ formulæ:

$$\begin{cases}
 \text{If } P(n) \text{ is in } \chi \text{ then} \\
 \{n \mid P(n)\} \text{ is a set}
\end{cases}$$

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
- CA_0 — comprehension for χ formulæ:

[In ${
m RCA}_0$ we have $\Delta_1^0{
m -CA}_0$]

 $\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ:

[In ${\rm RCA}_0$ we have $\Delta_1^0\text{-}{\rm CA}_0]$

$$\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

$$\{\chi\text{-CA}_0 \Longrightarrow \chi\text{-IND}\}$$

The MSO theory of $(\{L, R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi_n^1$ fragment of MSO on trees is decidable

$$\chi ext{-}\mathrm{CA}_0$$
 — comprehension for χ formulæ:

[In RCA0 we have Δ_1^0 -CA0]

Theorem (Kołodziejczyk, Michalewski [2016])

$$\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

$$\{\chi\text{-CA}_0 \Longrightarrow \chi\text{-IND}\}$$

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In RCA $_0$ we have Δ_0^0 -CA $_0$]

$$\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

[III RCA_0 we have Δ_1 - CA_0]

 $\{\chi\text{-CA}_0 \Longrightarrow \chi\text{-IND}\}$

Theorem (Kołodziejczyk, Michalewski [2016])

• $RCA_0 + \Pi_3^1 - CA_0 \vdash DEC_n$ for every n

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In RCA $_0$ we have Δ_0^0 -CA $_0$]

$$\left\{ \begin{array}{c} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

Theorem (Kołodziejczyk, Michalewski [2016])

 $\{\chi\text{-CA}_0 \Longrightarrow \chi\text{-IND}\}$

- $RCA_0 + \Pi_3^1 CA_0 \vdash DEC_n$ for every n
- $RCA_0 + \Delta_3^1 CA_0 \not\vdash DEC_3$

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In RCA $_0$ we have Δ_0^0 -CA $_0$]

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

Theorem (Kołodziejczyk, Michalewski [2016])

$$\{\chi\text{-CA}_0 \Longrightarrow \chi\text{-IND}\}$$

- $RCA_0 + \Pi_3^1 CA_0 \vdash DEC_n$ for every n
- $RCA_0 + \Delta_3^1 CA_0 \not\vdash DEC_3$
- ullet Let $oldsymbol{\Psi}$ express (essentially) determinacy of $\mathcal{BC}(oldsymbol{\Sigma}_2^0)$ games

Theorem (Rabin [1969])

The MSO theory of $(\{L,R\}^*, s_L, s_R)$ is decidable.

 $\mathrm{DEC}_n \stackrel{\mathsf{def}}{=} \Pi^1_n$ fragment of MSO on trees is decidable

$$\chi$$
-CA $_0$ — comprehension for χ formulæ: [In RCA $_0$ we have Δ_0^0 -CA $_0$]

$$\left\{ \begin{array}{l} \text{If } P(n) \text{ is in } \chi \text{ then} \\ \\ \left\{ n \mid P(n) \right\} \text{ is a set} \end{array} \right\}$$

Theorem (Kołodziejczyk, Michalewski [2016])

 $\{\chi\text{-CA}_0 \Longrightarrow \chi\text{-IND}\}$

- $RCA_0 + \Pi_3^1 CA_0 \vdash DEC_n$ for every n
- $RCA_0 + \Delta_3^1 CA_0 \not\vdash DEC_3$
- ullet Let $oldsymbol{\Psi}$ express (essentially) determinacy of $\mathcal{BC}(oldsymbol{\Sigma}_2^0)$ games

then
$${ t RCA_0} \vdash \left({ t COMPL} \Longleftrightarrow \Psi \right)$$

(where COMPL is Rabin's complementation)

Part 2.b

Reversing Shelah

(Kołodziejczyk, Michalewski, Pradic, S. [2018?])

The ${\rm MSO}$ theory of $\left(\mathbb{Q},\leqslant\right)$ is decidable.

The ${\rm MSO}$ theory of $\left(\mathbb{Q},\leqslant\right)$ is decidable.

Büchi $(\omega) \leq Shelah (\mathbb{Q}) \leq Rabin (\{L, R\}^*)$

Büchi (
$$\omega$$
) \leq Shelah (\mathbb{Q}) \leq Rabin ($\{L,R\}^*$)
$$\parallel \Sigma_2^0\text{-IND}$$

Büchi
$$(\omega) \leq \text{Shelah } (\mathbb{Q}) \leq \text{Rabin } (\{\mathtt{L},\mathtt{R}\}^*)$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \wr \parallel$$

$$\Sigma_2^0\text{-}\mathrm{IND} \qquad \ref{10} ?\ref{10} ?\ref{10}$$

Various aspects of decidability of Monadic Second-order logic

Various aspects of decidability of Monadic Second-order logic

In many cases:

Various aspects of decidability of Monadic Second-order logic

In many cases:

topological complexity \cong undecidability

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity \cong undecidability (of available sets) (of the theory)
```

Various aspects of decidability of Monadic Second-order logic

In many cases:

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

```
expressibility \cong axiomatic strength
```

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

```
expressibility \cong axiomatic strength (of the logic) (needed for decidability)
```

Various aspects of decidability of Monadic Second-order logic

In many cases:

```
topological complexity ≅ undecidability

(of available sets) (of the theory)

→ tools from descriptive set theory
```

Even for decidable theories:

```
expressibility \cong axiomatic strength (of the logic) (needed for decidability)
```

connections with classical problems of reverse mathematics