Games in topology and their effective variants

Michał Skrzypczak

Colloquium Of MIM, 07.12.2017

Part 1

Generic objects

How to prove that there exists a four-legged elephant?

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

How to prove that there exists a four-legged elephant?

Option 1.: Find one.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\mathbb{P}(P)>1-\epsilon
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\mathbb{P}(P)>1-\epsilon
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\mathbb{P}(P)>1-\epsilon
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\mathbb{P}(P)>1-\epsilon
$$

Option 3.: Go contrapositive, etc...

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{\mathbb{P}(P)>1-\epsilon}
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{P}(P)>1-\epsilon
$$

$\leadsto s$ strong arithmetical tools

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\mathbb{P}(P)>1-\epsilon
$$

$\leadsto \leadsto$ strong arithmetical tools
\leadsto effective computations

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{P}(P)>1-\epsilon
$$

\leadsto strong arithmetical tools
\leadsto effective computations
$\leadsto \rightarrow$ infinitary properties:

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{P}(P)>1-\epsilon
$$

$\leadsto s$ strong arithmetical tools
\leadsto effective computations
$\leadsto \rightarrow$ infinitary properties:

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{\mathbb{P}(P)>1-\epsilon}
$$

\leadsto strong arithmetical tools
\leadsto effective computations
\leadsto infinitary properties:

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{\mathbb{P}(P)>1-\epsilon}
$$

\leadsto strong arithmetical tools
\leadsto effective computations
\leadsto infinitary properties:

$$
\forall_{n \in \omega}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

How to prove that there exists a four-legged elephant?
Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P.

$$
\underline{\mathbb{P}(P)>1-\epsilon}
$$

$\leadsto \leadsto$ strong arithmetical tools
\leadsto effective computations
$m \rightarrow$ infinitary properties:

$$
\forall_{n \in \omega}^{\forall}\left(\mathbb{P}\left(P_{n}\right)=1\right) \quad \Longrightarrow \quad \mathbb{P}\left(\bigcap_{n \in \omega} P_{n}\right)=1
$$

Topological genericness: comeagre sets

Topological genericness: comeagre sets

$G \subseteq X$ is comeagre
 iff

Topological genericness: comeagre sets

$G \subseteq X$ is comeagre

iff

$$
G \supseteq \bigcap_{i \in \omega} U_{i}
$$

Topological genericness: comeagre sets

$G \subseteq X$ is comeagre
 iff

$$
\begin{aligned}
& G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \text { all } U_{i} \text { are dense and open }
\end{aligned}
$$

Topological genericness: comeagre sets

$$
\begin{array}{ll}
G \subseteq X \text { is comeagre } \quad \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \text { all } U_{i} \text { are dense and open }
\end{array}
$$

$$
\forall_{n \in \omega}^{\forall}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow \quad\left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
$$

Topological genericness: comeagre sets

$$
\begin{array}{llc}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow \quad\left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$.

Topological genericness: comeagre sets

$$
\begin{array}{ll}
G \subseteq X \text { is comeagre } \quad \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \text { all } U_{i} \text { are dense and open }
\end{array}
$$

$$
\forall_{n \in \omega}^{\forall}\left(G_{n} \text { is comeagre }\right) \Longrightarrow\left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
{ }_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
\leadsto the complement of a comeagre set is not comeagre

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
{ }_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.

Topological genericness: comeagre sets

$$
\begin{array}{llc}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow \quad\left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

Topological genericness: comeagre sets

$$
\begin{array}{lcc}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
{ }_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } \\
& \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable

Topological genericness: comeagre sets

$$
\begin{array}{llc}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable
- a linear partial differential equation with no solutions

Topological genericness: comeagre sets

$$
\begin{array}{llc}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
\text { all } U_{i} \text { are dense and open } \\
\forall_{n \in \omega}\left(G_{n} \text { is comeagre }\right) \quad \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

- a continuous function nowhere differentiable
- a linear partial differential equation with no solutions
- . .

Topological genericness: comeagre sets

$$
\begin{array}{lll}
G \subseteq X \text { is comeagre } & \text { iff } & G \supseteq \bigcap_{i \in \omega} U_{i} \text { and } \\
& \\
& \\
{ }_{n \in \omega}\left(G_{n} \text { is comeagre } U_{i}\right. \text { are dense and open } & \Longrightarrow & \left(\bigcap_{n \in \omega} G_{n}\right) \text { is comeagre }
\end{array}
$$

Example

Take $U_{i}=\mathbb{R}-\left\{q_{i}\right\}$. Then $\bigcap_{i \in \omega} U_{i}=\mathbb{R}-\mathbb{Q}$ is comeagre.
Theorem (Baire)
[thus non-empty]
In nice spaces (i.e. Polish) every comeagre set is dense.
Corollaries (non-constructive proofs of existence)

forcing

- a continuous function nowhere differentiable
- a linear partial differential equation with no solutions
- . . .

Which sets are comeagre?

Which sets are comeagre? (Banach-Mazur game)

Which sets are comeagre? (Banach-Mazur game)
 (take $W \subseteq[0,1]$)

$\mathrm{BM}(W)$ is the infinite game:

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(I): 0,
(II):

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$
(II):

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$
(II): $\underline{19743}$

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$ 13
(II): 19743

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
(I): 0, $\underline{43226}$
13
(II): 19743

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{43226} & \underline{13743} & \underline{8723466}\end{array}$

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:

| (I): $0, \underline{43226}$ | $\underline{13}$ | $\underline{8723466}$ |
| :--- | :--- | :--- | :--- | :--- |
| (II): | $\underline{19743}$ | $\underline{54326}$ |

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:

| (I): $0, \underline{43226}$ | $\underline{19743}$ | $\underline{8723466}$ | |
| :--- | :--- | :--- | :--- | :--- |
| (II): | $\underline{54326}$ | | |

Which sets are comeagre? (Banach-Mazur game)

$\mathrm{BM}(W)$ is the infinite game:
$\begin{array}{lll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} \underline{13} \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\left[W \supseteq \bigcap_{i \in \omega} U_{i} \text {-open, dense }\right]
$$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:

$$
\begin{aligned}
& \text { (I): 0, } \underline{43226}^{\underline{19743}} \underline{-13}^{\underline{8723466}} \underline{\underline{54326}} \cdots \cdots \sim \pi \in[0,1]
\end{aligned}
$$

Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [WЭ } \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow)

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{13} \quad \underline{8723466} \\ \underline{54326} & \cdots \sim \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [} W \supseteq \underbrace{}_{i \in \omega} U_{i} \text {-open, dense] }
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i}

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$

Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [Wొ } \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
(II) wins π iff $\pi \in W$

Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [} W \supseteq \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow)

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$

Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [Wっ } \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}.

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$
(I): $: 0, \underline{43226} \underline{19743}_{\text {(II): }} \underline{\underline{8723466}} \underset{\underline{54326}}{ } \cdots \cdots \rightarrow \pi \in[0,1]$

Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [} W \supseteq \underbrace{}_{\bigcap_{i \in \omega} U_{i} \text {-open, dense }}]
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$
$\begin{array}{llll}\text { (I): } \\ \text { (II): } & \underline{19743} & \underline{43226} & \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
[W \supseteq \underbrace{}_{\left.\bigcap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Which sets are comeagre? (Banach-Mazur game)
(take $W \subseteq[0,1]$)
$\mathrm{BM}(W)$ is the infinite game:
(II) wins π iff $\pi \in W$
(I): $0, \underline{43226}{ }_{\underline{19743}} \underline{13} \quad \underline{8723466}$
(II):

Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [Wٍ } \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Corollary

Player (I) has a winning strategy in $\mathrm{BM}(W)$

Which sets are comeagre? (Banach-Mazur game)
$\mathrm{BM}(W)$ is the infinite game:
(take $W \subseteq[0,1]$)
$\begin{array}{llll}\text { (I): } 0, \underline{43226} \\ \text { (II): } \\ \underline{19743} & \underline{13} \quad \underline{8723466} \\ \underline{54326} & \cdots \leadsto \pi \in[0,1]\end{array}$
Theorem (Banach-Mazur)
Player (II) has a winning strategy in $\mathrm{BM}(W)$ iff W is comeagre.

$$
\text { [Wə } \underbrace{}_{\left.\cap_{i \in \omega} U_{i} \text {-open, dense }\right]}
$$

Proof

(\Rightarrow) Each strategy σ provides a family U_{i} (modulo some technicalities).
(\Leftarrow) Consider the strategy σ that in a round i falls into U_{i}. Each play π consistent with σ belongs to $\bigcap_{i \in \omega} U_{i} \subseteq W$.

Corollary

Player (I) has a winning strategy in $\mathrm{BM}(W)$ iff

$$
([0,1]-W) \text { is comeagre on some interval. }
$$

Part 2

Determinacy

A game is determined if either (I) or (II) has a winning strategy.

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined. no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
no infinite play \equiv well-founded game graph

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

$$
\begin{aligned}
& \text { Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...)) } \\
& \qquad \begin{aligned}
& \text { Let } \mathrm{XOR} \subseteq\{0,1\}^{\omega} \text { satisfy } 011001110101111011110101 \cdots \in \mathrm{XOR} \\
& \text { iff } \\
& 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{aligned}
\end{aligned}
$$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
[hidden axiom of choice...]
$011001110101111011110101 \cdots \in$ XOR
iff
$011001110101011011110101 \cdots \notin$ XOR

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))
Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
$011001110101111011110101 \cdots \in$ XOR
iff
[hidden axiom of choice...] $011001110101011011110101 \cdots \notin$ XOR
Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

$$
\begin{array}{cc}
\text { Let XOR } \subseteq\{0,1\}^{\omega} \text { satisfy } & 011001110101111011110101 \cdots \in \mathrm{XOR} \\
\text { [hidden axiom of choice...] } & 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{array}
$$

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined !

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

$$
\begin{array}{cc}
\text { Let XOR } \subseteq\{0,1\}^{\omega} \text { satisfy } & 011001110101111011110101 \cdots \in \mathrm{XOR} \\
\text { [hidden axiom of choice...] } & 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{array}
$$

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined !

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011} \underline{\underline{00}} \underline{110010} \underline{00011} \cdots \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \mathrm{XOR}
\end{aligned}
$$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; . . .))

$$
\begin{array}{cc}
\text { Let XOR } \subseteq\{0,1\}^{\omega} \text { satisfy } & 011001110101111011110101 \cdots \in \mathrm{XOR} \\
\text { [hidden axiom of choice...] } & 011001110101011011110101 \cdots \notin \mathrm{XOR}
\end{array}
$$

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1} \underline{110010} \quad \underline{00011} \cdots \cdots \pi\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \mathrm{XOR}
\end{aligned}
$$

1. ((II) has a w.s.) $\Longrightarrow((\mathrm{I})$ has a w.s. $)$

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
[hidden axiom of choice...] $011001110101011011110101 \ldots \notin$ XOR

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{array}{llll}
\text { (I): } \quad \underline{01100} \\
\text { (II): } & \underline{11011} \underline{00} \underline{110010} \\
& \underline{00011} & \cdots \sim \pi \in\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \text { XOR }
\end{array}
$$

1. ((II) has a w.s.) \Longrightarrow ((I) has a w.s.)
2. ((I) has a w.s.) \Longrightarrow ((II) has a w.s.)

A game is determined if either (I) or (II) has a winning strategy.

- Every game of finite duration is determined.
- There exist non-determined games of infinite duration!

Example (Kopczyński, Niwiński ['14] (also Khomskii ['10]; ...))

Let $\mathrm{XOR} \subseteq\{0,1\}^{\omega}$ satisfy
[hidden axiom of choice...] $011001110101011011110101 \cdots \notin$ XOR

Then $\mathrm{BM}(\mathrm{XOR})$ is non-determined!

$$
\begin{array}{llll}
\text { (I): } \quad \underline{01100} \\
\text { (II): } & \underline{11011} \underline{00} \underline{110010} \\
& \underline{00011} & \cdots \sim \pi \in\{0,1\}^{\omega} \\
& \text { (II) wins } \pi \text { iff } \pi \in \text { XOR }
\end{array}
$$

1. ((II) has a w.s.) \Longrightarrow ((I) has a w.s.)
2. ((I) has a w.s.) \Longrightarrow ((II) has a w.s.)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011} \underline{\underline{00}} \underline{110010} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011} \underline{\underline{00}} \underline{110010} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{00} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011} \underline{\underline{00}} \underline{110010} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$$
\sigma_{1}:
$$

(II):

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-\mathrm{a}$ w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)
σ_{I} :
(II):
(I):
$\sigma_{\text {II }}$:

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} — a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\sigma_{\mathrm{I}}:
$$

(II):
(I): $\quad \underline{r_{0}}$
$\sigma_{\text {II }}:$

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} — a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\sigma_{\mathrm{I}}: \quad \underline{s_{0}}
$$

(II):
(I): $\quad \underline{r_{0}}$
$\sigma_{\text {II }}:$

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \pi \in\{0,1\}^{\omega}} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$\sigma_{\mathrm{I}}:$	$\underline{s_{0}}$
$(\mathrm{II}):$	$\underline{s_{1}}$
$(\mathrm{I}):$	$\underline{r_{0} 0}$
$\sigma_{\mathrm{II}}:$	

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \pi \in\{0,1\}^{\omega}} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \pi \in\{0,1\}^{\omega}} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ — a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{aligned}
\text { (II): } \underline{01100} \begin{aligned}
\underline{11011} \underline{\underline{00}} \underline{110010} & \underline{00011} \\
& \cdots \rightsquigarrow \pi \in\{0,1\}^{\omega} \\
& \\
& ((\mathrm{I}) \text { has a w.s. })
\end{aligned} & \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{array}{rlll}
\text { (II): } \underline{01100} & \underline{11011} \underline{00} \underline{110010} & \\
& \underline{00011} & \cdots \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) & \Longrightarrow \text { ((II) has a w.s.) }
\end{array}
$$

Proof: "strategy stealing"
Take $\sigma_{\mathrm{I}}-$ a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1}^{\underline{110010}} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1} \underline{110010} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a wis. }) \Longrightarrow((\mathrm{II}) \text { has a wis. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a wis. of (II)

$\leadsto \sigma_{\text {II }}$ is a winning strategy of (II)

$$
\begin{aligned}
& \text { (I): } \underline{01100} \underline{11011}^{\underline{00}} \underline{1} \underline{110010} \underline{00011} \cdots \leadsto \leadsto \pi \in\{0,1\}^{\omega} \\
& ((\mathrm{I}) \text { has a w.s. }) \Longrightarrow((\mathrm{II}) \text { has a w.s. })
\end{aligned}
$$

Proof: "strategy stealing"
Take σ_{I} - a w.s. of (I)
Construct $\sigma_{\text {II }}$ - a w.s. of (II)

$\mathrm{XOR} \cong \neg \mathrm{XOR}$

$\leadsto \sigma_{\text {II }}$ is a winning strategy of (II)

Theorem (Martin ['75])

Determined are games which are:

Theorem (Martin ['75])

Determined are games which are:

- played by two players,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,
when the winning condition is Borel.

Corollary

All Borel sets have:

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω, when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,
- Ramsey-style dichotomies, ...

Theorem (Martin ['75])

Determined are games which are:

- played by two players,
- round-based,
- of perfect information,
- of length ω,

when the winning condition is Borel.

Corollary

All Borel sets have:

- perfect set property (by *-games),
- Baire property and measurability (by BM-games),
- well-behaved Wadge hierarchy,
- Ramsey-style dichotomies, ...

Part 3

Effectiveness

Fix a finite set $A=\{a, b, c, \ldots\}$.

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

Definition

 Fix a finite set $A=\{a, b, c, \ldots\}$.A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,

Definition

 Fix a finite set $A=\{a, b, c, \ldots\}$.A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers, - Boolean connectives (\vee, \wedge, \neg),

Definition

 Fix a finite set $A=\{a, b, c, \ldots\}$.A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y))$

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.

$$
\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\sim}
$$

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.

$$
\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\sim}\left\{\alpha \in A^{\omega} \mid\right.
$$

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.

$$
\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\sim}\left\{\alpha \in A^{\omega} \mid \alpha \text { has infinitely many } a\right\}
$$

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and
- is closed under Boolean operations and projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and
- is closed under Boolean operations and projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts:

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and
- is closed under Boolean operations and projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel,

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and
- is closed under Boolean operations and projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel, $\quad \operatorname{proj}(R E G) \subseteq R E G$,

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and
- is closed under Boolean operations and projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel, $\quad \operatorname{proj}($ REG $) \subseteq$ REG, $\operatorname{proj}($ Borel $) ~ \varsubsetneqq$ Borel.

Definition

Fix a finite set $A=\{a, b, c, \ldots\}$.
A set $L \subseteq A^{\omega}$ is regular if
L can be defined in Monadic Second-order logic:

- first-order $\left(\exists_{x \in \omega}\right)$ and monadic second-order $\left(\exists_{X \subseteq \omega}\right)$ quantifiers,
- Boolean connectives (\vee, \wedge, \neg),
- atomic predicates: $a(x), x \leqslant y, x \in X$.
$\forall_{x \in \omega} \exists_{y \in \omega}(x \leqslant y \wedge a(y)) \stackrel{\mathrm{L}(\varphi)}{\leadsto}\left\{\alpha \in A^{\omega} \mid \alpha\right.$ has infinitely many $\left.a\right\}$

In other words

Regular sets is the smallest family REG that

- contains some basic languages, and
- is closed under Boolean operations and projection $(A \times B)^{\omega} \rightarrow A^{\omega}$.

Facts: REG \subseteq Borel, $\quad \operatorname{proj}($ REG $) \subseteq$ REG, $\operatorname{proj}($ Borel $) ~ \varsubsetneqq$ Borel.
Every $L \in R E G$ has a finite representation φ such that $\mathrm{L}(\varphi)=L$.

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata $\left(\varphi \mapsto \mathcal{A}_{\varphi}\right)$ and Ramsey argument.

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata $\left(\varphi \mapsto \mathcal{A}_{\varphi}\right)$ and Ramsey argument. \leadsto Decidability of:

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata $\left(\varphi \mapsto \mathcal{A}_{\varphi}\right)$ and Ramsey argument.
\leadsto Decidability of: $\quad \mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}$,

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
$\begin{aligned} & m \text { Decidability of: } \mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \\ & \mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing\end{aligned}$

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
$\begin{aligned} & m \text { Decidability of: } \mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \\ & \mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing\end{aligned}$

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
\leadsto Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{\leftrightarrows} \mathrm{~L}(\varphi)$,

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
\leadsto Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{¢} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \ldots$

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
\leadsto Decidability of: $\quad \mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{¢} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \quad \ldots$

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

\leadsto Model-checking:

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
$\begin{aligned} & m \text { Decidability of: } \quad \mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \\ & \mathrm{L}(\psi) \stackrel{?}{¢} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \\ & \mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing\end{aligned}$
\leadsto Model-checking: given a machine M and a specification φ,

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
m Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{\subsetneq} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \quad \ldots$

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

$\leadsto \leadsto$ Model-checking: given a machine M and a specification φ, decide if $M \models \varphi$.

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
\leadsto Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{\subsetneq} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \ldots$

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

$\leadsto \leadsto$ Model-checking: given a machine M and a specification φ,

1. Express behaviour of M as ψ_{M}. decide if $M \models \varphi$.

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata $\left(\varphi \mapsto \mathcal{A}_{\varphi}\right)$ and Ramsey argument.
\leadsto Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{\subsetneq} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi), \ldots$

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

$\leadsto \leadsto$ Model-checking: given a machine M and a specification φ,

1. Express behaviour of M as ψ_{M}. decide if $M \models \varphi$.
2. Verify if $\psi_{M} \Rightarrow \varphi$.

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\left.\varphi \mapsto \mathcal{A}_{\varphi}\right)$ and Ramsey argument.
m Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{¢} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi)$,

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

$\leadsto \leadsto$ Model-checking: given a machine M and a specification φ,

1. Express behaviour of M as ψ_{M}. decide if $M \models \varphi$.
2. Verify if $\psi_{M} \Rightarrow \varphi$.
[In fact: translate $\neg \varphi$ into $\mathcal{A}_{\neg \varphi}$ and check $M \times \mathcal{A}_{\neg \varphi}$ for emptiness]

Theorem (Büchi ['62])

Given φ it is decidable if $\mathrm{L}(\varphi) \neq \varnothing$.

Proof

Using automata ($\varphi \mapsto \mathcal{A}_{\varphi}$) and Ramsey argument.
m Decidability of: $\mathrm{L}(\varphi) \stackrel{?}{=} A^{\omega}, \quad \mathrm{L}(\psi) \stackrel{?}{¢} \mathrm{~L}(\varphi), \quad \mathrm{L}(\psi) \stackrel{?}{=} \mathrm{L}(\varphi)$,

$$
\mathrm{L}(\neg \varphi) \stackrel{?}{=} \varnothing \quad \mathrm{L}(\psi \wedge \neg \varphi) \stackrel{?}{=} \varnothing
$$

$\leadsto \leadsto$ Model-checking: given a machine M and a specification φ,

1. Express behaviour of M as ψ_{M}. decide if $M \models \varphi$.
2. Verify if $\psi_{M} \Rightarrow \varphi$.
[In fact: translate $\neg \varphi$ into $\mathcal{A}_{\neg \varphi}$ and check $M \times \mathcal{A}_{\neg \varphi}$ for emptiness]
$\rightsquigarrow \leadsto$ Working implementations (e.g. MONA from Aarhus)

Theorem (Büchi, Landweber ['69])

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:
$\begin{array}{llllll}\text { (I) }: & a_{0} \\ \text { (II): } & \underline{a_{1}} & \underline{a_{2}} & \\ \underline{a_{3}} & \underline{a_{5}} & \underline{a_{6}} & \underline{a_{7}} & \underline{a_{8}} & \cdots\end{array} \sim \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}$
(II) wins π iff $\pi \in W$

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

(II) wins π iff $\pi \in W$

Then:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

(II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

(II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

(II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:

(II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:
(I): $\quad \underline{a_{0}}{\underline{a_{1}}}^{\underline{a_{2}}}{\underline{a_{3}}}^{\underline{a_{4}}} \underline{a}_{5}^{\underline{a_{6}}}{\underline{a_{7}}}^{\underline{a_{8}}} \cdots \cdots \leadsto \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}$
(II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values, initial memory $m_{0} \in M$, and update function $\delta: M \times A \rightarrow M$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:
(I): $\underline{a}_{0}{\underline{a_{1}}}^{\underline{a_{2}}}{\underline{a_{3}}}^{\underline{a_{4}}}{\underline{a_{5}}}^{\underline{a_{6}}}{\underline{a_{7}}}^{\underline{a_{8}}} \cdots \cdots \leadsto \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}$ (II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values, initial memory $m_{0} \in M$, and update function $\delta: M \times A \rightarrow M$, such that for $m_{i+1} \stackrel{\text { def }}{=} \delta\left(m_{i}, a_{i}\right)$,

Theorem (Büchi, Landweber ['69])

Fix $W \subseteq A^{\omega}$ regular (i.e. $W \in \mathbf{R E G}$).
Consider a game $\mathcal{G}(W)$:
(I): $\underline{a}_{0}{\underline{a_{1}}}^{\underline{a_{2}}}{\underline{a_{3}}}^{\underline{a_{4}}}{\underline{a_{5}}}^{\underline{a_{6}}}{\underline{a_{7}}}^{\underline{a_{8}}} \cdots \cdots \leadsto \pi=\left(a_{0} a_{1} \cdots\right) \in A^{\omega}$ (II) wins π iff $\pi \in W$

Then:

1. $\mathcal{G}(W)$ is determined. (because W is Borel)
2. The winner of $\mathcal{G}(W)$ can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values, initial memory $m_{0} \in M$, and update function $\delta: M \times A \rightarrow M$, such that for $m_{i+1} \stackrel{\text { def }}{=} \delta\left(m_{i}, a_{i}\right)$, the choice of a_{i} depends only on m_{i}.

Part 4

Applications

Deciding if $G \in \mathbf{R E G}$ is comeagre

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}$:

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
(I):
(II):

Deciding if $G \in \mathbf{R E G}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
(I): $\quad \underline{a_{0}}$
(II):

Deciding if $G \in \operatorname{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{cll}
\text { (I): } & \underline{a_{0}} & \\
\text { (II): } & & \underline{b}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
(I): $\underline{a_{0}} \underline{\underline{b}} \quad \underline{a_{1}}$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
$\begin{array}{cllll}\text { (I) }: & \underline{a_{0}} & & \underline{a_{1}} \\ \text { (II) }: & \underline{b} & \underline{b}\end{array}$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
(I): $\underline{a}_{\underline{0}}^{\underline{b} \quad \underline{a_{1}}} \underset{\underline{b}}{\underline{b}}$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
$\begin{array}{rlllll}\text { (I) }: & \underline{a_{0}} & \underline{b} & \underline{a_{1}} & \underline{b} & \\ \text { (II) } & \underline{b} & \underline{a_{2}}\end{array}$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
$\begin{array}{cllllll}\text { (I) }: & \underline{a_{0}} \\ \text { (II) } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{a_{2}} & \underline{b}\end{array}$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$
$\begin{array}{llllllll}\text { (I): } & \underline{a_{0}} \\ \text { (II): } & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{a_{3}}\end{array}$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllll}
\text { (I) : } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{b} & \underline{a_{3}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{llllllllll}
\text { (I): } & \underline{a_{0}} & & \underline{a_{1}} \\
\text { (II): } & & \underline{b} & & \underline{b} & & \underline{a_{2}} & \underline{b} & \underline{a_{3}} & \underline{b} \\
\underline{a_{4}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rlllllllll}
\text { (I) }: & a_{0} & & \underline{a_{1}} & \underline{b} & & \underline{b} & \underline{b} & \underline{b} \\
\text { (II): } & & \underline{b} & & \underline{b} & & \underline{a_{2}} & & \underline{a_{3}} & \underline{a_{4}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{lllllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{b} & \underline{a_{3}} & \underline{a_{4}} & \underline{b} \\
\underline{a_{5}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllllllllllll}
\text { (I): } & \underline{a_{0}} \\
\text { (II): } & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{b} & \underline{b} & \underline{a_{2}} & \underline{a_{3}} & \underline{a_{4}} & \underline{a_{5}} & \underline{b}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{array}{rllllllllllll}
\text { (I) : } & \underline{a_{0}} & & \underline{a_{1}} & & \underline{b} & & \underline{b} & & \underline{b} & \underline{a_{1}} & \underline{b} & \underline{a_{3}} \\
\text { (II): } & & \underline{b} & & \underline{a_{2}} & \underline{a_{5}} & \underline{b} & \underline{a_{6}}
\end{array}
$$

Deciding if $G \in \mathrm{REG}$ is comeagre
Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& \text { (I): } \quad \underline{a_{0}} \underline{\mathrm{~b}}^{\underline{a_{1}}} \underset{\underline{\mathrm{~b}}}{ } \quad \underline{\mathrm{~b}} \underline{a}_{2} \underline{\underline{b}} \underline{a}_{3} \underline{\underline{b}} \underline{a}_{4} \underline{\underline{b}} \underline{a}_{5} \underline{\underline{b}} \quad \underline{\mathrm{~b}} \quad \underline{a_{6}} \\
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.

Deciding if $G \in$ REG is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Theorem (Michalewski, Mio, S. ['17])
It is decidable if $\mathrm{L}(\mathcal{A})$ is comeagre for game-automata \mathcal{A} over trees.

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Theorem (Michalewski, Mio, S. ['17])
It is decidable if $\mathrm{L}(\mathcal{A})$ is comeagre for game-automata \mathcal{A} over trees.

Similarly with other game-characterised properties for regular sets:

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Theorem (Michalewski, Mio, S. ['17])
It is decidable if $\mathrm{L}(\mathcal{A})$ is comeagre for game-automata \mathcal{A} over trees.

Similarly with other game-characterised properties for regular sets:

- countability,

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Theorem (Michalewski, Mio, S. ['17])
It is decidable if $\mathrm{L}(\mathcal{A})$ is comeagre for game-automata \mathcal{A} over trees.

Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0 ,

Deciding if $G \in \mathrm{REG}$ is comeagre

Take a regular $G \subseteq A^{\omega}$.

$$
\left[G=\mathrm{L}\left(\varphi_{G}\right)\right]
$$

Construct a regular $W_{G} \subseteq(A \sqcup\{b\})^{\omega}: \quad\left[\varphi_{G} \mapsto \varphi_{W_{G}}\right.$ s.t. $\left.\mathrm{L}\left(\varphi_{W_{G}}\right)=W_{G}\right]$

$$
\begin{aligned}
& ((\mathrm{II}) \text { wins } \operatorname{BM}(G)) \quad \Longleftrightarrow \quad\left((\mathrm{II}) \text { wins } \mathcal{G}\left(W_{G}\right)\right)
\end{aligned}
$$

Solve $\mathcal{G}\left(W_{G}\right)$ to know if G is comeagre.
Theorem (Michalewski, Mio, S. ['17])
It is decidable if $\mathrm{L}(\mathcal{A})$ is comeagre for game-automata \mathcal{A} over trees.

Similarly with other game-characterised properties for regular sets:

- countability,
- measure 0 ,
- Wadge reductions, ...

Synthesis

Synthesis

Synthesis

Trace $\tau=\left(i_{0}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0}\right.$

Synthesis

Trace $\tau=\left(\begin{array}{lll}i_{0} & o_{0} & i_{1}\end{array}\right.$

Synthesis

Trace $\tau=\left(\begin{array}{llll}i_{0} & o_{0} & i_{1} & o_{1}\end{array}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n}\right.$

Synthesis

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification

Synthesis

φ over $I \sqcup O$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

Implementation $\mathcal{S}: I \leadsto O$
[whenever possible]

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

Trace $\tau=\left(i_{0} o_{0} i_{1} o_{1} \cdots i_{n} o_{n} \cdots\right) \in(I \sqcup O)^{\omega}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.:
Impl.:

Specification φ over $I \sqcup O$

Env.: $\quad i_{0}$
Impl.:

Specification φ over $I \sqcup O$

Env.: \underline{i}_{0}
Impl.: $\quad \underline{o_{0}}$

Specification φ over $I \sqcup O$

Specification φ over $I \sqcup O$

Env.: $\quad i_{0}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Specification φ over $I \sqcup O$

Specification φ over $I \sqcup O$

$\begin{array}{llllll}\text { Env.: } & \underline{i_{0}} & & \underline{i_{1}} & & \underline{i_{2}} \\ \text { Impl.: } & & \underline{o_{0}} & & \underline{o_{1}}\end{array}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{lllllll}\text { Env.: } & \underline{i_{0}} & & \underline{i_{1}} & & \underline{i_{2}} & \\ \text { Impl.: } & & \underline{o_{0}} & & \underline{o_{1}} & & \underline{o_{2}}\end{array}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{rlllllll}\text { Env.: } & \underline{i_{0}} & \underline{i_{1}} & \underline{i_{2}} & & \cdots \\ \text { Impl.: } & \underline{o_{0}} & \underline{o_{1}} & \underline{o_{2}} & \cdots\end{array}$

Specification φ over $I \sqcup O$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{ccccccc}\text { Env.: } & \underline{i_{0}} & & \underline{i_{1}} & & \underline{i_{2}} & \\ \text { Impl.: } & & \underline{o_{0}} & & \underline{o_{1}} & & o_{2} \\ & & & \cdots\end{array}$

Specification φ over $I \sqcup O$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Env.: $\underline{i_{0}} \quad \underline{i_{1}} \quad \underline{i_{2}} \quad \cdots \quad \underline{i_{n}}$ Impl.: $\quad \underline{o_{0}} \quad \underline{o_{1}} \quad \underline{O_{2}} \quad \cdots$

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
$[\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

Specification φ over $I \sqcup O$

Specification φ over $I \sqcup O$

$$
\text { Solve } \mathcal{G}(\mathrm{L}(\varphi))
$$

$$
\text { Solve } \mathcal{G}(\mathrm{L}(\varphi))
$$

(I) wins

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$
$\varphi \equiv " o_{0}=i_{1} "$

$$
\text { Solve } \mathcal{G}(\mathrm{L}(\varphi))
$$

(I) wins

φ is unrealisable

Synthesis

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{rllllll}\text { Env.: } & \underline{i_{0}} & \underline{i_{1}} & \underline{i_{2}} & & \cdots & \underline{i_{n}} \\ \text { Impl.: } & \underline{o_{0}} & \underline{o_{1}} & \underline{o_{2}} & \cdots & \underline{o_{n}} & \cdots \\ =\end{array}$

Specification φ over $I \sqcup O$

Implementation
$\mathcal{S}: I \leadsto O$
[$\underbrace{\text { whenever possible }}]$

$$
\varphi \equiv " o_{0}=i_{1} "
$$

$\begin{array}{rllllll}\text { Env.: } & \underline{i_{0}} & \underline{i_{1}} & \underline{i_{2}} & & \cdots & \underline{i_{n}} \\ \text { Impl.: } & \underline{o_{0}} & \underline{o_{1}} & \underline{o_{2}} & \cdots & \underline{o_{n}} & \cdots \\ =\end{array}$

Part 5

Effective characterisations

Task: understand which $L \in R E G$ are simple.

Task: understand which $L \in R E G$ are simple.

Procedure:
Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

Task: understand which $L \in R E G$ are simple.
Procedure:

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

Task: understand which $L \in R E G$ are simple.
Procedure:
Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

Task: understand which $L \in$ REG are simple.

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

Task: understand which $L \in$ REG are simple.

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

Task: understand which $L \in \mathrm{REG}$ are simple.

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

\longrightarrow finite / countable / meagre / . . \longrightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in$ REG is First-order (i.e. FO) definable.

Task: understand which $L \in R E G$ are simple.

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

\rightarrow finite / countable / meagre / ...
\longrightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79]) It is decidable if $L \in$ REG is First-order (i.e. FO) definable.

Theorem (Bojańczyk, Walukiewicz ['04])
It is decidable if a regular language of finite trees is EF definable.

Task: understand which $L \in \mathrm{REG}$ are simple.

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

\rightarrow finite / countable / meagre / ...
\longrightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79])
It is decidable if $L \in$ REG is First-order (i.e. FO) definable.
Theorem (Bojańczyk, Walukiewicz ['04])
It is decidable if a regular language of finite trees is EF definable.
Theorem (Murlak ['06])
Topological complexity is dec. for deterministic languages of inf. trees.

Task: understand which $L \in R E G$ are simple.

Input: φ
Output: is $\mathrm{L}(\varphi)$ simple?

\rightarrow finite / countable / meagre / ...
\rightarrow topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79])
It is decidable if $L \in$ REG is First-order (i.e. FO) definable.
Theorem (Bojańczyk, Walukiewicz ['04])
It is decidable if a regular language of finite trees is EF definable.
Theorem (Murlak ['06])
Topological complexity is dec. for deterministic languages of inf. trees.
$\left[\begin{array}{c}\text { Bárány, Bojańczyk, Colcombet, Facchini, Idziaszek, Kuperberg, } \\ \text { Michalewski, Murlak, Niwiński, Place, Sreejith, Walukiewicz, ... }\end{array}\right]$

Pattern method for rigid representations

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { Properties of } \mathcal{A}_{0} \\
\text { are properties of } L
\end{array}\right]} \\
& \varphi \equiv(\varphi \wedge \Psi) \vee(\varphi \wedge \neg \Psi)
\end{aligned}
$$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

4. a Prove that L is simple

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Limitations:

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Limitations:

- 3.a works under the assumption of lack of obstruction

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Limitations:

- 3.a works under the assumption of lack of obstruction
\leadsto difficult proofs

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Limitations:

- 3.a works under the assumption of lack of obstruction $\leadsto \leadsto$ difficult proofs
- 3.b uses complexity in \mathcal{A}_{0} to prove complexity of L

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)$ $\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Limitations:

- 3.a works under the assumption of lack of obstruction $\leadsto \rightarrow$ difficult proofs
- 3.b uses complexity in \mathcal{A}_{0} to prove complexity of L \leadsto requires rigid representations

Pattern method for rigid representations

1. Input $L=\mathrm{L}(\varphi)$
2. Compute a rigid representation $L=\mathrm{L}\left(\mathcal{A}_{0}\right)$ $\left[\begin{array}{c}\text { Properties of } \mathcal{A}_{0} \\ \text { are properties of } L\end{array}\right]$
3. Search in \mathcal{A}_{0} for a complicated pattern

3.a Prove that L is simple
3.b Use it to show that L is hard

Limitations:

- 3.a works under the assumption of lack of obstruction \leadsto difficult proofs
- 3.b uses complexity in \mathcal{A}_{0} to prove complexity of L \leadsto requires rigid representations

No such for infinite trees!

Game method

Game method

1. Input $L=\mathrm{L}(\varphi)$

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game \mathcal{G}_{φ}

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use $\sigma_{\text {I }}$ to prove that L is simple

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {I }}$ to prove that L is simple

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard $\leadsto \leadsto \ln$ both cases we are on the positive side.

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard $m \leadsto$ In both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard $\leadsto \leadsto$ In both cases we are on the positive side. \leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard \leadsto In both cases we are on the positive side. \leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard \leadsto In both cases we are on the positive side. \leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \rightarrow \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Examples

Game method

1. Input $L=\mathrm{L}(\varphi)$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use σ_{I} to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard
\leadsto In both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Examples
-(Kirsten ['05]; Colcombet ['09]; Toruńczyk ['11]; Bojańczyk ['15]): star-height

Game method

1. Input $L=\mathrm{L}(\varphi) \quad$ 2. Construct a game $\mathcal{G}_{\varphi} \quad$ 3. Solve \mathcal{G}_{φ}

3.a Take his w.s. σ_{I}

Use $\sigma_{\text {I }}$ to prove that L is simple
3.b Take his w.s. $\sigma_{\text {II }}$

Use $\sigma_{\text {II }}$ to prove that L is hard
$m \rightarrow$ In both cases we are on the positive side.
\leadsto If \mathcal{G}_{φ} is regular then σ_{I} and $\sigma_{\text {II }}$ are finite memory.
$\leadsto \rightarrow \mathcal{G}_{\varphi}$ can work with a non-rigid representation φ
(e.g. deal with non-determinism).

Examples

 -(Kirsten ['05]; Colcombet ['09]; Toruńczyk ['11]; Bojańczyk ['15]): star-height -(Colcombet, Löding ['08] + Kuperberg, Vanden Boom ['13]):a variant of Rabin-Mostowski index problem

Theorem (S., Walukiewicz ['14])

It is decidable if a Büchi language of infinite trees is WMSO definable.

Theorem (S., Walukiewicz ['14])
It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation

Theorem (S., Walukiewicz ['14])
It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation
weaker logic

Theorem (S., Walukiewicz ['14])

It is decidable if a Büchi language of infinite trees is WMSO definable. no rigid representation
weaker logic

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for L

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\text {I }} \rightsquigarrow$ a WMSO formula for $L \quad \sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for L
$\sigma_{\text {II }} \leadsto L$ is not WMSO def.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\text {I }} \leadsto$ a WMSO formula for $L \quad \sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def. But it seemed that we can get more (ordinal ranks)!

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable. }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }}$.

$$
[W \equiv A \vee(B \wedge C)]
$$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for L
$\sigma_{\text {II }} \leadsto L$ is not WMSO def.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \rightsquigarrow$ a WMSO formula for $L \quad \sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def.

Theorem (S., Walukiewicz ['16])
A Büchi language is wmso def. iff it is Borel; and it is decidable.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\text {I }} \rightsquigarrow$ a WMSO formula for $L \quad \sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def.

Theorem (S., Walukiewicz ['16])
A Büchi language is WMSO def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime}$.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\text {I }} \leadsto$ a WMSO formula for L
$\sigma_{\text {II }} \leadsto L$ is not WMSO def.

Theorem (S., Walukiewicz ['16])
A Büchi language is wmso def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime}$.

$$
\left[W \equiv(A \vee B) \wedge C^{\prime}\right]
$$

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\text {I }} \leadsto$ a WMSO formula for L
$\sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def.

Theorem (S., Walukiewicz ['16])
A Büchi language is wMso def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime}$.

$$
\left[W \equiv(A \vee B) \wedge C^{\prime}\right]
$$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for L
$\leadsto L$ is Borel

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for $L \quad \sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def.

Theorem (S., Walukiewicz ['16])
A Büchi language is wMso def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime} . \quad\left[W \equiv(A \vee B) \wedge C^{\prime}\right]$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for L $\leadsto L$ is Borel
$\sigma_{\text {II }} \leadsto L$ is not Borel $m L$ is not WMSO def.

Theorem (S., Walukiewicz ['14])

It is decidable if a $\underbrace{\text { Büchi language of infinite trees }}_{\text {no rigid representation }}$ is $\underbrace{\text { WMSO definable }}_{\text {weaker logic }}$.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{\mathcal { G } _ { \mathcal { B } }} . \quad[W \equiv A \vee(B \wedge C)]$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for $L \quad \sigma_{\text {II }} \rightsquigarrow L$ is not WMSO def.

Theorem (S., Walukiewicz ['16])
A Büchi language is wMso def. iff it is Borel; and it is decidable.

Proof

Take $L=\mathrm{L}(\mathcal{B})$ and construct a game $\mathcal{G}_{\mathcal{B}}^{\prime} . \quad\left[W \equiv(A \vee B) \wedge C^{\prime}\right]$

$\sigma_{\mathrm{I}} \leadsto$ a WMSO formula for L $\leadsto L$ is Borel
$\sigma_{\text {II }} \leadsto L$ is not Borel $m \longrightarrow L$ is not WMSO def.

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \boldsymbol{\Pi}_{2}^{0}$

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \Pi_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \notin \Pi_{2}^{0}$

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \Pi_{2}^{0}$
2. L isn't weak-alt(0,2)-definable and $L \notin \Pi_{2}^{0}$ weak index

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \Pi_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \notin \Pi_{2}^{0}$ weak index
topological complexity

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \Pi_{2}^{0}$
2. L isn't weak-alt(0,2)-definable and $L \notin \Pi_{2}^{0}$ weak index
topological complexity

Proof

Consider a game \mathcal{F}

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \Pi_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \notin \Pi_{2}^{0}$ weak index
topological complexity

Proof

Consider a game \mathcal{F}

Theorem (Cavallari, Michalewski, S. ['17])

Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak-alt $(0,2)$-definable and $L \in \boldsymbol{\Pi}_{2}^{0}$
2. L isn't weak-alt $(0,2)$-definable and $L \notin \Pi_{2}^{0}$ weak index
topological complexity

Proof

Consider a game \mathcal{F}

Two lemmata:

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\rightsquigarrow a weak alternating $(0,2)$ automaton for $L \square$

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$
$m L \in \Pi_{2}^{0}$

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt $(0,2)$-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$
$m L \in \boldsymbol{\Pi}_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt $(0,2)$-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$
$m L \in \boldsymbol{\Pi}_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt $(0,2)$-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\rightsquigarrow a weak alternating $(0,2)$ automaton for $L \square$
$m L \in \boldsymbol{\Pi}_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}
Confront it with a family of quasi-strategies of (I)

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$
$m L \in \Pi_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}
Confront it with a family of quasi-strategies of (I)
\leadsto a reduction proving that $L \notin \Pi_{2}^{0}$

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$
$m s L \in \Pi_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}
Confront it with a family of quasi-strategies of (I)
$\leadsto \rightarrow$ a reduction proving that $L \notin \Pi_{2}^{0}$
$\leadsto L$ is not weak-alt(0,2)-definable

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$ $\leadsto L \in \boldsymbol{\Pi}_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}
Confront it with a family of quasi-strategies of (I) \leadsto a reduction proving that $L \notin \Pi_{2}^{0}$
$\leadsto L$ is not weak-alt(0,2)-definable
A complete proof

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$ $m s \in \Pi_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}
Confront it with a family of quasi-strategies of (I) $\leadsto \rightarrow$ a reduction proving that $L \notin \Pi_{2}^{0}$
$\leadsto L$ is not weak-alt(0,2)-definable

A complete proof not using properties on which the game \mathcal{F} is based

Two lemmata:

1. If (I) wins \mathcal{F} then L is weak-alt(0,2)-definable

Proof

Take a finite memory strategy of (I) in \mathcal{F}
Add some pumping
\leadsto a weak alternating $(0,2)$ automaton for $L \square$ $m L \in \boldsymbol{\Pi}_{2}^{0}$
2. If (II) wins \mathcal{F} then L is not Π_{2}^{0}

Proof

Take a strategy of (II) in \mathcal{F}
A complete proof not using properties on which
the game \mathcal{F} is based
[dealternation]

Confront it with a family of quasi-strategies of (I) $\leadsto \rightarrow$ a reduction proving that $L \notin \Pi_{2}^{0}$
$\leadsto L$ is not weak-alt(0,2)-definable

Summary

Summary

\rightarrow characterising properties of sets

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra) pattern missing $\leadsto L$ is simple

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)
pattern missing
$\leadsto L$ is simple

pattern found
$m L$ is hard

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)
pattern missing
$\leadsto L$ is simple

pattern found
$m L$ is hard
\rightarrow games (may deal with non-determinism)

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)
pattern missing
$\leadsto L$ is simple

pattern found
$\leadsto L$ is hard
\rightarrow games (may deal with non-determinism)

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)
pattern missing $\leadsto L$ is simple

pattern found
$\leadsto L$ is hard
\rightarrow games (may deal with non-determinism)

strategy of (II)
$m L$ is hard

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)
pattern missing $\leadsto L$ is simple

pattern found
$\leadsto L$ is hard
\rightarrow games (may deal with non-determinism)

strategy of (II)
$m L$ is hard
\rightarrow no general recipe for design

Summary

\rightarrow characterising properties of sets
\rightarrow games in general + determinacy
\rightarrow effectiveness for regular winning conditions
\rightarrow pattern method (rigid representatons: determinism / algebra)
pattern missing
$\leadsto L$ is simple

pattern found
$\leadsto L$ is hard
\rightarrow games (may deal with non-determinism)

strategy of (II)
$m \rightarrow$ is hard
\rightarrow no general recipe for design
Conjecture: Every class of languages has a game characterisation.

