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Part 1

Generic objects



How to prove that there exists a four-legged elephant?
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How to prove that there exists a four-legged elephant?

Option 1.: Find one.

P(P)>1—¢

Option 3.: Go contrapositive, etc. ..
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How to prove that there exists a four-legged elephant?

Option 1.: Find one.

P(P)>1—¢

w~> strong arithmetical tools

but:

> effective computations o L
o ) limitations of quantitativity
> infinitary properties:

YV (P(P)=1) = P(ﬂPn):l
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Player (I) has a winning strategy in BM(1/)
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1EW
Corollary
Player (I) has a winning strategy in BM(W) iff

([0,1]—W) is comeagre on some interval.
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Part 2

Determinacy



A game is determined if either (I) or (II) has a winning strategy.
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e There exist non-determined games of infinite duration!
Example (Kopczynski, Niwinski ['14] (also Khomskii ['10]; ...))
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e There exist non-determined games of infinite duration!
Example (Kopczynski, Niwinski ['14] (also Khomskii ['10]; ...))

11001110101111011110101 --- € X
Let XOR < {0, 1} satisfy OHOOTTIOTOTEITOTTHOT0 ifF 240l

[ hidden axiom of choice... ] 011001110101011011110101 - - - ¢ XOR
Then BM(XOR) is non-determined !

(I): 01100 00 110010
(ID): 11011 1 00011
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BM(XOR) is non-determined ! (IT) wins = iff 7€ XOR

(I): 01100 00 110010
I

(IT): 11011 1 00011 « v e {0,1}¢

((I) has aw.s.) = ((II) has a w.s.)
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(I): 01100 00 110010
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BM(XOR) is non-determined ! (IT) wins = iff 7€ XOR

(I): 01100 00 110010
I

(IT): 11011 1 00011 « v e {0,1}¢

((I) has aw.s.) = ((II) has a w.s.)
Proof: “strategy stealing”
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Theorem (Martin ['75])

Determined are games which are:

played by two players,
round-based,
of perfect information,

of length w,

—~————

when the winning condition is Borel.

Corollary

All Borel sets have:

e perfect set property (by x-games),

Many variants:

- Blackwell games
>

- Nash equilibria

e Baire property and measurability (by BM-games),

e well-behaved Wadge hierarchy,

e Ramsey-style dichotomies, ...
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Part 3

Effectiveness



Fix a finite set A = {a,b,c,...}.
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Definition Fix a finite set A = {a,b,c,...}.
A set L < AY is regular if
L can be defined in Monadic Second-order logic:

— first-order (3,c.,,) and monadic second-order (3xc.,) quantifiers,

— Boolean connectives (v, A, —),
— atomic predicates: a(z), z <y, z € X.

‘ Veew Jyew (a: <y A a(y)) Ll {a € A“ | « has infinitely many a} ‘

In other words
Regular sets is the smallest family REG that

— contains some basic languages, and
— is closed under Boolean operations and projection (AxB)w — A%

Facts: REG < Borel, proj(REG) € REG, proj(Borel) ¢ Borel.
Every L € REG has a finite representation ¢ such that L(p) = L
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Consider a game G(W):

I): 5

(%I;: Ly w s w7 T (ma e A
(IT) wins = iff me W
Then:

1. G(W) is determined.  (because W is Borel)

2. The winner of G(W) can be effectively computed.

3. The winner can use a finite memory winning strategy:
There is a finite set M of memory values,
initial memory mg € M, and update function §: M xA — M,
such that for m; 1 def d(mi, a;),

the choice of a; depends only on m;.
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Part 5

Effective characterisations



Task: understand which L € REG are simple.
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Procedure:

Input: ¢
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topologically simple (e.g. Borel)

Theorem (Schutzenberger ['65]; McNaughton, Papert ['71]; Thomas ['79])
It is decidable if L € REG is First-order (i.e. FO) definable.

Theorem (Bojanczyk, Walukiewicz ['04])

It is decidable if a regular language of finite trees is EF definable.

Theorem (Murlak ['06])
Topological complexity is dec. for deterministic languages of inf. trees.

Barany, Bojanczyk, Colcombet, Facchini, Idziaszek, Kuperberg, ]
Michalewski, Murlak, Niwinski, Place, Sreejith, Walukiewicz, ...
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1. Input L = L(y)
Properties of Ag ]

are properties of L

2. Compute a rigid representation L = L(.Ap) [

3. Search in Ap for a complicated pattern
[e.g. or oM + JZMZC]

3.a Prove that L is simple 3.b Use it to show that L is hard

Limitations:
e 3.a works under the assumption of lack of obstruction
v~ difficult proofs

e 3.b uses complexity in Ag to prove complexity of L

v~ requires rigid representations [No such for infinite trees !J
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Game method
1. Input L = L(p) 2. Construct a game G, 3. Solve G,

@ Wi @ Wing

3.a Take his w.s. o; 3.b Take his w.s. oy

Use o, to prove that L is simple Use oy to prove that L is hard

~~> |n both cases we are on the positive side.
v If G, is regular then o7 and oy; are finite memory.

v G, can work with a non-rigid representation ¢

(e.g. deal with non-determinism).
Examples

-(Kirsten ['05]; Colcombet ['09]; ToruAczyk ['11]; Bojafczyk ['15]): star-height
-(Colcombet, Léding ['08] + Kuperberg, Vanden Boom ['13]):

a variant of Rabin-Mostowski index problem
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Theorem (S., Walukiewicz ['14])
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Theorem (S., Walukiewicz ['14])

It is decidable if a Biichi language of infinite trees is WMSO definable.

no rigid regresentation Weakevr logic
Proof
Take L = L(B) and construct a game Gg. [W=Av (BAC)]
© WinS (1) Wing
o1 v~ a WMSO formula for L o v L is not wMSO def. W

But it seemed that we can get more (ordinal ranks)!
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Conjecture: Every class of languages has a game characterisation.
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