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Part 1

Generic objects



How to prove that there exists a four-legged elephant?

Option 1.: Find one.

Option 2.: Prove that a generic elephant has the property P .

PpP q ą 1´ ε

Option 3.: Go contrapositive, etc. . .
ù strong arithmetical tools
ù effective computations
ù infinitary properties:

@
nPω

`

P pPnq“1
˘

ùñ P

˜

č

nPω

Pn

¸

“ 1

but:
limitations of quantitativity
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Topological genericness: comeagre sets

G Ď X is comeagre iff
G Ě

Ş

iPω
Ui and

all Ui are dense and open

@
nPω

`

Gn is comeagre
˘

ùñ

˜

č

nPω

Gn

¸

is comeagre

Example
Take Ui “ R´tqiu. Then

Ş

iPω
Ui “ R´Q is comeagre.

Theorem (Baire)
In nice spaces (i.e. Polish) every comeagre set is dense.

[thus non-empty]

ù the complement of a comeagre set is not comeagreCorollaries (non-constructive proofs of existence)
‚ a continuous function nowhere differentiable
‚ a linear partial differential equation with no solutions
‚ . . .

forcing
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Which sets are comeagre?

(Banach–Mazur game) (take W Ď r0, 1s)

BMpW q is the infinite game:

pIq:
pIIq:

0, 43226
19743

13 8723466
54326 ¨ ¨ ¨ ù π P r0, 1s

pIIq wins π iff π PW

Theorem (Banach–Mazur)
Player pIIq has a winning strategy in BMpW q iff W is comeagre.

[W Ě
Ş

iPωUi -open, dense]
Proof
pñq Each strategy σ provides a family Ui (modulo some technicalities).
pðq Consider the strategy σ that in a round i falls into Ui.

Each play π consistent with σ belongs to
Ş

iPω
Ui ĎW . �

Corollary
Player pIq has a winning strategy in BMpW q iff

`

r0, 1s´W
˘

is comeagre on some interval.
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Part 2

Determinacy



A game is determined if either pIq or pIIq has a winning strategy.

‚ Every game of finite duration is determined.
no infinite play ” well-founded game graph‚ There exist non-determined games of infinite duration !

Example (Kopczyński, Niwiński [’14] (also Khomskii [’10]; . . . ))

Let XOR Ď t0, 1uω satisfy 011001110101111011110101 ¨ ¨ ¨ P XOR
iff

011001110101011011110101 ¨ ¨ ¨ R XOR

1

[ hidden axiom of choice. . . ]

Then BMpXORq is non-determined !
pIq:
pIIq:

01100
11011

00
1

110010
00011 ¨ ¨ ¨ ù π P t0, 1uω

pIIq wins π iff π P XOR

1. (pIIq has a w.s.) ùñ (pIq has a w.s.)

2. (pIq has a w.s.) ùñ (pIIq has a w.s.)
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(pIq has a w.s.) ùñ (pIIq has a w.s.)

Proof: “strategy stealing”
Take σI — a w.s. of pIq
Construct σII — a w.s. of pIIq

σI:

pIIq:

pIq:

σII:

r0

s0

r00

s1

s01 s1

r1

r1

s2

s2

r2

r2

s3

s3

¨ ¨ ¨

¨ ¨ ¨

ù s0r00 ¨ π R XOR

ù r0s01 ¨ π P XOR

ù σII is a winning strategy of pIIq �

XOR –  XOR
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Theorem (Martin [’75])
Determined are games which are:

- played by two players,

- round-based,

- of perfect information,

- of length ω,

when the winning condition is Borel.

Corollary
All Borel sets have:
‚ perfect set property (by ˚-games),
‚ Baire property and measurability (by BM-games),
‚ well-behaved Wadge hierarchy,
‚ Ramsey-style dichotomies, . . .

Many variants:
¨ Blackwell games
¨ Nash equilibria
¨ . . .
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Part 3

Effectiveness



Fix a finite set A “ ta, b, c, . . .u.

Definition
A set L Ď Aω is regular if

L can be defined in Monadic Second-order logic:
— first-order (DxPω) and monadic second-order (DXĎω) quantifiers,
— Boolean connectives (_, ^,  ),
— atomic predicates: apxq, x ď y, x P X.

@xPω DyPω

`

x ď y ^ apyq
˘ Lpϕq

ù
 

α P Aω | α has infinitely many a
(

In other words
Regular sets is the smallest family REG that
— contains some basic languages, and
— is closed under Boolean operations and projection

`

AˆB
˘ω
Ñ Aω.

Facts: REG Ď Borel, projpREGq Ď REG, projpBorelq Ę Borel.
Every L P REG has a finite representation ϕ such that Lpϕq “ L.
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Theorem (Büchi [’62])
Given ϕ it is decidable if Lpϕq ‰ H.

Proof
Using automata (ϕ ÞÑ Aϕ) and Ramsey argument. �

ù Decidability of: Lpϕq ?
“Aω,

?
“Lp ϕq H

Lpψq
?
Ď Lpϕq,

?
“Lpψ^ ϕq H

Lpψq ?
“Lpϕq, . . .

ù Model-checking: given a machine M and a specification ϕ,
decide if M |ù ϕ.

1. Express behaviour of M as ψM .
2. Verify if ψMñϕ.
“

In fact: translate  ϕ into A ϕ and check MˆA ϕ for emptiness
‰

ù Working implementations (e.g. MONA from Aarhus)
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Theorem (Büchi, Landweber [’69])

Fix W Ď Aω regular (i.e. W P REG).
Consider a game GpW q:

pIq:
pIIq:

a0
a1

a2
a3

a4
a5

a6
a7

a8 ¨ ¨ ¨ ù π “ pa0a1 ¨ ¨ ¨ q P Aω

pIIq wins π iff π PW

Then:
1. GpW q is determined. (because W is Borel)
2. The winner of GpW q can be effectively computed.
3. The winner can use a finite memory winning strategy:

There is a finite set M of memory values,
initial memory m0 PM , and update function δ : MˆAÑM ,
such that for mi`1

def
“ δpmi, aiq,

the choice of ai depends only on mi.
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initial memory m0 PM , and update function δ : MˆAÑM ,
such that for mi`1

def
“ δpmi, aiq,

the choice of ai depends only on mi.
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Part 4

Applications



Deciding if G P REG is comeagre

Take a regular G Ď Aω.
“

G “ LpϕGq
‰

Construct a regular WG Ď
`

A\t5u
˘ω:

“

ϕG ÞÑ ϕWG
s.t. LpϕWG

q “WG

‰

pIq:
pIIq:

a0
5

a1
5

5

a2

5

a3

5

a4

5

a5

5

5

a6 ¨ ¨ ¨

`

pIIq wins BMpGq
˘

ðñ
`

pIIq wins GpWGq
˘

Solve GpWGq to know if G is comeagre. �

Theorem (Michalewski, Mio, S. [’17])
It is decidable if LpAq is comeagre for game-automata A over trees.

Similarly with other game-characterised properties for regular sets:
— countability,
— measure 0,
— Wadge reductions, . . .
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Part 5

Effective characterisations



Task: understand which L P REG are simple.

Procedure:
Input: ϕ

Output: is Lpϕq simple?

definable in a weaker logic (e.g. fo)
finite / countable / meagre / . . .
topologically simple (e.g. Borel)
¨ ¨ ¨

Theorem (Schutzenberger [’65]; McNaughton, Papert [’71]; Thomas [’79])
It is decidable if L P REG is First-order (i.e. fo) definable.

Theorem (Bojańczyk, Walukiewicz [’04])
It is decidable if a regular language of finite trees is ef definable.

Theorem (Murlak [’06])
Topological complexity is dec. for deterministic languages of inf. trees.

[ ]Bárány, Bojańczyk, Colcombet, Facchini, Idziaszek, Kuperberg,
Michalewski, Murlak, Niwiński, Place, Sreejith, Walukiewicz, . . .
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Pattern method for rigid representations

1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L
ϕ ”

`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L
ϕ ”

`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q

[ ]Properties of A0

are properties of L
ϕ ”

`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L
ϕ ”

`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej.

or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:

‚ 3.a works under the assumption of lack of obstruction
ù difficult proofs

‚ 3.b uses complexity in A0 to prove complexity of L
ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs

‚ 3.b uses complexity in A0 to prove complexity of L
ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations

No such for infinite trees !

Michał Skrzypczak Games in topology and their effective variants 13 / 18



Pattern method for rigid representations
1. Input L “ Lpϕq

2. Compute a rigid representation L “ LpA0q [ ]Properties of A0

are properties of L

ϕ ”
`

ϕ^Ψ
˘

_
`

ϕ^ Ψ
˘

3. Search in A0 for a complicated pattern

[ ]e.g. acc. rej. or xM ‰ xM ¨x

not fo
und

3.a Prove that L is simple

found

3.b Use it to show that L is hard

Limitations:
‚ 3.a works under the assumption of lack of obstruction

ù difficult proofs
‚ 3.b uses complexity in A0 to prove complexity of L

ù requires rigid representations No such for infinite trees !
Michał Skrzypczak Games in topology and their effective variants 13 / 18



Game method

1. Input L “ Lpϕq 2. Construct a game Gϕ 3. Solve Gϕ

pIq wi
ns

3.a Take his w.s. σI

Use σI to prove that L is simple

pIIq wins

3.b Take his w.s. σII

Use σII to prove that L is hard

ù In both cases we are on the positive side.

ù If Gϕ is regular then σI and σII are finite memory.

ù Gϕ can work with a non-rigid representation ϕ
(e.g. deal with non-determinism).

Examples
-(Kirsten [’05]; Colcombet [’09]; Toruńczyk [’11]; Bojańczyk [’15]): star-height
-(Colcombet, Löding [’08] + Kuperberg, Vanden Boom [’13]):

a variant of Rabin-Mostowski index problem
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Theorem (S., Walukiewicz [’14])
It is decidable if a Büchi language of infinite trees is wmso definable.

no rigid representation weaker logic
Proof

Take L “ LpBq and construct a game GB.
“

W ” A_
`

B ^ C
˘‰

(R0)

(R1)
a a a a a a a a

(R2)

pIq wi
ns

σI ù a wmso formula for L

pIIq wins

σII ù L is not wmso def. �

But it seemed that we can get more (ordinal ranks)!
Theorem (S., Walukiewicz [’16])

A Büchi language is wmso def. iff it is Borel; and it is decidable.
Proof

Take L “ LpBq and construct a game G1B.
“

W ”
`

A_B
˘

^ C 1
‰

pIq wi
ns

σIù a wmso formula for L
ù L is Borel

pIIq wins

σIIù L is not Borel
ù L is not wmso def. �
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Theorem (Cavallari, Michalewski, S. [’17])
Let L be regular lang. of inf. trees. Then effectively either:

1. L is weak´altp0, 2q-definable and L P Π0
2

2. L isn’t weak´altp0, 2q-definable and L R Π0
2

weak index topological complexity
Proof

Consider a game F
B-states p A-states q A-states q1

@@@: restart/stay

DDD: a, . . .

@@@: L/R

a a aa a a

W ”
`

pWRq ^ pWBq
˘

_
`

 pWRq ^ pWAq
˘
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Two lemmata:

1. If pIq wins F then L is weak´altp0, 2q-definable

Proof
Take a finite memory strategy of pIq in F
Add some pumping

�ù a weak alternating p0, 2q automaton for L
ù L P Π0

2

2. If pIIq wins F then L is not Π0
2

Proof
Take a strategy of pIIq in F
Confront it with a family of quasi-strategies of pIq

�ù a reduction proving that L R Π0
2

ù L is not weak´altp0, 2q-definable

A complete proof
not using properties

on which
the game F is based

[ dealternation ]
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Summary

ÑÑÑ characterising properties of sets
ÑÑÑ games in general `̀̀ determinacy
ÑÑÑ effectiveness for regular winning conditions
ÑÑÑ pattern method

`

rigid representatons: determinism / algebra
˘

pattern missing
ù L is simple

pattern found
ù L is hard

ÑÑÑ games
`

may deal with non-determinism
˘

strategy of pIq
ù L is simple

strategy of pIIq
ù L is hard

ÑÑÑ no general recipe for design

Conjecture: Every class of languages has a game characterisation.
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