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Index Problems for Game Automata

ALESSANDRO FACCHINI, IDSIA, Switzerlands
FILIP MURLAK and MICHAŁ SKRZYPCZAK, University of Warsaw

For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to
recognize this language with a nondeterministic, alternating, or weak alternating parity automaton. These
questions are known as, respectively, the nondeterministic, alternating, and weak Rabin-Mostowski index
problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for
languages recognizable by deterministic automata (the alternating variant trivializes).

We investigate a wider class of regular languages, recognizable by so-called game automata, which can
be seen as the closure of deterministic ones under complementation and composition. Game automata are
known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is,
the alternating index problem does not trivialize anymore.

Our main contribution is that all three index problems are decidable for languages recognizable by game
automata. Additionally, we show that it is decidable whether a given regular language can be recognized by
a game automaton.
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1. INTRODUCTION

Finite state automata running over infinite words and infinite binary trees lie at the
core of the seminal works of Büchi [1962] and Rabin [1969]. Known to be equivalent to
the monadic second-order (MSO) logic and the modal μ-calculus on both classes of struc-
tures, they subsume all standard linear and branching temporal logics. Because of these
properties, they constitute fundamental tools in the theory of verification and model
checking, where the model-checking problem is reduced to the nonemptiness problem
for automata: a given formula is translated into an automaton recognizing its models.
From this perspective, a natural question is, which parameter in the definition of an
automaton reflects the complexity of the language recognized by it? A naı̈ve approach
is to look at the number of states; a more meaningful one is to consider the infinitary
behavior of an automaton, captured by the complexity of its acceptance condition.
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Out of different acceptance conditions proposed for tree automata, Büchi, Muller,
Rabin, Streett, and parity [Mostowski 1991a, 1984], the last one has proved to be the
most appropriate, as it enabled unveiling the subtle correspondences between games,
automata, and the modal μ-calculus [Arnold and Niwiński 2001; Emerson and Jutla
1991]. In a parity automaton, each state is assigned a natural number, called its priority.
A sequence of states is said to be accepting if the lowest priority occurring infinitely
often is even (min-parity condition). The pair (i, j) consisting of the minimal priority i
and the maximal priority j in a given automaton is called its Rabin-Mostowski index.
The index of a language is the minimal index of a recognizing automaton. The practical
importance of this parameter comes from the fact that the best-known algorithms
deciding the emptiness of (nondeterministic) automata are exponential in the number
of priorities.

Given a regular tree language, what is the minimal range of priorities needed to
recognize it? The answer to this question depends on which mode of computation is
used, that is, whether the automata are deterministic, nondeterministic, alternating,
or weak alternating. While weak alternating and deterministic automata are weaker,
nondeterministic and alternating parity automata recognize all regular tree languages.
Still, alternating automata often need fewer priorities than nondeterministic ones.
Thus, for each of these four classes, there is the respective index problem.
C Index Problem: Given i, j, and a regular language L, decide if L is recognized by
an automaton in class C of the Rabin-Mostowski index (i, j).

The solution of this problem for the most important cases—when C is the class of
nondeterministic, alternating, or weak alternating automata—seems still far away.
The results of Otto [1999], Küsters and Wilke [2002], Walukiewicz [2002], and later
extended in Bojańczyk and Place [2012], show that it is decidable if a given regular
tree language can be recognized by a combination of reachability and safety conditions
(which corresponds to the Boolean combination of open sets). It is also known that
the nondeterministic (min-parity) index problem is decidable for (i, j) = (1, 2), and
for (i, j) = (0, 1) if the input language is given by an alternating automaton of index
(1, 2) [Vanden Boom 2012; Kuperberg 2012; Colcombet et al. 2013]. The nondetermin-
istic index problem has been reduced to the uniform universality problem for so-called
distance-parity automata [Colcombet and Löding 2008], but decidability of the latter
problem remains open.

The index problems become easier when we restrict the input to languages recog-
nized by deterministic automata. This is mostly due to the fact that in a deterministic
automaton, each subautomaton can be substituted with any automaton recognizing a
language of the same index, without influencing the index of the whole language. This
observation has been essential in providing a full characterization of the combinatorial
structure of a language L in terms of certain patterns in a deterministic automaton rec-
ognizing L. This so-called pattern method [Murlak 2008a] has been successfully used
for solving all four index problems for languages recognized by deterministic automata:

THEOREM 1.1. For languages recognized by deterministic automata, the following
problems are decidable:

(1) The deterministic index problem [Niwiński and Walukiewicz 1998]
(2) The nondeterministic index problem [Urbański 2000; Niwiński and Walukiewicz

2005]
(3) The alternating index problem [Niwiński and Walukiewicz 2003]
(4) The weak alternating index problem [Murlak 2008b]

The pattern method cannot be applied in general to nondeterministic or alternating
automata; the reason is that both these types of automata naturally implement a
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set-theoretic union of languages and union is not an operation that preserves the
index of languages. But how far can we push the pattern method beyond deterministic
automata?

In this article, we give a precise answer to this question. We present a syntactic class
of automata for which substitution preserves the index of languages—we call them
game automata—and show that it is the largest such class satisfying natural closure
conditions. Relying on the first property, we extend Theorem 1.1 (2), (3), and (4) and
prove the following.

THEOREM 1.2. For languages recognized by game automata, the following problems
are decidable:

(1) The nondeterministic index problem
(2) The alternating index problem
(3) The weak alternating index problem

Decidability of the nondeterministic index problem for languages recognized by game
automata is obtained via an easy reduction to the nondeterministic index problem for
deterministic automata (Section 4).

As game automata recognize the game languages Wi, j [Arnold 1999], the alternating
index problem does not trivialize, unlike for deterministic automata, and is much more
difficult than the nondeterministic index problem. We solve it by providing a recursive
procedure computing the alternating index of the language recognized by a given game
automaton (Section 5).

Similar techniques are applied to solve the weak alternating index problem (Sec-
tion 6).

Finally, we give an effective characterization of languages recognized by game au-
tomata, within the class of all regular languages (Section 7). As the characterization
effectively yields an equivalent game automaton, we obtain procedures computing the
alternating, weak alternating, and nondeterministic index for a given alternating au-
tomaton equivalent to some game automaton.

This article collects results from two conference papers: Facchini et al. [2013] and
Facchini et al. [2015]. Additionally, it contains a discussion of the maximality of the
class of game automata, which adapts a reasoning from Duparc et al. [2011] to the
index problem.

2. PRELIMINARIES

To simplify the presentation of inductive arguments, all of our definitions allow partial
objects: trees have leaves, automata have exits (where computation stops), and games
have final positions (where the play stops and no player wins). The definitions become
standard when restricted to total objects: trees without leaves, automata without exits,
and games without final positions. We also do not distinguish the initial state of an
automaton but treat it as an additional parameter for the recognized language.

2.1. Trees

For a function f , we write dom( f ) for the domain of f and rg( f ) for the range of f . For
a finite alphabet A, we denote by PTrA the set of partial trees over A, that is, functions
t : dom(t) → A from a prefix-closed subset dom(t) ⊆ {L, R}∗ to A. By TrA, we denote the
set of total trees, that is, trees t such that dom(t) = {L, R}∗. For a direction d ∈ {L, R}, by
d̄ we denote the opposite direction. For v ∈ dom(t), t �v denotes the subtree of t rooted
at v. The sequences u, v ∈ {L, R}∗ are naturally ordered by the prefix relation: u � v if u
is a prefix of v.
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A tree that is not total contains holes. A hole of a tree t is a minimal sequence
h ∈ {L, R}∗ that does not belong to dom(t). By holes(t) ⊆ {L, R}∗, we denote the set of
holes of a tree t. If h is a hole of t ∈ PTrA, for s ∈ PTrA we define the partial tree t[h := s]
obtained by putting the root of s into the hole h of t.

2.2. Games

A parity game G is a tuple 〈V = V∃ ∪ V∀, vI, F, E,�〉, where

—V is a countable arena;
—V∃, V∀ ⊆ V are positions of the game belonging, respectively, to player ∃ and player

∀, V∃ ∩ V∀ = ∅;
—vI ∈ V is the initial position of the game;
—F is a countable set of final positions, F ∩ V = ∅;
—E ⊆ V× (V ∪ F) is the transition relation;
—� : V → {i, . . . , j} ⊆ N is a priority function.

We assume that all parity games are finitely branching (for each v ∈ V there are only
finitely many u ∈ V ∪ F such that (v, u) ∈ E), and that there are no dead ends (for each
v ∈ V there is at least one u ∈ V ∪ F such that (v, u) ∈ E).

A play in a parity game G is a finite or infinite sequence π of positions starting from
vI . If π is finite, then π = vIv1 . . . vn and vn is required to be a final position (i.e., vn ∈ F).
In that case, vn is called the final position of π . An infinite play π is winning for ∃ if
lim infn→∞ �(π (n)) is even. Otherwise, π is winning for ∀.

A (positional) strategy σ for a player P ∈ {∃,∀} in a game G is defined as usual, as a
function assigning to every P ’s position v ∈ VP the chosen successor σ (v) ∈ V ∪ F such
that (v, σ (v)) ∈ E. Strategies can also be seen as trees labeled with positions and final
positions: we label the root with the initial position vI , and then for each node labeled
with a (nonfinal) position of the player P we add one child, corresponding to the move
determined by the strategy, and for each node labeled with a (nonfinal) position of the
opponent we add a child for each possible move. A play π conforms to σ if whenever π
visits a vertex v ∈ VP , the next position of π is σ (v), that is, if π is a prefix of a branch
of the strategy σ viewed as a tree. We say that a strategy σ is winning for P if every
infinite play conforming to σ is winning for P. For a winning strategy σ , we define the
guarantee of σ as the set of all final positions that can be reached in plays conforming to
σ (the labels of the leaves of σ viewed as a tree). Due to final positions, both players can
have a winning strategy; in such case, the intersection of their guarantees is nonempty,
as two winning strategies used against each other must lead the play to a final position.
Similar to parity games without final positions, at least one player has a (positional)
winning strategy [Emerson and Jutla 1991; Mostowski 1991a].

2.3. Automata

For the purpose of the inductive argument, we incorporate into the definition of au-
tomata a finite set of exits. Therefore, an alternating automaton A is defined as a tuple
〈A, Q, F, δ,�〉, where A is a finite alphabet, Q is a finite set of states, F is a finite set of
exits disjoint from Q, � : Q → N is a function assigning to each state of A its priority,
and δ assigns to each pair (q, a) ∈ Q × A the transition b = δ(q, a) built using the
grammar

b ::= � | ⊥ | (q, d) | ( f, d) | b ∨ b | b ∧ b

for states q ∈ Q, f ∈ F, and directions d ∈ {L, R}.
For an alternating automaton A, a state qI ∈ Q, and a partial tree t ∈ PTrA, we define

the game G(A, t, qI) as follows:
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—V = dom(t) × (Sδ ∪ Q), where Sδ is the set of all subformulae of formulae in rg(δ); all
positions of the form (v, b1 ∨ b2) belong to ∃ and the remaining ones to ∀;1

—F = (
holes(t) × (Q∪ F)

) ∪ dom(t) × F;
—vI = (ε, qI);
—E contains the following pairs (for all v ∈ dom(t)):

—
(
(v, b), (v, b)

)
for b ∈ {�,⊥},

—
(
(v, b), (v, bi)

)
for b = b1 ∧ b2 or b = b1 ∨ b2,

—
(
(v, (q, d)), (vd, q)

)
for d ∈ {L, R}, q ∈ Q∪ F, and

—
(
(v, q), (v, δ(q, t(v)))

)
for q ∈ Q;

—�(v,�) = 0, �(v,⊥) = 1, �(v, q) = �A(q) for q ∈ Q, v ∈ dom(t), and for other positions
� is max(rg(�A)), where �A is the priority function of A.

An automaton A is total if F = ∅. A total automaton A accepts a total tree t ∈ TrA
from qI ∈ Q if ∃ has a winning strategy in G(A, t, qI). By L(A, qI), we denote the set
of total trees accepted by a total automaton A from a state qI . A total automaton A
recognizes a language L ⊆ TrA if L(A, qI) = L for some qI ∈ Q. A state q ∈ Q is nontrivial
if ∅ � L(A, q) � TrA. Without loss of generality, when a total automaton A recognizes
a nontrivial language, that is, L(A, qI) /∈ {∅, TrA} for some qI ∈ Q, we implicitly assume
that A has only nontrivial states.

The (Rabin-Mostowski) index of an automaton A is the pair (i, j), where i is the
minimal and j is the maximal priority of the states of A (⊥ and � are counted as
additional looping states with odd and even priority, respectively). In that case, A is
called an (i, j)-automaton.

An automaton A is deterministic if all its transitions are deterministic, that is, of the
form �, ⊥, (qd, d), or (qL, L) ∧ (qR, R), for d ∈ {L, R}. Similarly, A is nondeterministic if its
transitions are (multifold) disjunctions of deterministic transitions.

An automaton A is weak if whenever δ(q, a) contains a state q′, then �(q) ≤ �(q′). For
weak automata, allowing trivial transitions � or ⊥ interferes with the index much more
than for strong automata: essentially, it adds one more change of priority. To reflect
this, when defining the index of the automaton, we count ⊥ and � as additional looping
states with priorities assigned so that the weakness condition earlier is satisfied: ⊥
gets the lowest odd priority � such that ⊥ is accessible only from states of priority at
most �, and dually for �. That is, if the automaton uses priorities i, i + 1, . . . , 2k − 1,
we can use ⊥ for free (with priority 2k − 1), but for � we may need to pay with an
additional priority 2k, yielding index (i, 2k). To emphasize the fact that an automaton
in question is weak, we often call its index the weak index.

2.4. Compositionality

Let A = 〈A, Q, F, δ,�〉 be an alternating automaton and Q′ ⊆ Q be a set of states. By
A �Q′ , we denote the restriction of A to Q′ obtained by replacing the set of states by Q′,
the set of exits by F ∪(Q− Q′), the priority function by ��Q′ , and the transition function
by δ �Q′×A. Let us stress that in the restricted automaton, exits are either original exits
or original states not in Q′ (see Figure 1). We say that B is a subautomaton of A (denoted
B ⊆ A) if B = A�QB .

For automata A, B over an alphabet A with QA ∩ QB = ∅, we define the composition
A ·B as the automaton over A, with states Q = QA ∪ QB, exits (FA ∪ FB)− Q, transitions
δA ∪ δB, and priorities �A ∪ �B. Note here that some exits of A may be states of B and
vice versa.

1Positions (v, (q, d)), (v, q), (v, ⊥), (v, �) offer no choice, so their owner is irrelevant.
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Fig. 1. An alternating automaton A with states Q and exits F, and the restriction A �Q′ for Q′ ⊆ Q. The
edges illustrate the transitions of A.

FACT 1. If A is an alternating automaton and Q = Q1 ∪ Q2 is a partition of the states
of A, then A�Q1 · A�Q2= A.

3. GAME AUTOMATA

Let A and B be automata over the same alphabet. For an occurrence of a state (or an
exit) q in a transition δ(p, a) of A, and a state qB

0 of B, the substitution AB is obtained by
taking the disjoint union of A and B (the state space is the disjoint union of QA and QB,
etc.) and replacing the occurrence of q in δ(p, a) with qB

0 . The mapping B �→ AB induces
an operation on recognized languages, but it need not preserve coarser equivalence
relations, like having the same index. For a class of automata C over a common alphabet,
we say that substitution preserves (alternating, nondeterministic, etc.) index in C if for all
A,B1,B2,∈ C, if L(B1, qB1

0 ) and L(B2, qB2
0 ) have the same (alternating, nondeterministic,

etc.) index, then so do L(AB1 , qA
0 ) and L(AB2 , qA

0 ) for any qA
0 .

As pointed out in the introduction, the operation of union does not preserve index.
The same is true for intersection.

Example 3.1. Take A = {0, 1, 2} and consider ω-word languages(A∗(1 + 2))ω and
(A∗2)ω. Both these languages can be recognized by deterministic automata of index
(1, 2), and not lower than this. Taking union with A∗0ω, we obtain (A∗(1 + 2))ω ∪ A∗0ω =
Aω, and (A∗2)ω ∪ A∗0ω. To recognize the language (A∗2)ω ∪ A∗0ω, a deterministic automa-
ton requires three priorities and an alternating one needs two. This makes it much
more complex than the whole space Aω, which can be recognized by a deterministic
automaton with a single state, whose priority is 0. Similarly, intersecting (A∗(1 + 2))ω
and (A∗2)ω with (A∗(0 + 1))ω, we obtain respectively A∗(0∗1)ω and the empty set, which
have very different complexity. This example can be transferred to trees by encoding
ω-words as sequences of labels on the left-most branches.

Example 3.1 illustrates a more general phenomenon. The following notion is designed
to capture how an automaton can simulate union or intersection: we call a transition
δ(q, a) ambiguous if it contains two occurrences of some direction d ∈ {L, R}. Recall that
a transition is trivial if it is of the form ⊥ or �; as discussed in Section 2.3, trivial
transitions are just a convenient notation for immediate acceptance and rejection and
can be easily replaced with looping states of appropriate priority.

FACT 2. Let C be a class of (alternating) automata without trivial transitions, over a
fixed alphabet A containing at least two letters, that

—is closed under substitution, and
—contains automata recognizing ∅, TrA, and some language X of nontrivial index.

ACM Transactions on Computational Logic, Vol. 17, No. 4, Article 24, Publication date: November 2016.



Index Problems for Game Automata 24:7

It is only possible that substitution preserves the index in C if no automaton in C contains
an ambiguous transition.

PROOF. Let us take an arbitrary automaton A ∈ C and a state p of A. Assume
that δ(p, a) contains (L, pa) and δ(p, b) contains (L, pb) for some distinct letters a, b ∈ A
and some states pa, pb (the remaining three cases are symmetric). Starting from the
automaton A and the automata recognizing ∅, TrA, and X, we obtain by substitution
automata Aa,Ab,A′

a,A′
b ∈ C such that

L(Aa, p) = a(X, TrA) ∪ b(TrA, TrA), L(A′
a, p) = a(X, TrA),

L(Ab, p) = a(TrA, TrA) ∪ b(X, TrA), L(A′
b, p) = b(X, TrA),

where for c ∈ A and Y, Z ⊆ TrA,

c(Y, Z) = {
t ∈ TrA

∣∣ t(ε) = c, t�L∈ Y, t�R∈ Z
}
.

Note that L(Aa, p) ∪ L(Ab, p) = TrA and L(A′
a, p) ∩ L(A′

b, p) = ∅.
Let B ∈ C and let q0 be a state of B such that for some c, δ(q0, c) is an ambiguous

transition. By substituting appropriately the automata recognizing ∅ and TrA, we can
assume that δ(q0, c) = (d, q1) ∨ (d, q2) or δ(q0, c) = (d, q1) ∧ (d, q2) for some states q1, q2,
and no tree with a label c′ �= c in the root is accepted from q0. Assume δ(q0, c) =
(d, q1) ∨ (d, q2), and let B′ be the result of replacing the occurrence of q1 with the state
p of Aa. Now, L(Aa, p) and L(Ab, p) have the same index, but by substituting in B′ at
(d, q2) the automaton Aa or Ab (with initial state p), we get two languages of different
index. For δ(q0, c) = (d, q1) ∧ (d, q2), the argument is analogous but uses the other two
automata.

In the light of this result, we propose the following definition.

Definition 3.2. A game automaton is an alternating automaton without ambiguous
transitions; that is, it has only transitions of the following forms:

� , ⊥ , (qL, L) , (qR, R) , (qL, L) ∨ (qR, R) , (qL, L) ∧ (qR, R)

for qL, qR ∈ Q∪ F.

In the course of the article, we shall see that for game automata, substitution pre-
serves the nondeterministic index (Proposition 4.2), the alternating index (Proposi-
tion 5.18), and the weak alternating index (Proposition 6.9). Together with Fact 2,
this will imply that game automata are the largest nontrivial subclass of alternating
automata closed under substitution for which substitution preserves the index.

The class of languages recognized by game automata is closed under complemen-
tation: the usual complementation procedure of increasing the priorities by one and
swapping existential and universal transitions works. However, they are closed under
neither union nor intersection. For instance, let Lc = {t ∈ T{a,b} : t(L) = t(R) = c} for
c = a, b. Obviously, La and Lb are recognizable by game automata, but La ∪ Lb is not.
Note that the last example also shows that game automata do not recognize all regular
languages. On the other hand, they extend across the whole alternating index hierar-
chy, as they recognize so-called game languages Wi, j . We discuss this in more detail in
Section 5.3.

The main similarity between game automata and deterministic automata is that
their acceptance can be expressed in terms of runs, which are relabelings of input trees
induced uniquely by transitions. For a total game automaton A and an initial state qI ,
with each partial tree t, one can associate the run

ρ(A, t, qI) : dom(t) ∪ holes(t) → QA ∪ {�,⊥, ∗}
such that ρ(ε) = qI and for all v ∈ dom(t), if ρ(v) = q, δ(q, t(v)) = bv, then
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—if bv is (qL, L) ∨ (qR, R) or (qL, L) ∧ (qR, R), then ρ(vL) = qL and ρ(vR) = qR;
—if bv = (qd, d) for some d ∈ {L, R}, then ρ(vd) = qd and ρ(vd̄ ) = ∗;
—if bv = ⊥, then ρ(vL) = ρ(vR) = ⊥, and dually for �;

and if ρ(v) ∈ {�,⊥, ∗}, then ρ(vL) = ρ(vR) = ∗. Observe that ρ(v) is uniquely determined
by the labels of t on the path leading to v.

The run ρ = ρ(A, t, qI) is naturally interpreted as a game Gρ(A, t, qI) with positions
dom(t) − ρ−1(∗) and final positions holes(t), where edges follow the child relation and
loop on ρ−1({�,⊥}), priority of v is �A(ρ(v)) with �A(⊥) = 1, �A(�) = 0, and the
owner of v is ∃ if and only if δ(ρ(v), t(v)) = (qL, L) ∨ (qR, R) for some qL, qR ∈ QA. Clearly
Gρ(A, t, qI) is equivalent to G(A, t, qI). Note that the arena of Gρ(A, t, qI) is a subtree
of t (with additional edges looping over positions labeled with � or ⊥ in the run of A on
t). Consequently, a strategy in Gρ(A, t, qI) can also be viewed as a subtree of t (we can
ignore the looping edges, as there is no choice there anyway). If t is total, we say that
ρ is accepting, if ∃ has a winning strategy in Gρ(A, t, qI).

A direct consequence of the acceptance being definable in terms of runs is that each
part of the automaton matters: for each state q reachable from the given initial state,
one can find a family of trees that spans all possible behaviors of the automaton from
the state q, and the outcome of the computation depends exclusively on this behavior.
As we show later, it can be done by taking all full trees extending an appropriately
chosen partial tree with a single hole, corresponding to the state q. Let t ∈ PTrA be a
partial tree and ρ = ρ(A, t, qI) be the run of an automaton A on t. We say that t resolves
A from qI ∈ QA if ρ(h) �= ∗ for each hole h of t, and whenever t �vd is the only total
tree in {t �vL, t �vR}, either ρ(vd) = ∗ or vd is losing for the owner of v in Gρ(A, t, qI). The
following establishes the property we discussed earlier and its analog for transitions.

FACT 3. Assume that t resolves A from qI and ρ = ρ(A, t, qI). If t has a single hole h,
then t[h := s] ∈ L(A, qI) if and only if s ∈ L(A, ρ(h)) for all s ∈ TrA.

If t has two holes h, h′ whose closest common ancestor u satisfies δA(ρ(u), t(u)) =
(qL, L)∧(qR, R) for some qL, qR, then t[h := s, h′ := s′] ∈ L(A, qI) if and only if s ∈ L(A, ρ(h))
and s′ ∈ L(A, ρ(h′)) for all s, s′, dually for (qL, L) ∨ (qR, R).

PROOF. Let us prove the first claim. There are two cases.

—One of the players P ∈ {∃,∀} has a winning strategy σ in the game associated to ρ
such that node h does not belong to σ viewed as a subtree of t. In that case, there
exists an ancestor u of h such that the player P owns u and σ moves from u to ud
such that ud is not an ancestor of h. In that case, σ is a winning strategy for P in the
subtree under ud, which contradicts the definition of a resolving tree.

—Whenever σ is a winning strategy for a player P ∈ {∃,∀} in the game associated to ρ,
the node corresponding to h belongs to σ viewed as a subtree of t. Take any total tree
s. If t[h := s] ∈ L(A, qI), then ∃ has a winning strategy in the game associated with
ρ(A, t[h := s], qI). In particular, he or she can win from the position h in this game.
Therefore, by the definition, s ∈ L(A, ρ(h)). If t[h := s] /∈ L(A, qI), then the property
is symmetrical: ∀ has a winning strategy and s /∈ L(A, ρ(h)).

For the second claim, it follows easily that in this case, the trees t �uL, t �uR and the tree
obtained by putting a hole in t instead of u resolve A from qL, qR, and qI , respectively.
We obtain the second claim by applying the first claim three times.

4. NONDETERMINISTIC INDEX PROBLEM

The decidability of the nondeterministic index problem for languages recognized by
game automata is an immediate consequence of the decidability of the nondeterministic

ACM Transactions on Computational Logic, Vol. 17, No. 4, Article 24, Publication date: November 2016.



Index Problems for Game Automata 24:9

index problem for deterministic tree languages [Niwiński and Walukiewicz 2005] and
the following observation.

PROPOSITION 4.1. For each game automaton A and a state qA
I ∈ QA, one can effectively

construct a deterministic automaton D with an initial state qD
I , such that L(A, qA

I ) is
recognized by a nondeterministic automaton of index (i, j) if and only if so is L(D, qD

I ).

PROOF. Essentially, D recognizes the set of winning strategies for ∃ in games induced
by the runs of A. For two total trees t ∈ TrA, s ∈ TrB, let t ⊗ s ∈ TrA×B be given by
(t ⊗ s)(v) = (t(v), s(v)). Let W∃

A,qI
be the set of all total trees t ⊗ s over the alphabet

AA ×{L, R, �} such that s encodes a winning strategy for ∃ in the game Gρ(A, t, qI) in the
following sense: if s(v) ∈ {L, R}, ∃ should choose v · s(v), and s(v) = � means that ∃ has no
choice in v. It is easy to see that W∃

A,qI
can be recognized by a deterministic automaton

D. It inherits the state space and the priority function from A and its transitions are
modified as follows: for all q ∈ Q, a ∈ A, d ∈ {L, R}, if δA(q, a) = (qL, L) ∨ (qR, R) for some
qL, qR, then

δ(q, (a, d)) = (qd, d) , δ(q, (a, �)) = ⊥ ;

otherwise,

δ(q, (a, d)) = ⊥ , δ(q, (a, �)) = δA(q, a) .

It is easy to check that L(D, qI) = W∃
A,qI

.
Note that

L(A, qA
I ) = {

t ∈ TrAA
∣∣ ∃ s. t ⊗ s ∈ W∃

A,qA
I

}
.

Hence, if W∃
A,qA

I
= L(B, qB

I ) for some nondeterministic automaton B, then L(A, qA
I ) =

L(B′, qB
I ), where B′ is the standard projection of B on the alphabet AA: for all q ∈ QA

and a ∈ AA, δB
′
(q, a) = δB(q, (a, L)) ∨ δB(q, (a, R)) ∨ δB(q, (a, �)). The projection does not

influence the index.
For the other direction, the proof is based on the following observation. For t ∈ TrAA

and s ∈ Tr{L,R,�}, let t � s ∈ TrAA be the tree obtained from t by the following operation:
for each v, if ρt,qI (v) = q, δ(q, t(v)) = (qL, L) ∨ (qR, R), and s(v) = L, then replace the
subtree of t rooted at vR by some fixed regular tree in the complement of L(A, qR),
dually for s(v) = R. (Recall that A has only nontrivial states, so L(A, qR) � TrAA ; by
Rabin’s theorem, the complement of L(A, qR) contains a regular tree.) If s encodes a
strategy σs for ∃ in Gρ(A, t, qA

I ), then σs is winning if and only if t � s ∈ L(A, qA
I ). Hence,

t ⊗ s ∈ W∃
A,qA

I
if and only if s encodes a strategy for ∃ in Gρ(A, t, qA

I ) and t � s ∈ L(A, qA
I ).

These conditions can be checked by a nondeterministic automaton of index (i, j) as soon
as L(A, qA

I ) can be recognized by such an automaton.
Indeed, assume that L(A, qI) = L(B, qB

I ) for some nondeterministic automaton B
of index (i, j). To construct a nondeterministic automaton C of index at most (i, j)
recognizing W∃

A,qI
, we first define a sequence of auxiliary languages and argue that

each of them can be recognized by such an automaton. Let

St = {
t ⊗ s : s is a strategy for ∃ in Gρ(A, t, qI)

}
,

StE = {
t ⊗ s ⊗ t′ : t ⊗ s ∈ St ∧ t � s = t′} ,

StEW = {
t ⊗ s ⊗ t′ ∈ StE : t′ ∈ L(B, qB

I ) = L(A, qI)
}
,

StW = {
t ⊗ s ∈ St : t � s ∈ L(A, qI)

}
.

Then,
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—St corresponds to a safety condition that can be verified both by a deterministic
automaton of index (0, 1) and by a deterministic automaton of index (1, 2);

—StE additionally enforces that the respective subtrees equal tq, as earlier it can be
checked both by a deterministic automaton of index (0, 1) and by a deterministic
automaton of index (1, 2);

—StEW can be recognized by a product of automata recognizing StE and B—the re-
sulting nondeterministic automaton can be constructed in such a way that its index
is (i, j);

—StW is obtained as the projection of StEW onto the first two coordinates, and as such
can also be recognized by a nondeterministic (i, j)-automaton.

It remains to show that

W∃
A,qI

= StW.

First, assume that t ⊗ s ∈ W∃
A,qI

. In that case, s encodes a winning strategy σ for ∃ in
Gρ(A, t, qI). Let t′ = t � s and D = dom(σ ) be the set of vertices belonging to σ . Note
that if v ∈ D, then t(v) = t′(v), so also ρt,qI (v) = ρt′,qI (v). Therefore, the strategy σ is
also winning in Gρ(A, t′, qI). So t′ ∈ L(A, qI), which implies that t ⊗ s ⊗ t′ ∈ StEW and
t ⊗ s ∈ StW.

Now assume that t ⊗ s ∈ StW. Let t′ = t � s and σ be the strategy for ∃ in Gρ(A, t, qI)
encoded by s. By the definition of StEW, we obtain that t′ ∈ L(A, qI), so there exists
a winning strategy σ ′ for ∃ in Gρ(A, t′, qI). Similarly as earlier, let D (D′, respectively)
be the set of vertices in σ (σ ′, respectively). If D′ �⊆ D, then there exists a minimal
(w.r.t. the prefix order) vertex v ∈ D′ − D. By the definition of t � s, we obtain that t′ �v

is tq for q = ρ(A, t, qI)(v). Therefore, since tq /∈ L(A, q), there is no winning strategy
for ∃ in Gρ(A, tq, q) and we obtain a contradiction. Therefore, D′ ⊆ D and for every
v ∈ D′ we have ρ(A, t, qI)(v) = ρ(A, t′, qI)(v), so σ ′ is also a strategy in Gρ(A, t′, qI).
Since strategies form an antichain with respect to inclusion, σ = σ ′, t′ ∈ L(A, qI), and
t ⊗ s ∈ W∃

A,qI
.

As a direct corollary from the proof of Proposition 4.1 and the criteria for the non-
deterministic index of deterministic languages [Niwiński and Walukiewicz 2005], we
obtain the converse of Fact 2 for the nondeterministic index.

PROPOSITION 4.2. For game automata, substitution preserves the nondeterministic
index.

PROOF. For a given game automaton A, let A′ be the deterministic automaton con-
structed in the proof of Proposition 4.1. Recall that A′ is obtained from A by adding
some transitions of the form ⊥ and uncoupling each disjunctive transition over letter a
into two nonbranching transitions over letters (a, L) and (a, R); the state space remains
the same. It follows that the construction commutes with substitution: (AB)′ coincides
with (A′)B′ for all game automata A and B.

The construction was designed to preserve the nondeterministic index of the rec-
ognized language. Consequently, assuming that substitution preserves the index for
deterministic automata, we can show that the same holds for game automata. In-
deed, if L(B, qB

I ) and L(C, qC
I ) have the same index, then L(B′, qB

I ) and L(C ′, qC
I ) have

the same index. If substitution preserves the index for deterministic automata, we can
conclude that L((AB)′, qA

I ) = L(A′
B′ , qA

I ) and L((AC)′, qA
I ) = L(A′

C′ , qA
I ) have the same

index. Hence, L(AB, qA
I ) and L(AC, qA

I ) have the same index.
Preservation of the index for deterministic automata follows immediately from the

characterization of the levels of the index hierarchy among deterministic languages
[Niwiński and Walukiewicz 2005]: it asserts that for every (i, j), a language L(B, qB

I ) is
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recognized by a nondeterministic automaton of index (i, j) if and only if the automaton
B does not contain a certain characteristic, strongly connected subgraph reachable
from qB

I . Consequently, if L(B, qB
I ) and L(C, qC

I ) have the same index, B and C contain
the same characteristic subgraphs reachable from the respective initial states. By the
definition of substitution, no strongly connected subgraph in AB can use states from
A and from B. Consequently, AB and AC contain the same characteristic subgraphs
reachable from qA

I , and so L(AB, qA
I ) and L(AC, qA

I ) have the same index.

5. ALTERNATING INDEX PROBLEM

In this section, we show that the alternating index problem is decidable for game
automata. Let us start with some notation.

Definition 5.1. For i < j ∈ N, let RM(i, j) denote the class of languages recognized
by alternating tree automata of index (i, j). Let

�RM
j = RM(0, j),

�RM
j = RM(1, j + 1),

�RM
j = RM(0, j) ∩ RM(1, j + 1).

The previous classes are naturally ordered by inclusion.

The result we prove not only gives decidability of the alternating index problem
but also shows that languages recognizable by game automata collapse inside the
�RM

i classes. To express it precisely, we recall the so-called comp classes [Arnold and
Santocanale 2005] that can be defined in terms of strongly connected components
(SCCs) of a graph naturally associated with each alternating automaton.

Definition 5.2. Let A be an alternating automaton. Let Gph(A) be the directed edge-

labeled graph over the set of vertices Q such that there is an edge p
(a,d)−−→ q whenever

(q, d) occurs in δ(p, a). Additionally, vertices of Gph(A) are labeled by values of �. We
write p

w−→ q if there is a path in Gph(A) whose edge labels yield the word w.

Definition 5.3. An alternating automaton A is in Comp(i, j) if (ignoring edge labels)
each SCC in Gph(A) has priorities between i and j or between i + 1 and j + 1.

It follows from the definition that each Comp(i, j) automaton is a (i, j + 1) automaton
and can be transformed into an equivalent Comp(i + 1, j + 2) automaton by scaling
the priorities. We write Comp j for the class of languages recognized by Comp(0, j)
automata. We then have

�RM
j ∪ �RM

j ⊆ Comp j ⊆ �RM
j+1 .

The class Comp0 corresponds to the class of weak alternating automata. An important
result obtained in Rabin [1970] states that �RM

1 coincides with the class of languages
definable in weak monadic second-order logic (WMSO). Since WMSO definability and
weak recognizability are coextensive concepts [Muller et al. 1986], Rabin’s result proves
that classes Comp0 and �RM

1 coincide. However, as shown by Arnold and Santocanale
[2005], for higher levels the inclusion is strict:

Comp j � �RM
j+1 for j > 0 ;

that is, there are examples of regular languages in �RM
j+1 but not in Comp j . It turns out

that, as a consequence of our characterization, in the case of languages recognizable
by game automata, the respective classes Comp j and �RM

j+1 coincide for all levels.
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THEOREM 5.4. For each game automaton A and an initial state qI, the language
L(A, qI) belongs to exactly one of the classes: Comp0, �RM

i − �RM
i , �RM

i − �RM
i , or

Compi − (�RM
i ∪ �RM

i ), for i > 0. Moreover, it can be effectively decided which class it is
and an automaton from this class can be constructed.

The rest of this section is devoted to showing this result. Section 5.1 describes a
recursive procedure to compute the class of the given language L(A, qI), that is, �RM

i ,
�RM

i , or Compi, depending on which of the possibilities holds. Sections 5.2 and 5.3
show that the procedure is correct. The estimation of Section 5.2 is in fact an effective
construction of an automaton from the respective class.

5.1. The Algorithm

Let A be an alternating automaton of index (i, j). For n ∈ N, we denote by A≥n the
subautomaton obtained from A by restricting to states of priority at least n. Observe
that the index of A≥n is at most (n, j). A subautomaton B ⊆ A is an n-component of A
if Gph(B) is a strongly connected component of Gph(A≥n). We say that B is nontrivial
if Gph(B) contains at least one edge. Our algorithm computes the class of each n-
component B of A, based on the classes of (n + 1)-components of B and transitions
between them. (We shall see that for n-components, the class does not depend on the
initial state.)

We begin with a simple preprocessing. An automaton A is priority reduced if for all
n > 0, each n-component of A is nontrivial and contains a state of priority n.

LEMMA 5.5. Each game automaton can be effectively transformed into an equivalent
priority-reduced game automaton.

PROOF. We iteratively decrease priorities in the n-components of A, for n ≥ 1. As long
as there is an n-component that is not priority reduced, pick any such n-component:
if it is trivial, set all its priorities to n − 1; if it is nontrivial but does not contain a
state of priority n, decrease all its priorities by 2 (this does not influence the recognized
language). After finitely many steps, the automaton is priority reduced. Note that no
trivial states are introduced.

The main algorithm uses three simple notions. An (n + 1)-component B0 of B is
∃-branching if B contains a transition

δ(p, a) = (qL, L) ∨ (qR, R)

with p, qL ∈ QB0 or p, qR ∈ QB0 . For ∀, replace ∨ with ∧.
For a class K, operations K∃ and K∀ are defined as

(
�RM

m

)∃ = (
�RM

m−1

)∃ = (
Compm−1

)∃ = �RM
m ,(

�RM
m

)∀ = (
�RM

m−1

)∀ = (
Compm−1

)∀ = �RM
m .

We write
∨k

�=1K� for the largest class among K1, K2, . . . , K� if it exists, or Compm if
among these classes there are two maximal ones, �RM

m and �RM
m .

Let A be a priority-reduced game automaton of index (i, j). The algorithm starts from
n = j and proceeds downward. Let B be an n-component.

—If B has only states of priority n, set class(B) = Comp0.
—If B has no states of priority n, it coincides with a single 1-component B1. Set

class(B) = class(B1).
—Otherwise, assume that n is even (for odd n replace ∃ with ∀). Let B1,B2, . . . ,Bk, be

the (n + 1)-components of B that are ∃-branching, and let C1, C2, . . . , Ck′ be the ones
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that are not ∃-branching. We set

class(B) =
k∨

�=1

class(B�)∃ ∨
k′∨

�=1

class(C�) .

Let class(A, qI) = ∨k
�=1class(A�), where A1,A2, . . . ,Ak are the i-components of A reach-

able from qI in Gph(A).

5.2. Upper Bounds

In this subsection, we show that L(A, qI) can be recognized by a class(A, qI)-automaton.
The argument will closely follow the recursive algorithm, pushing through an invariant
guaranteeing that each n-component B of A can be replaced with an “equivalent”
class(B)-automaton. The notion of equivalence for nontotal automata is formalized by
simulations.

Definition 5.6. An alternating automaton S simulates a game automaton A if FS ⊆
FA and there exists an embedding ι : QA → QS (usually QA ⊆ QS ) such that for all
t ∈ TrA, qA

I ∈ QA, and for each winning strategy σ for player P in G(A, t, qA
I ), there is

a winning strategy σ S for P in G(S, t, ι(qA
I )) such that the guarantee of σ S is contained

in the guarantee of σ , and if there is an infinite play conforming to σ S, then there is an
infinite play conforming to σ .

Note that if A and S are total and S simulates A, then L(A, qA
I ) = L(S, ι(qA

I )).

LEMMA 5.7. For each n-component B of a game automaton A, B can be simulated by
a class(B)-automaton.

PROOF. Assume that the index of A is (i, j). We proceed by induction on n = j, j −
1, . . . , i. If all states of B have priority n or all have priority strictly greater than n, the
claim is immediate. Let us assume that neither is the case. By symmetry, it is enough
to give the construction for even n.

Suppose B has only ∃-branching n + 1 components, B1,B2, . . . ,Bk. Then class(B) =∨
�class(B�)∃ = �RM

m for some m ≥ 1. By the inductive hypothesis, we get a class(B�)-
automaton BS

� , simulating B�. Since �RM
m ≥ class(B�)∃, BS

� can be assumed to be an
(n, n + m)-automaton. Hence, we can put

BS = B ��−1(n) ·BS
1 · BS

2 · . . . · BS
k

to get an (n, n + m)-automaton simulating B.
Now, assume that B contains also n + 1 components C1, C2, . . . , Ck′ that are not ∃-

branching. Repeating the construction earlier would now result in an automaton of
index

∨
�class(B�)∃ ∨ ∨

�class(C�)∃, potentially higher than class(B) = ∨
�class(B�)∃ ∨∨

�class(C�). Hence, instead of CS
� , we shall use CR

� · CT
� , where

—CT
� is a copy of CS

� with each transition leading to an exit of CS
� that is not an exit of

B, replaced with a transition to � (losing for ∀);
—CR

� is CS
� with all priorities set to n and additional ε-transitions (which can be elimi-

nated in the usual way): for each state q of CR
� , allow ∀ to decide to stay in q or move

to the copy of q in CT
� (treated as an exit in CR

� ).

Thus,

BS = B ��−1(n) ·BS
1 · . . . · BS

k · CR
1 · CT

1 · . . . · CR
k′ · CT

k′ .
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The composition of automata B ��−1(n), BS
� , CR

� gives a class(B)-automaton (each CS
�

was replaced with an (n, n)-automaton CR
� ). This is further composed with class(C�)-

automata CT
� in a loopless way. Hence, BS is a class(B)-automaton.

Let us see that BS simulates B. Let ι be defined on B ��−1(n) as identity, on QB� as
the embedding QB� → QBS

� , and on QC� as the embedding QC� → QCR
� . Consider a tree

t ∈ TrA, a state qB
I of B, and games G(B, t, qB

I ) and G(BS, t, ι(qB
I )).

First, consider a strategy σ for ∃ in G(B, t, qB
I ). We decompose this strategy into parts

corresponding to the subautomata B� and C�; for each part we use the fact that BS
�

simulates B� and CS
� simulates C�. This gives us a strategy for ∃ on parts of G(BS, t, ι(qB

I ))
corresponding to subautomata BS

� , CR
� , CT

� . Outside of BS
� , CR

� , and CT
� , ∃ has the same

choices in BS as in B. Therefore, he or she can make his or her choices according to σ .
This gives a complete strategy σ S. Now consider any play conforming to σ S. Such a
play either visits infinitely many times a state of priority n in BS, and so is winning for
∃, or from some point on it stays in some subautomaton BS

� , CR
� , or CT

� . In this case, the
play is also winning for ∃, by the assumption on σ and by the fact that all the changes
of priorities in CR

� ’s and transitions in CT
� ’s are favorable to ∃. By the definition of σ S,

the guarantee of σ S is contained in the guarantee of σ , and if there is an infinite play
conforming to σ S, then there is an infinite play conforming to σ .

For a winning strategy σ for ∀ in G(B, t, qB
I ), we construct a winning strategy σ S for

∀ in G(BS, t, ι(qB
I )) as follows:

—In positions corresponding to states of priority n in B, the strategy σ S follows the
decisions of σ .

—In components BS
� , CR

� , CT
� , the strategy σ S simulates σ (using the fact that CR

� and
CT

� have the same states and exits as the automaton CS
� that simulates C�) with the

following exception: ∀ immediately moves from CR
� to CT

� whenever each extension of
the current play, conforming to the simulating strategy, stays forever in CR

� (possibly
reaching an exit that is also an exit of BS).

An easy inductive argument shows that

(1) each position (v, p) with p ∈ B ��−1(n) that is reached in some play conforming to σ S

is also reached in some play in G(B, t, qB
I ) conforming to σ ;

(2) whenever a play conforming to σ S enters BS
� (CR

� , respectively) in a position (v, p),
then p = ι(q) for some q ∈ B� (q ∈ C�, respectively) and (v, q) is reached in some
play in G(B, t, qB

I ) conforming to σ .

Consider any play bS conforming to σ S.
Assume that bS is a finite play leading to a final position (v, f ). Unless (v, f ) is

entered directly from some CT
� , by the two observations earlier (and by the definition

of σ S), it follows that (v, f ) can also be reached in some play conforming to σ . Assume
that (v, f ) is entered directly from some CT

� . Let (w, ι(q)) be the last moment when bS

entered CR
� (recall that CT

� is only entered from CR
� ). Since σ S in CR

� and CT
� mimics

the simulating strategy in CS
� , the final position (v, f ) can be reached in some play in

G(B, t, qB
I ) starting in (w, q), conforming to σ . By Observation 2, it follows that (v, f ) is

reached in a play conforming to σ and starting in (ε, qB
I ).

The remaining case is when bS is an infinite play. Should bS visit infinitely often
positions of priority n, by Observation 2 and by the definition of σ S, we would define
a play in G(B, t, qB

I ) conforming to σ that visits infinitely often positions of priority n.
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This is impossible since σ is winning for ∀. It follows that from some point on bS stays
in some subcomponent. If the subcomponent is BS

� , ∀ wins as he or she is playing with a
winning strategy in BS

� . The other possibility is that bS stays forever in CR
� ·CT

� for some
�. Since C� is not ∃-branching, in each transition of the form δ(p, a) = (qL, L) ∨ (qR, R)
with p ∈ QB� , at least one of the states qL, qR is an exit state in B, or both are outside
of C�. Hence, after entering C�, σ becomes a single path in C�, with all the branchings
(choices of ∃) going directly to exits of B. In general, this path may end in a position
belonging to ∃, such that both choices lead outside of C� (not necessarily to exits of B).
In our case, the path must stay in C� forever: since bS is infinite and stays forever in
CR

� · CT
� , there is an infinite play conforming to the strategy simulating σ in CS

� and, by
Definition 5.6, an infinite play conforming to σ in C�. Consequently, all exits reachable
with σ in C� are also exits of B. Hence, as soon as bS enters CR

� for the last time, σ S tells
∀ to move to CT

� , where ∀ wins all infinite plays.

It follows easily that L(A, qI) can be recognized by a class(A, qI)-automaton: the
automaton can be obtained as a loopless composition of the class(A�)-automata sim-
ulating the i-components A� of A reachable from qI . In other words, the alternating
index bounds as computed by the algorithm in Section 5.1 are correct.

5.3. Lower Bounds

It remains to see that L(A, qI) cannot be recognized by an alternating automaton of
index lower than class(A, qI). Our proof uses the concept of topological hardness. A
classical notion of topological hardness relies on the Borel hierarchy and the projec-
tive hierarchy [Kechris 1995], but these notions are not suitable for us, since most
regular tree languages live on the same level of these hierarchies: �1

2. We use a more
refined notion based on continuous reductions [Wadge 1983] and so-called game lan-
guages [Arnold 1999; Bradfield 1998; Arnold and Niwiński 2007].

Definition 5.8. For i < j, consider the following alphabet:

Ai, j = {∃,∀} × {i, i + 1, . . . , j}.
With each t ∈ PTrAi, j , we associate a parity game Gt, where

—V = dom(t), F = holes(t),
—E = {(v, vd)

∣∣ v ∈ dom(t), d ∈ {L, R}},
—if t(v) = (P, n), then �(v) = n and v ∈ VP for P ∈ {∃,∀}.

Let Wi, j be the set of total trees over Ai, j such that ∃ has a winning strategy in Gt.

Let us assume the usual Cantor-like topology on the space of trees, with the open sets
defined as arbitrary unions of finite intersections of sets of the form {t ∈ TrA|t(v) = a}
for v ∈ {L, R}∗ and a ∈ A. Topological hardness of languages can be compared using
continuous reductions. A continuous reduction of L1 ⊆ X to L2 ⊆ Y is a continuous
function f : X → Y such that f −1(L2) = L1. The fact that L1 can be continuously
reduced to L2 is denoted by L1 ≤W L2. On Borel sets, the preorder ≤W induces the so-
called Wadge hierarchy (see Wadge [1983]), which greatly refines the Borel hierarchy
and has the familiar ladder shape with pairs of mutually dual classes alternating with
single self-dual classes. Here, we are interested in the following connection between
continuous reductions, languages Wi, j , and the alternating index hierarchy.

FACT 4 (ARNOLD [1999], BRADFIELD [1998], AND ARNOLD AND NIWIŃSKI [2007]). For all
i < j,

(1) Wi, j is regular and Wi, j ∈ RM(i, j),
(2) L ≤W Wi, j for each L ∈ RM(i, j),
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Fig. 2. A 3-loop rooted in p and a (1, 4)-loop rooted in p′.

(3) Wi, j �≤W Wi+1, j+1,
(4) Wi, j ∈ �1

2, W0,1 is �1
1-complete, and W1,2 is �1

1-complete.

This gives a criterion for proving index lower bounds.

COROLLARY 5.9. If Wi, j ≤W L, then L /∈ RM(i + 1, j + 1).

In consequence, in order to show that the index bound computed by the algorithm
from Section 5.1 is tight, it suffices to show that if RM(i, j) ≤ class(A, qI), then Wi, j ≤W
L(A, qI). We construct the reduction in three steps:

(1) We show that if the class computed by the algorithm (i.e., class(A, qI)) is at least
RM(i, j), then this is witnessed with a certain subgraph in Gph(A), called (i, j)-
edelweiss.

(2) We introduce intermediate languages Ŵi, j , whose internal structure corresponds
precisely to (i, j)-edelweisses, and in consequence Ŵi, j ≤W L(A, qI) if only A con-
tains an (i, j)-edelweiss reachable from qI .

(3) We prove that Wi, j ≤W Ŵi, j .

The combinatorial core of the argument is the last step.

Definition 5.10. We say that in a game automaton B, there is an i-loop rooted in p if
there exists a word w such that on the path p

w−→ p in Gph(B), the minimal priority is i
(see the left-hand side of Figure 2).

A game automaton B contains an (i, j)-loop for ∃ rooted in p (see the right-hand side
of Figure 2) if there exist states q, qL, qR of B, a letter a, and words w,wL, wR such that

—δ(q, a) = (qL, L) ∨ (qR, R) ;
—p

w−→ q; qL
wL−→ p; qR

wR−→ p ; and

—on one of the paths p
w (a,L) wL−−−−−→ p or p

w (a,R) wR−−−−−→ p, the minimal priority is i and on the
other it is j

for ∀ dually, with ∨ replaced with ∧.
For an even j > i, B contains an (i, j)-edelweiss rooted in p (see Figure 3 and Figure 4)

if for some even n it contains

—(n + k)-loops for k = i, i + 1, . . . , j − 3;
—(n + j − 2, n + j − 1)-loop for ∃ , if i ≤ j − 2; and
—(n + j − 1, n + j)-loop for ∀ ,

all rooted in p. For odd j, swap ∀ and ∃ but keep n even.

LEMMA 5.11. Let A be a game automaton and qI a state of A. If class(A, qI) ≥ RM(i, j),
then A contains an (i, j)-edelweiss rooted in a state reachable from qI.
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Fig. 3. (0, 1)-edelweiss and (1, 2)-edelweiss.

Fig. 4. (0, 4)-edelweiss and (1, 5)-edelweiss.

PROOF. Let us first assume that (i, j) = (0, 1). Analyzing the algorithm, we see that
the only case when class(A, qI) jumps to RM(0, 1) is when for some even n there is an
n-component B in A, reachable from qI , and containing states of priority n, such that
some n+ 1 component B� of B is ∃-branching in B; that is, B contains a transition of the
form

δ(p, a) = (qL, L) ∨ (qR, R)

with p, qL ∈ QB� , qR ∈ QB (or symmetrically, p, qR ∈ QB� , qL ∈ QB). Since A is priority
reduced, p is reachable from qL within B� via a state of priority n + 1, and from qR
within B via a state of priority n. This gives an (n, n + 1)-loop for ∃ (a (0, 1)-edelweiss)
rooted in a state reachable from qI . The argument for (1, 2) is entirely dual.

Next, assume that (i, j) = (0, 2). It follows immediately from the algorithm that A
contains an n-component B (reachable from qI , containing states of priority n) such
that n is even and there exists an ∃-branching (n + 1)-component B� in B such that
class(B�) = �RM

1 or class(B�) = Comp1. In either case, class(B�) ≥ RM(1, 2) and by the
previous case B� contains an (n′, n′+1)-loop for ∀, for some odd n′ ≥ n. Since A is priority
reduced, for each state q in B� and each r between n and �(q), there is a loop from q to q
with the lowest priority r. Hence, the (n′, n′ +1)-loop can be turned into an (n+1, n + 2)-
loop. Thus, B� contains an (n + 1, n + 2)-loop for ∀, rooted in a state p. We claim that B
contains an (n, n + 1)-loop for ∃, also rooted in p (giving a (0, 2)-edelweiss rooted in p).
Indeed, since B� is ∃-branching, arguing as for (0, 1), we obtain an (n, n + 1)-loop for ∃
rooted in a state p′ in B�. Since B� is an n + 1-component, there are paths in B� from p
to p′ and back; the lowest priority on these paths is at least n + 1. Using these paths,
one easily transforms the (n, n + 1)-loop rooted in p′ into an (n, n + 1)-loop rooted in p.

The inductive step is easy. Suppose that j − i > 2. Then, for some even n, A contains
an (n + i)-component B (reachable from qI , containing states of priority n + i), which
has an (n + i + 1)-component B� such that class(B�) = RM(i + 1, j) or class(B�) =
Comp(i + 1, j). Since for each state p in B�, B contains an (n + i)-loop rooted in p, we
can conclude by the inductive hypothesis.
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Definition 5.12. For i ≤ 2k − 2, consider the alphabet

Âi,2k = {i, i + 1, . . . , 2k − 3, e, a}.
With each t ∈ PTrÂi,2k

, we associate a parity game Ĝt with positions dom(t) and final
positions holes(t) such that

—if t(v) = a, then in v player ∀ can choose to go to vL or to vR, and �(vL) = 2k − 1,
�(vR) = 2k;

—if t(v) = e, then in v player ∃ can choose to go to vL or to vR, and �(vL) = 2k − 2,
�(vR) = 2k − 1;

—if t(v) ∈ {i, i + 1, . . . , 2k − 3}, the only move from v is to vL and �(vL) = t(v).

For i = 2k− 1, let Âi,2k = {a,�}, and let Ĝt be defined as earlier, except that if t(v) = �,
then �(v) = 2k and the only move from v is back to v.

Let Ŵi,2k be the set of all total trees over Ai,2k such that ∃ has a winning strategy in Ĝt.
The languages Ŵi,2k+1 are defined dually, with e, a and ∃,∀ swapped, and � replaced

with ⊥.

LEMMA 5.13. If a total game automaton A contains an (i, j)-edelweiss rooted in a state
reachable from an initial state qI, then Ŵi, j ≤W L(A, qI).

PROOF. We only give the proof for (i, j) = (1, 2); for other values of (i, j), the argument
is entirely analogous. By the definition, A contains an (1, 2)-loop for ∀, rooted in a state
p reachable from qI . Since A is a game automaton and has no trivial states, it follows
that there exist

—a partial tree tI resolving A from qI , with a single hole v, labeled with p in ρ(A, tI, qI);
—a partial tree ta resolving A from p with two holes v1, v2, such that in ρ(A, ta, p),

both holes are labeled p, the lowest priority on the path from the root to vi is i,
and the closest common ancestor u of v1 and v2 is labelled with a state q such that
δA(q, t(u)) = (qL, L) ∧ (qR, R) for some qL, qR; and

—a total tree t� ∈ L(A, p).

Let us see how to build ta. The paths p
w (a,L) wL−−−−−→ p, p

w (a,R) wR−−−−−→ p guaranteed by Def-
inition 5.10 give as a partial tree s with a single branching in some node u and two
leaves v1, v2, which we replace with holes. For ρ = ρ(A, s, p), ρ(v1) = ρ(v2) = p and
δ(ρ(u), t(u)) = (qL, L) ∧ (qR, R). At each hole of s except v1 and v2, we substitute a total
tree such that the run on the resulting tree with two holes resolves A from p; for ex-
ample, if vL is a hole and δ(s(v), ρ(v)) = (q′, L)∨ (q′′, R), we substitute at vL any tree that
is not in L(A, q′), relying on the assumption that A has no trivial states.

Let us define the reduction g : Tr{a,�} → TrAA . Let t ∈ Tr{a,�}. For v ∈ dom(t), define
tv coinductively as follows: if t(v) = �, set tv = t�; if t(v) = a, then tv is obtained by
plugging in the holes v1, v2 of ta the trees tvL and tvR. Let g(t) be obtained by plugging tε
in the hole of tI . It is easy to check that g continuously reduces Ŵ1,2 to L(A, qI).

It remains to see that Wi, j ≤W Ŵi, j . For the lowest level, we give a separate proof.

LEMMA 5.14. W0,1 ≤W Ŵ0,1 and W1,2 ≤W Ŵ1,2.

PROOF. By the symmetry, it is enough to prove the first claim. Let us take t ∈ TrA0,1 .
By König’s lemma, Player ∃ has a winning strategy in Gt if and only if he or she can
produce a sequence of finite strategies σ0, σ1, σ2, . . . (viewed as subtrees of t) such that
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(1) σ0 consists of the root only;
(2) for each n, the strategy σn+1 extends σn in such a way that below each leaf of σn, a

nonempty subtree is added, and all the leaves of σn+1 have priority 0.

Clearly, the union of such a sequence of finite strategies (σn)n∈N is a total strategy for
∃ in Gt. Additionally, the strategies σn witness that their union visits a node of priority
0 infinitely many times on each branch. Therefore, ∃ wins Gt.

Consider the opposite direction: we assume that ∃ wins in Gt using a strategy σ and
we want to define the strategies σn. Let σ0 consist of the root only and let σn+1 ⊆ σ
extend the strategy σn until the next node of priority 0 is seen on every branch. We
need to prove that all the strategies σn are finite. Assume contrarily that σn is finite
but σn+1 is not. Let v be a leaf of σn such that σn+1 �v is infinite. By König’s lemma, we
know that there exists an infinite branch π of σn+1 such that v ≺ π . In that case, there
is no node of priority 0 on π after v. Therefore, π treated as a play is winning for ∀ and
is consistent with σ . It contradicts the assumption that σ was a winning strategy for ∃.

Using such approximating strategies σn, we can define the required reduction. Let
(τi)i∈N be the list of all finite unlabeled binary trees. Some of these trees naturally
induce a strategy for ∃ in Gt. For those, we define tτi ∈ Tr{e,⊥} coinductively, as follows:

—tτi (R
j) = e for all j;

—if τ j induces in Gt a strategy that is a legal extension of the strategy induced by τi in
the sense of item (2) earlier, then the subtree of tτi rooted at R jL is tτ j ;

—otherwise, all the nodes in this subtree are labeled with ⊥.

Let f (t) = tσ0 . By the initial observation, tσ0 ∈ Ŵ0,1 if and only if ∃ has a winning
strategy in Gt: a winning strategy for ∃ in tσ0 corresponds to the successive choices of
strategies σ0 ⊆ σ1 ⊆ . . . .

Additionally, the function f is continuous: to determine the labels in nodes
Rn1LRn2L . . . Rnk and Rn1LRn2L . . . RnkL, we only need to know the restriction of t to the
union of the domains of τn1 , τn2 , . . . , τnk. Hence, f continuously reduces W0,1 to Ŵ0,1.

Our aim now is to prove the following proposition, which forms the technical core of
this section.

PROPOSITION 5.15. For all i and j ≥ i + 2, Wi, j ≤W Ŵi, j .

The rest of this section is devoted to the proof of the previous proposition. We begin by
defining an auxiliary game G̃t and proving that it is equivalent with Gt. The structure
of the game G̃t corresponds to the possible choices of players in an edelweiss.

By duality we can assume that j = 2k. For t ∈ TrAi,2k, let us consider a game G̃t
defined as follows. The positions are pairs (v, σ ), where v is a node of t, and σ is a finite
strategy from v for ∀ (viewed as a subtree of t �v). Initially, v = ε is the root of t and
σ = {ε}. In each round, in a position (v, σ ), the players make the following moves:

—∀ extends σ under leaves of priority 2k − 1 to σ ′ in such a way that on every path
leading from a leaf of σ to a leaf of σ ′, all nodes have priority 2k, except the leaf of σ ′,
which has priority at most 2k − 1;

—∃ has the following possibilities:
—select a leaf v′ of σ ′ with priority at most 2k − 2, and let the next round start with

(v′, {v′}), or
—if σ ′ has some leaves of priority 2k − 1, continue with (v, σ ′).

A play is won by ∃ if he or she selects a leaf infinitely many times and the least
priority of these leaves seen infinitely often is even, or ∀ is unable to extend σ in some
round. Otherwise, the play is won by ∀.
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LEMMA 5.16. A player P has a winning strategy in Gt if and only if P has a winning
strategy in G̃t.

PROOF. For a winning strategy σ∃ for ∃ in Gt, let σ̃∃ be the strategy in G̃t in which ∃
selects a leaf v′ in σ ′ if and only if v′ ∈ σ∃. Consider an infinite play conforming to σ̃∃.
If in the play ∃ selects a leaf infinitely many times, he or she implicitly defines a path
in t conforming to σ∃, and so the play must be winning for ∃. Assume that ∃ selects a
leaf only finitely many times. Then, ∀ produces an infinite sequence of finite strategies
{v} = σ0 ⊆ σ1 ⊆ . . . in Gt. Let σ∞ be the union of these strategies. Consider the play
π in Gt passing through v and conforming to σ∞ and σ∃. Observe that for each σi, the
strategy σ∃ must choose some path; hence, either ∃ selects a leaf of σi or this path goes
via a leaf of priority 2k − 1. Thus, π is infinite, and by the rules of G̃t, priorities at
most 2k − 1 are visited infinitely often. Since ∃ selects a leaf only finitely many times,
priorities strictly smaller than 2k − 1 are visited finitely many times in π . Hence, π is
won by ∀, which contradicts the assumption that σ∃ is winning for ∃.

Now, let σ∀ be a winning strategy for ∀ in Gt. Then, for each v ∈ σ∀, there exists a
finite substrategy σ ′ of σ∀ from v such that all internal nodes of σ ′ have priority 2k
and leaves have priority at most 2k − 1. This shows that for each current strategy
σ ⊆ σ∀, ∀ is able to produce a legal extension σ ′ ⊆ σ∀. Let σ̃∀ be a strategy of ∀ in G̃t
that extends every given σ by σ ′ as earlier. Consider any play conforming to σ̃∀. By the
initial observation, the play is infinite, so priorities strictly smaller then 2k are visited
infinitely often. If ∃ selects a leaf only finitely many times, priorities strictly smaller
then 2k−1 occur only finitely many times and ∀ wins. If ∃ selects a leaf infinitely many
times, then the lowest priority seen infinitely often must be odd, as otherwise ∃ would
show a losing path in σ∀. Hence, ∀ wins in this case as well.

Now it remains to encode the game G̃t as a tree f (t) ∈ TrÂi,2k
in a continuous manner.

The argument is similar to the one in Lemma 5.14. Let (τn)n∈N be the list of all unlabeled
finite trees. For some pairs (v, τn), τn induces a strategy in Gt from the node v. For such
(v, τn), we define t∀

v,τn
and t∃

v,τn
coinductively, as follows:

—t∀
v,τn

(Rm) = a for all m;
—the subtree of t∀

v,τn
rooted at RmL is t∃

v,τm
if τm induces a strategy from v that is a legal

extension of τn according to the rules of G̃t, and otherwise the whole subtree is labeled
with es (losing choice for ∀);

—t∃
v,τn

(Rm) = e for m = 0, 1, . . . , �, where v0, v1, . . . , v� are the leaves in the strategy
induced by τn from v;

—the subtree of t∃
v,τn

rooted at R�+1 is t∀
v,τn

if the strategy induced by τn from v has some
leaves of priority 2k−1; otherwise, the whole subtree is labeled with as (losing choice
for ∃);

—for m ≤ �, consider the following cases to define the subtree sm of t∃
v,τn

rooted at RmL:
—if �(vm) ∈ {2k − 1, 2k}, then sm is labeled everywhere with as (losing choice for ∃),
—if �(vm) = 2k − 2, then sm = t∀

vm,{vm},
—if �(vm) = r < 2k − 2, then sm(ε) = r, the left subtree of sm is t∀

vm,{vm}, and the right
subtree of sm is labeled with as (irrelevant for Gt).

Let f (t) be t∀
ε,{ε}. Checking that f is continuous does not pose any difficulties.

Lemma 5.16 implies that f reduces Wi, j to Ŵi, j , which concludes the proof of Proposi-
tion 5.15.
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5.4. Corollaries

As a by-product of the decision procedure we have described, we obtain the following
characterization of the levels of the alternating index hierarchy for game languages.

PROPOSITION 5.17. For a priority-reduced game automaton A, L(A, qI) ∈ RM(i, j) if
and only if there is no (i + 1, j + 1)-edelweiss reachable from qI in A.

PROOF. One direction follows immediately from Lemma 5.11: if L(A, qI) /∈ RM(i, j),
then class(A, qI) ≥ RM(i + 1, j + 1) and A contains an (i + 1, j + 1)-edelweiss reachable
from qI . For the opposite direction, assume that A contains an (i + 1, j + 1)-edelweiss
reachable from qI . By Lemma 5.13, it implies that Ŵi+1, j+1 ≤W L(A, qI). Lemma 5.14
and Proposition 5.15 imply that in that case, Wi+1, j+1 ≤W L(A, qI). By Corollary 5.9, it
means that L(A, qI) /∈ RM(i, j).

A further corollary is the converse of Fact 2 for the alternating index.

PROPOSITION 5.18. For game automata, substitution preserves the alternating index.

PROOF. First, note that without changing the outcome of the substitution AB, we can
always assume that the substituted state of A is an exit. We would like to use Propo-
sition 5.17, but we first need to ensure that our automata are priority reduced. The
preprocessing that turns a given automaton into a priority-reduced one, described in
the proof of Lemma 5.5, works independently in each strongly connected component of
the automaton. Hence, as long as the substituted state of A is an exit, the preprocessing
commutes with substitution; that is, (AB)′ = A′

B′ , where primes are used to denote the
preprocessed automata. Consequently, we can assume that our initial automata are
priority reduced, and so are the results of the substitution. The claim now follows from
Proposition 5.17: since the characterization it offers is in terms of strongly connected
subgraphs in the automaton, we can reason just like for nondeterministic index of
deterministic automata in Proposition 4.2. If the languages recognized by automata B
and C have the same index, then B and C contain the same edelweisses. By the defini-
tion of substitution, no strongly connected subgraph in AB can use states from A and
from B. Consequently, AB and AC contain the same edelweisses reachable from qA

I , and
so L(AB, qA

I ) and L(AC, qA
I ) have the same index.

6. WEAK ALTERNATING INDEX PROBLEM

In this section, we provide a procedure computing the weak index for languages given
via a game automaton recognizing them. Of course, a game language need not be
weakly recognizable. This is because, as we have mentioned in Section 5, languages
recognized by weak alternating automata coincide with the class Comp0 ⊆ �RM

1 ∩ �RM
1 ,

and, for each i > 0, there is a language recognized by a game automaton belonging to
�RM

i − �RM
i .

As an immediate corollary of the proof of Theorem 5.4, we have the following decid-
able characterization of being weakly recognizable for languages recognized by game
automata.

FACT 5. Let A be a game automaton, and q one of its states. The language L(A, q)
is weakly recognizable if and only if A contains neither a (0, 1)-edelweiss nor a (1, 2)-
edelweiss reachable from state q.

PROOF. For the direction from left to right, we reason as follows. Assume L(A, q) is
weakly recognizable but contains, say, a (0, 1)-edelweiss reachable from q. Then from
Lemmas 5.13 and 5.14 and Corollary 5.9, we have that L(A, q) /∈ Comp0, a contradic-
tion. The other direction is an immediate consequence of Lemma 5.11.
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This characterization of weak recognizability within the class of game automata was
essentially already provided in Niwiński and Walukiewicz [2003]. In this article, it is
shown that a deterministic automaton recognizes a weakly recognizable language if
and only if it does not contain a forbidden pattern called split, which corresponds to
a (1, 2)-edelweiss. Since game automata are closed under dualization, they can also
contain a dual split, that is, a (0, 1)-edelweiss. Fact 5 is thence an immediate corollary
from the proof of the result of Niwiński and Walukiewicz [2003].

Analogously to what we have done in Section 5, in the aim of providing a precise
formulation of the problem we want to solve, we start by introducing some useful
notation.

Definition 6.1. For i < j ∈ N, let RMw(i, j) denote the class of languages recognized
by weak alternating tree automata of index (i, j). Let

�w
j = RMw(0, j),

�w
j = RMw(1, j + 1),

�w
j = RMw(0, j) ∩ RMw(1, j + 1).

These classes, naturally ordered by inclusion, constitute the weak index hierarchy. The
weak index of a language L is the least class C in the weak index hierarchy such that
L ∈ C.

Now we can properly formulate the main result of this section.

THEOREM 6.2. For a game automaton A and a state q, if A contains neither a (0, 1)-
edelweiss nor a (1, 2)-edewelweiss reachable from the state q, then L(A, q) is weakly
recognizable and its weak index can be computed effectively.

The proof consists of a recursive procedure computing the weak class of L(A, q),
denoted wclass(A, q). The procedure itself is given in Section 6.1; Sections 6.2 and 6.3
prove its correctness by providing upper and lower bounds, respectively. The upper
bounds are simply constructions of a weak alternating automaton of appropriate weak
index recognizing the language L(A, q). The lower bounds show that for lower indices,
such constructions are impossible; they are obtained by means of simple tools from
descriptive set theory. In Section 6.5, we obtain as a corollary that, as for deterministic
languages, the weak index and the Borel rank coincide for tree languages recognized
by game automata.

6.1. The Algorithm

Similar to the strong index, we assume without loss of generality that a given au-
tomaton A is priority reduced (see Lemma 5.5). The procedure works recursively on
the DAG of strongly connected components, or SCCs, of A (maximal sets of mutually
reachable states). We identify each SCC B of an automaton A with the automaton
obtained by restricting A to the set of states in B; the states outside of B accessible via
a transition originating in B become the exits of the new automaton (cf. Section 2.3).
Note that the resulting automaton is also priority reduced. Our procedure computes
wclass(A, q) based on wclass(A, p) for exits p of the SCC B containing q. Those classes
are aggregated in a way dependent on the internal structure of B, or more precisely, on
the way in which the state p is reachable from B. The aggregation is done by means of
auxiliary operations on classes. The two most characteristic are

(
�w

n−1

)∃ = (
�w

n

)∃ = (
�w

n

)∃ = �w
n ,

(
�w

n

)∀ = (
�w

n

)∀ = (
�w

n−1

)∀ = �w
n .
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We also use the bar notation for the dual classes,

�w
n = �w

n , �w
n = �w

n , �w
n = �w

n ,

and � ∨ � for the least class containing � and �.
Let us now describe the conditions that will trigger applying the previous operations

to previously computed classes. We begin with some shorthand notation. Recall that an
n-path is a path in which the minimal priority is n, and analogously for n-loop. Let q′,
q′′ be a pair of states in B. Let max�(q′ → q′′) be the maximal n such that there exists
an n-path from q′ to q′′ in B. Observe that since B is an SCC, such n is well defined (at
least 0). Also, since the automaton is priority reduced, for each n′ ≤ max�(q′ → q′′),
there exists an n′-path from q′ to q′′ in B.

A ∀-branching transition in B is a transition of the form δ(q′, a) = (qL, L) ∧ (qR, R) with
all three states q′, qL, qR in B, dually for ∃. Note that these notions are similar but not
entirely analogous to the ∀-branching and ∃-branching components from Section 5.1.

We say that a state p is (∃, n)-replicated by B if there are states q′, q′′ in B and a letter
a such that δ(q′, a) = (q′′, L) ∨ (p, R) (or symmetrically) and max�(q′′ → q′) ≥ n. Dually,
p is (∀, n)-replicated if the previous transition has the form δ(q′, a) = (q′′, L) ∧ (p, R) (or
the symmetrical).

We can now describe the procedure. By duality, we can assume that the minimal
priority in B is 0. If A contains no loop reachable from q, set wclass(A, q) = �w

1 . If it
contains an accepting loop reachable from q but no rejecting loop reachable from q,
set wclass(A, q) = �w

1 . Symmetrically, if it contains a rejecting loop reachable from q
but no accepting loop reachable from q, set wclass(A, q) = �w

1 . Otherwise, consider the
following two cases.

Assume first that B contains no ∀-branching transition. In that case, for every tran-
sition δ(q, a) of B that is controlled by ∀, at most one of the successors of δ(q, a) is a
state of B. Hence, B can be seen as a codeterministic tree automaton (exits are removed
from the transitions; if both states in a transition are exits, the transition is set to ⊥).
Thus, the automaton B̄ dual to B is a deterministic tree automaton. For deterministic
tree automata, it is known how to compute the weak index [Murlak 2008b]. Denote the
weak index of B̄ as wclass(B̄, q).

Now, set wclass(A, q) to

�w
2 ∨ wclass(B̄, q) ∨

∨
p∈F

wclass(A, p) ∨
∨

p∈F∃,1

wclass(A, p)∃ ∨
∨

p∈F∀,0

wclass(A, p)∀, (1)

where F ⊆ QA is the set of exits of B, F∃,1 ⊆ F is the set of states (∃, 1)-replicated by B,
and similarly for F∀,0.

Assume now that B does contain an ∀-branching transition. By the hypothesis of the
theorem, for every ∀-branching transition δ(q′, a) = (qL, L) ∧ (qR, R) in B, it must hold
that max�(qL → q′) ≤ 1 and max�(qR → q′) = 0, or symmetrically. We call a state q′′
(either qL or qR) in an ∀-branching transition bad if max�(q′′ → q′) = 0. Let B− be the
automaton B with all these bad states in the ∀-branching transitions changed into �,
and let A− be the automaton A with B replaced by B−. Observe that B− contains no
∀-branching transitions. Let us put

wclass(A, q) = �w
2 ∨ (wclass(A−, q))∀. (2)

6.2. Upper Bounds

In this section, we prove that wclass(A, q) is an upper bound for the weak index of
L(A, q). More precisely, we show the following.
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LEMMA 6.3. If wclass(A, q) ≤ RMw(i, j), then the language L(A, q) can be recognized
by a weak alternating automaton of index (i, j).

Let us first deal with the lowest levels. The algorithm never returns �w
0 = RMw(0, 0)

nor �w
0 = RMw(1, 1), so the lowest (i, j) we need to consider are (0, 1) and (1, 2). Suppose

that (i, j) = (0, 1). Examining the algorithm, we immediately see that this is possible
only if automaton A does not contain a rejecting loop reachable from state q. Since our
automaton is priority reduced, it means that it uses only priority 0. Hence, it is already
a (0, 1) weak automaton (not (0, 0), because of allowed ⊥ transitions). For (i, j) = (1, 2),
the argument is entirely analogous.

For higher indices, we consider three cases, leading to three different constructions
of weak alternating automata recognizing L(A, q).

6.2.1. B Has no ∀-Branching Transitions and (i, j ) = (1, j ) with j ≥ 3. In an initial part of the
weak automaton recognizing L(A, q), the players declare whether during the play on
a given tree they would leave the B component or not. Since B has no ∀-branching
transitions, as long as the play has not left B, each choice of ∀ amounts to leaving B
or staying in B. Hence, each strategy of ∃ admits exactly one path staying in B, finite
or infinite. We first let ∃ declare l∃ ∈ {leave, stay}, where leave means that the path is
finite, and stay means that it is infinite.

—If l∃ = leave, we move to a copy of B with all the priorities set to 1. By Equation (1),
for every exit f of B, we have wclass(A, f ) ≤ RMw(1, j). Therefore, we can compose
this copy of B with all the automata for L(A, f ) to obtain an automaton of index (1, j).

—Assume that l∃ = stay. Given the special shape of ∃’s strategies, this means that
∃ claims that the play will only leave B if at some point ∀ chooses an exit f in a
transition whose other end is in B. Since the minimal priority in B is 0, all these exits
are (∀, 0)-replicated. We check ∃’s claim by substituting all other exits in transitions
with rejecting states, that is, weak alternating automata of index (3, 3) (recall that
j is at least 3). Thus, the only exits that are not substituted are the (∀, 0)-replicated
ones. Now, we ask ∀ whether he or she plans to take one of these exists: he or she
declares l∀ ∈ {leave, stay}, accordingly.
—If l∀ = stay, the play moves to the weak alternating automaton of index wclassdet(B̄),

corresponding to the codeterministic automaton B with the remaining exits
removed from transitions (they were only present in transitions of the form
(qL, L) ∧ (qR, R), with the other state in B).

—Assume that l∀ = leave. In that case, we move to a copy of B with all the priorities
set to 2. The only exits left are the (∀, 0)-replicated ones. By Equation (1), for all
such exits f ,

wclass(A, f ) ≤ RMw(0, j − 2) ,

for otherwise wclass(A, f ) ≥ RMw(1, j − 1), so (wclass(A, p))∀ ≥ RMw(0, j − 1) and
RMw(0, j−1) is not smaller than RMw(1, j). In particular, we can find a weak alter-
nating automaton of index (2, j) recognizing L(A, f ). So the whole subautomaton
is a weak alternating automaton of index (2, j).

6.2.2. B Has No ∀-Branching Transitions and (i, j ) = (0, j ) with j ≥ 2. The simulation starts
in a copy of B with all the priorities set to 0. If the play leaves B at this stage, then we
move to the appropriate automaton of index (0, j). At any moment, ∀ can pledge that:

—the play will no longer visit transitions δ(q′, a) of the form ( fL, L)∧( fR, R), ( fL, L)∨( fR, R),
(qL, L) ∨ ( fR, R), ( fL, L) ∨ (qR, R), or (qL, L) ∨ (qR, R), where max�(qL → q′) = max�(qR →
q′) = 0 and fL, fR are exits of B;
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—in the transitions he or she controls, he or she will always choose the state in B and
win regardless of ∃’s choices.

If the play stays forever in B but ∀ is never able to make such a pledge, he or she loses
by the parity condition—it means that infinitely many times a loop from qL → q′ or
qR → q′ is taken with max�(qd → q′) = 0; therefore, the minimal priority occurring
infinitely often is 0.

After ∀ has made the previous pledge, ∃ has the following choices:

—He or she can challenge the first part of ∀’s pledge, declaring that at least one such
transition is reachable. In that case, we move to a copy of B with all the priorities
set to 1 and all the transitions controlled by ∃. In this copy, reaching any of the
disallowed transitions entails acceptance—the play immediately moves to a (2, 2)
final component.

—He or she can accept the first part of ∀’s pledge.

After ∃ has accepted the first part of ∀’s pledge, we can assume that the rest of the
game in B is a single infinite branch. Indeed, by the hypothesis of the theorem, for every
∃-branching transition δ(q′, a) = (qL, L) ∨ (qR, R) in B, it must hold that max�(qL → q′) =
max�(qR → q′) = 0; otherwise, B would contain (0, 1)-edelweiss. Thus, no ∃-branching
transition can be reached, and since B contains no ∀-branching transitions at all, the
game can continue in B in only one way.

Now ∃ must challenge the second part of ∀’s pledge. We ask him or her whether he
or she plans to leave B or not, and he or she declares l∃ ∈ {leave, stay}.
—If l∃ = stay, then we proceed to the weak automaton of index wclass(B, q), corre-

sponding to B treated as a codeterministic automaton. We are only interested in the
behavior of this automaton over trees in which there is exactly one branch in B,
and it is infinite. Over such trees, we want to make sure that neither player ever
chooses to exit. This is already ensured: when B is turned into a codeterministic tree
automaton, the exits are simply removed from transitions (if both states are exits,
the transition is changed to a transition to a (2, 2) automaton, but such transitions
will never be used over trees we are interested in).

—If l∃ = leave, then we move to a copy of B with all the priorities set to 1. The
only available exits of B in this copy are those in transitions of the form δ(q′, q) =
(qL, L) ∨ ( f, R) (or symmetrical) with max�(qL → q′) > 0 (in other transitions the exits
are removed; if both states are exits, they are replaced by a final (2, 2)-component);
therefore, wclass(A, f ) ≤ RMw(1, j) and we can simulate it with a (1, j)-automaton.

6.2.3. B Contains ∀-Branching Transitions. If B contains an ∀-branching transition, the al-
gorithm returns wclass(A, q) of the form RMw(0, j). Let us construct a weak automaton
of index (0, j) that recognizes L(A, q). The automaton starts in a copy of B with all the
priorities set to 0. At any moment, ∀ can declare that no one will ever take any bad
transition in B. If he or she cannot make such a declaration, it means that ∃ can force
infinitely many bad transitions to be taken, and he or she wins. After ∀ has made such
declaration, we need to recognize the language L(A−, q) (note that the bad transitions
in A− are made directly losing for ∀). For this we can use a weak automaton of index
wclass(A−) ≤ RMw(0, j), already constructed.

6.3. Lower Bounds

Now we prove lower bounds for the weak index computed by our procedure, as expressed
by Lemma 6.4.

LEMMA 6.4. If wclass(A, q) ≥ RMw(i, j), then L(A, q) cannot be recognized by a (total)
weak alternating automaton of index (i + 1, j + 1).
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For this, we use a topological argument, relying on the following simple observa-
tion [Duparc and Murlak 2007], essentially proved already by Mostowski [1991b]. Let
�0

n, �0
n, and �0

n be the finite Borel classes; that is, �0
1 is the class of the open sets,

�0
n consists of the complements of sets from �0

n, �0
n = �0

n ∩ �0
n, and �0

n+1 consists of
countable unions of sets from �0

n.

FACT 6. If L is recognizable by a weak alternating automaton of index (0, j), then
L ∈ �0

j . Dually, for index (1, j + 1), we have L ∈ �0
j .

Thus, in order to show that a language is not recognizable by a weak alternating
automaton of index (0, j), it is enough to show that it is not in �0

j . This can be shown
by providing a continuous reduction to L from some language not in �0

j , for example, a
�0

j -complete language. We shall use languages introduced by Skurczyński [1993].
One can define Skurczyński’s languages by means of two dual operations on tree

languages.

Definition 6.5. For L ⊆ TrA, define

L∀ = {
t ∈ TrA

∣∣∀n∈N t �LnR∈ L
}
, L∃ = {

t ∈ TrA
∣∣∃n∈N t �LnR∈ L

}
.

It is straightforward to check that these operations are monotone with respect to the
Wadge ordering; that is,

L ≤W M implies L∀ ≤W M∀ and L∃ ≤W M∃.

Moreover, for all n > 0,

—if L is �0
n-complete, L∀ is �0

n+1-complete, and
—if L is �0

n-complete, L∃ is �0
n+1-complete.

This allows us to define simple tree languages complete for finite levels of the Borel
hierarchy.

Definition 6.6 (Skurczyński [1993]). Consider the alphabet A = {⊥,�}. Let

S(0,1) = {
t ∈ TrA

∣∣t(ε) = �}∀
, S(1,2) = {

t ∈ TrA
∣∣t(ε) = ⊥}∃

.

The remaining languages are defined inductively:

S(0, j+1) = (S(1, j+1))∀ , S(1, j+1) = (S(0, j−1))∃ .

For notational convenience, let S(0,0) = TrA and S(1,1) = ∅.

Note that the languages are dual to each other: S(1, j+1) = TrA − S(0, j). A straight-
forward reduction shows that S(i′, j ′) ≤W S(i, j) whenever (i, j) is at least (i′, j ′). But the
crucial property is the following.

FACT 7 (SKURCZYŃSKI [1993]). S(0,n) ∈ �0
n − �0

n and S(1,n+1) ∈ �0
n − �0

n.

Summing up, from Facts 6 and 7, it follows immediately that if S(i, j) ≤W L, then L is
not recognizable by a weak alternating automaton of index (i + 1, j + 1).

Observe that S(i, j) can be recognized by a weak game automaton of index (i, j). One
consequence of this—and Facts 6 and 7—is the strictness of the hierarchy.

COROLLARY 6.7. The weak index hierarchy is strict, even when restricted to languages
recognizable by game automata.

Another consequence is that it is relatively easy to give the reductions we need to
prove Lemma 6.4, summarized in the claim to follow.
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CLAIM 1. If wclass(A, q) ≥ RMw(i, j), then S(i, j) ≤W L(A, q).

We prove this claim by induction on the structure of the DAG of SCCs of A reachable
from q, following the cases of the algorithm just like for the upper bound. One of the
cases is covered by the procedure for deterministic automata, which we use as a black
box. But in order to prove Lemma 6.4, we need to know that it preserves our invariant.
And indeed, just like here, it is a step in the correctness proof: if the procedure returns
at least RMw(i, j), then S(i, j) continuously reduces to the recognized language [Murlak
2008b].

The remaining cases essentially correspond to the items in the following lemma.

LEMMA 6.8. Assume that q is a state of A, B is the SCC of A containing q, and p is a
state of A reachable from q (from the same or different SCC).

(1) L(A, p) ≤W L(A, q).
(2) L(A−, q) ≤W L(A, q).
(3) If an accepting loop is reachable from q, then S(0,1) ≤W L(A, q).
(4) If a rejecting loop is reachable from q, then S(1,2) ≤W L(A, q).
(5) If p is (∀, 0)-replicated by B, then (L(A, p))∀ ≤W L(A, q).
(6) If p is (∃, 1)-replicated by B, then (L(A, p))∃ ≤W L(A, q).

PROOF. The proof is based on Fact 3. Let us begin with (1). Since all the states
of A are nontrivial, we can construct a tree t with a hole h such that t resolves A
from q and the state ρ(A, t, q)(h) is p. In that case, t[h := s] ∈ L(A, q) if and only if
s ∈ L(A, p). Therefore, the function s �→ t[h := s] is a continuous reduction witnessing
that L(A, p) ≤W L(A, q).

For (2), recall that A− is obtained from A by turning some choices for ∀ to �; that
is, some transitions δ(r, a) of the form (rL, L) ∧ (rR, R) are set to (rL, L), (rR, R), or �. This
means that if a node v of tree t has label a and gets state p in the associated run
ρ(A−, t, q), then t �vL, t �vR, or both of them, respectively, are immediately accepted by
A−. In the corresponding run of the original automaton A, however, these subtrees will
be inspected by the players and we should make sure they are accepted. The way to
do it is simple: since rL and rR are nontrivial in A, we can replace these subtrees with
trL ∈ L(A, rL), or trR ∈ L(A, rR), accordingly. This gives a continuous reduction of L(A−, q)
to L(A, q).

To prove (3), let us fix a state p on an accepting loop C, reachable from q. By (1) and
transitivity of ≤W, it is enough to show that S(0,1) ≤W L(A, p). Let t be a tree with hole
h such that t resolves A from p, the state ρ(A, t, p) is p, and the states on the shortest
path from the root to h correspond to the accepting loop C. Since all states in A are
nontrivial, we can also find a full tree t′ /∈ L(A, p). Let t0 = t′ and tn = t[h := tn−1] for
n > 0, and let t∞ be the tree defined coinductively as

t∞ = t[h := t∞] .

Then, tn /∈ L(A, p) for all n ≥ 0, but t∞ ∈ L(A, p). To get a continuous function reducing
S(0,1) to L(A, p), map tree s ∈ Tr{⊥,�} to tm, where m = min{i|s(LiR) = ⊥}, or to t∞ if
{i ∣∣ s(LiR) = ⊥} is empty.

Item (4) is analogous.
For (5), let us assume that δ(q, a) = (qL, L) ∧ (p, R) is the transition witnessing that p

is (∀, 0)-replicated by A. Let us also fix the path qL → q with minimal priority 0. Now,
let t be a tree with a hole h that resolves A from q and the value of the run of A in h is
q. Similarly, let t′ be the tree with a hole h′ that resolves A from qL and the value of the
respective run is q. Let us construct a continuous function that reduces (L(A, p))∀ to
L(A, q). Assume that a given tree s has subtrees si under the nodes Li R. Let us define
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coinductively ti as

ti = a(t′[h′ := ti+1], si),

that is, the tree with the root labeled by a and two subtrees: t′[h′ := ti+1] and si. Finally,
let f (s) be t[h := t0]. Note that the run ρ(A, f (s), q) labels the hole h of t by q′. Therefore,
f (t) ∈ L(A, q) if and only if t0 ∈ L(A, q′) and ti ∈ L(A, q) if and only if ti+1 ∈ L(A, q) and
si ∈ L(A, p). Since the minimal priority on the path from ti to ti+1 is 0, if no si belongs
to L(A, p), then f (t) /∈ L(A, q). Therefore, f is in fact the desired reduction.

The proof of (6) is entirely analogous.

Using Lemma 6.8 and the guarantees for deterministic automata discussed earlier,
we prove Lemma 6.4 as follows.

PROOF OF LEMMA 6.4. By induction on the recursion depth of the algorithm execution,
we prove that if wclass(A, p) ≥ RMw(i, j), then S(i, j) ≤W L(A, p).

Let us start with the lowest level. Assume that (i, j) = (0, 1) (for (1, 2) the proof is
analogous). Examining the algorithm, we see that this is only possible if there is an
accepting loop in A, reachable from q. Then, by Lemma 6.8, Item (3), S(0,1) ≤W L(A, q).

For higher levels, we proceed by case analysis. First, we cover the possible reasons
Equation (1) can give at least RMw(i, j). If wclass(B̄, q) ≥ RMw(i, j), the invariant
follows immediately from the guarantees for deterministic automata, and the duality
between indices and between Skurczyński languages. If wclass(A, p) ≥ RMw(i, j) for
some p ∈ F, we use the fact that L(A, p) ≤W L(A, q), and get S(i, j) ≤W L(A, q) by
transitivity. Then, assume that wclass(A, p)∃ ≥ RMw(i, j) for some p ∈ F∃,1 (for p ∈
F∀,0 the proof is analogous). That means that wclass(A, p) ≥ RMw(0, j ′) such that
(RMw(0, j ′))∃ = RMw(1, j ′ + 2) ≥ RMw(i, j). By the inductive hypothesis, S(0, j ′) ≤W

L(A, p), so by the monotonicity of ∃ and Lemma 6.8, Item (6), S(1, j ′+2) = (S(0, j ′))∃ ≤W

(L(A, p))∃ ≤W L(A, q). But since RMw(1, j ′ + 2) ≥ RMw(i, j), by the Wadge ordering of
Skurczyński’s languages, S(i, j) ≤W S(1, j ′+2), and consequently,S(i, j) ≤W L(A, q) follows
by transitivity.

Finally, assume that wclass(A, q) is computed according to Equation (2); that is,
the component B contains an ∀-branching transition δ(q′, a) = (qL, L) ∧ (qR, R). As
we have already observed, the hypothesis of the theorem implies that in that case,
max�(qL → q′) = 0 and max�(qR → q′) ≤ 1 (or symmetrically). That means that qR is
∀, 0-replicated by B, so by Lemma 6.8, Item (5), (L(A, qR))∀ ≤W L(A, q). But since B is
strongly connected, q is reachable from qL and qL, so by Lemma 6.8, Item 1, we have
L(A, q) ≤W L(A, qR). Since ∀ is monotone, we conclude that

(L(A, q))∀ ≤W L(A, q) . (3)

(Although it looks paradoxical, it is not the case since (L∀)∀ ≤W L∀ for all L.) Since
wclass(A, q) ≥ RMw(i, j), it must hold that wclass(A−, q) ≥ RMw(1, j ′), such that
(RMw(1, j ′))∀ = RMw(0, j ′) ≥ RMw(i, j). By the induction hypothesis, S(0, j ′) ≤W
L(A−, q). Consequently, by Lemma 6.8, Item (2), and by transitivity, S(0, j ′) ≤W L(A, q).
Thus, by the monotonicity of ∀, from Equation (3) we get S(0, j ′) = (S(1, j ′))∀ ≤W L(A, q),
and we conclude by the Wadge ordering of Skurczyński’s languages.

6.4. Substitution Preserves the Weak Alternating Index

A quick look at how the weak index is computed suffices to show the converse of Fact 2
for weak alternating index.

PROPOSITION 6.9. For game automata, substitution preserves the weak alternating
index.
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PROOF. As we have argued in the proof of Proposition 5.18, we can assume that
our automata are priority reduced and so are the results of the substitutions. Notice
that wclass(A, q) depends only on the internal structure of the SCC containing q and
the value of wclass(A, q) computed for the states outside this component. Therefore,
substituting either of two game automata recognizing languages of the same weak
index results in the same outcome of the procedure. The claim follows by the correctness
of the procedure.

6.5. Weak Index Versus Borel Rank

Another notable feature of tree languages recognized by deterministic automata is that
within this class, the properties of being Borel and being weakly recognizable are co-
extensive. Since the former is decidable [Niwiński and Walukiewicz 2003], the latter is
also decidable. This correspondence can be made even more precise: for languages rec-
ognized by deterministic automata, the weak index and the Borel rank coincide [Murlak
2008b]. Notice that this implies that the Borel rank for deterministic languages is also
decidable, a result originally proved in Murlak [2005]. As a corollary of the work pre-
sented in the previous part of this section, we obtain that the same is true for game
automata.

COROLLARY 6.10. Under restriction to languages recognized by game automata, the
weak index hierarchy coincides with the Borel hierarchy, and both are decidable.

PROOF. From Murlak [2008b], we know that if wclass(A, q) ≤ RMw(i, j), then
L(A, q) ≤W S(i, j). The coincidence between weak index and Borel rank thence follows
by applying Claim 1 and Fact 7. Decidability is a consequence of Theorem 6.2.

7. RECOGNIZABILITY BY GAME AUTOMATA

In this section, we give an effective characterization of the class of languages recognized
by game automata within the class of all regular languages. The characterization
is inspired by the one for deterministic automata [Niwiński and Walukiewicz 2003];
however, due to the alternation of players, the arguments here are more involved.

We begin with a handful of definitions. Let us fix a finite alphabet A. A trace is a finite
word w over A∪ {L, R}, with letters from A on even positions, and directions from {L, R}
on odd positions. If the last symbol of w is a letter, the trace is labeled; otherwise, it is
unlabeled. A trace w can be seen as a partial tree tw ∈ PTrA consisting of a single path:
for a labeled trace w = a0d1a1 . . . dkak, dom(tw) = {d1d2 . . . di|i ≤ k} and tw(d1d2 . . . di) = ai
for all i ≤ k. Abusing the notation, we write w instead of d1d2 . . . dk. The tree tw has
two final holes, wL and wR, and side holes d1d2 . . . di−1d̄i for i ≤ k. For an unlabeled
trace w = a0d1a1 . . . dk, tw is defined similarly, but this time it has only one final hole:
d1d2 . . . dk. We shall also write w for this hole.

A partial tree t ∈ PTrA is a realization of a trace w if it is obtained from tw by putting
some total trees in all the side holes of tw. If w is an unlabeled trace, t still has a hole w.
We write t(t′) for the tree obtained by putting t′ in the hole w, and t−1M for {t′|t(t′) ∈ M}.
Similarly, if w is a labeled trace, we write t(tL, tR) for the total tree obtained by putting
tL, tR in the holes wL and wR, respectively, and we define t−1M as {(tL, tR)|t(tL, tR) ∈ M}.
Additionally, a−1M stands for t−1

a M for the root-only tree ta with ta(ε) = a.
A language Z is nontrivial if neither Z nor its complement Z� is empty. The following

notions are semantic counterparts of states and transitions of game automata.

Definition 7.1. A unary profile is ∗ (standing for trivial) or a nontrivial regular tree
language Z. A binary profile is ∗, ∅, TrA × TrA, or a subset of TrA × TrA in one of the
forms ZL × TrA, TrA × ZR, (ZL × TrA) ∪ (TrA × ZR), or ZL × ZR, for some nontrivial regular
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tree languages ZL, ZR; the first three (i.e., ∗, ∅, and TrA × TrA) are called trivial and the
remaining ones nontrivial.

We shall see that the binary profiles (except ∗) correspond to transitions of the form
⊥, �, (qL, L), (qR, R), (qL, L) ∨ (qR, R), and (qL, L) ∧ (qR, R), respectively. As a first step, let
us relate traces to profiles.

Definition 7.2. A trace w has nontrivial profile Z in a regular language M if for
each realization t of w, either t−1M is trivial or t−1M = Z, and for some realization t0,
t−1
0 M = Z; here Z is unary for unlabeled w and binary for labeled w.

An unlabeled trace w has profile ∗ in M if for each realization t of w, t−1M is trivial.
A labeled trace wa has profile Z ∈ {∅, TrA × TrA} in M if w has a nontrivial profile Z′
and a−1 Z′ = Z; if w has profile ∗, so does the trace wa.

Note that each trace, labeled or unlabeled, has at most one profile in M. We write
pM for the partial function assigning profiles to traces. We say that M is locally game
if each trace has a profile in M. The following lemma shows that it is equivalent to
assume that all unlabeled traces have profiles in M.

LEMMA 7.3. Given the profiles of traces w, waL, and waR in M, one can effectively
compute the profile of wa in M.

PROOF. Let us assume that w has a nontrivial profile K ⊆ TrA, and waL and waR
have profiles KL and KR. Then, by Definition 7.2, wa cannot have profile ∗. Let a−1K =
{(s, t) ∈ TrA×TrA|a(s, t) ∈ K}. It is easy to see that wa has a profile Z ⊆ TrA×TrA if and
only if Z = a−1K. Thus, it remains to check that a−1K is of one of the forms allowed by
Definition 7.1.

For a set U ⊆ X×Y , we define the lower section of U by x ∈ X as Ux = {y ∈ Y |(x, y) ∈
U }, and the upper section of U by y ∈ Y as U y = {x ∈ X

∣∣ (x, y) ∈ U }.
Since waL and waR have profiles KL and KR, respectively, it follows easily that

—each lower section of a−1K is either ∅, TrA, or KR; and
—each upper section of a−1K is either ∅, TrA, or KL.

The following three sets form a partition of TrA:

XTrA = {
sL

∣∣ (a−1K)sL = TrA
}
,

XKR
= {

sL
∣∣ (a−1K)sL = KR

}
(if KR is trivial, take XKR

= ∅),

X∅ = {
sL

∣∣ (a−1K)sL = ∅}
,

and a−1K = XTrA × TrA ∪ XKR
× KR ∪ X∅ × ∅.

First, assume that KR is trivial. Then, a−1K = XTrA × TrA is a binary profile—either
∅, TrA × TrA, or ZL × TrA, depending on XTrA.

Now, assume that XR is nontrivial and fix sR ∈ KR and s′
R ∈ TrA − KR. It follows that

(a−1K)sR = XTrA ∪ XKR
,

(a−1K)s′
R = XTrA .

Hence, by the initial observation on upper sections, XTrA is TrA, KL, or ∅, and similarly
for XTrA ∪ XKR

. We distinguish three cases (see Figure 5).

(1) If XTrA = ∅, then a−1K = KR × XKR
is a binary profile.

(2) If X∅ = ∅, then a−1K = TrA × XTrA ∪ KR × TrA is a binary profile (either trivial or of
the form ZR × TrA ∪ TrA × ZL).
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Fig. 5. An illustration of the set a−1 K split into a union of products.

(3) Finally, assume that both XTrA and X∅ are nonempty. In that case, both upper
sections (a−1K)sR and (a−1K)s′

R are nontrivial and therefore are both equal to KL. It
means that a−1K = TrA × (XTrA ∪ XKR

) is a binary profile (either trivial or of the
form TrA × ZL).

This concludes the proof.

Let us now examine the connections between profiles, and states and transitions of
game automata. Let B be a total game automaton and let qI be a state of B. For a trace
w, let ρw = ρ(B, tw, qI) be the run over the tree tw associated with w.

If w is an unlabeled trace, define pB,qI (w) = L(B, q) if ρw(w) = q ∈ QB; if ρw(w) /∈ QB,
set pB,qI (w) = ∗.

If w is a labeled trace, set pB,qI (w) = ∗ if ρw(w) /∈ QB; otherwise, let ρw(w) = q and
bw = δB(q, a), where a is the last symbol of w, and set pB,qI (w) = L(B, bw), where L(B, b)
is the profile of the transition b in B, defined as

∅ for b = ⊥;
TrA × TrA for b = �;

L(B, qL) × TrA for b = (qL, L);
TrA × L(B, qR) for b = (qR, R);

L(B, qL)×TrA ∪ TrA×L(B, qR) for b = (qL, L) ∨ (qR, R);
L(B, qL) × L(B, qR) for b = (qL, L) ∧ (qR, R).

The following is an easy consequence of Fact 3.

LEMMA 7.4. For each total game automaton B and state qI ∈ QB, for each trace w,

pB,qI (w) = pL(B,qI )(w).

PROOF. Let M = L(B, qI).
First, consider the case of an unlabeled trace w. Let ρ = ρ(B, tw, qI) be the run. If

ρ(w) = ∗, then by the definition, pB,qI (w) = ∗. For every realization t of w, the position
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w is not accessible in the game Gρ(B, t, qI), so t−1(M) is either ∅ or TrA and by the
definition w has profile ∗ in M.

Now let ρ(w) = q ∈ QB. In that case, pB,qI (w) = L(B, q). Let t be any realization of w.
Observe that either:

(1) Player P has a winning σ strategy in Gρ(B, t, qI) such that w /∈ σ . Then t−1(M) is
either ∅ or TrA depending on P.

(2) Every winning strategy σ of P in Gρ(B, t, qI) contains w. In that case, t−1(M) =
L(B, q) since the following conditions are equivalent:
—a composition t[w := s] belongs to M,
—there exists a winning strategy for ∃ in the game Gρ(B, t[w := s], qI),
—∃ can win Gρ(B, t[w := s], qI) from w,
—∃ has a winning strategy in the game Gρ(B, s, q),
—s ∈ L(B, q).

Recall that there exists a tree t0 that realizes w and resolves B from qI—we plug
subtrees in the side holes of tw accordingly to the states assigned by ρ. By Fact 3, we
obtain that t−1

0 M = L(B, q), so t0 is a witness that w has profile L(B, qI).
For the case when w is a labeled trace, we use Lemma 7.3—since every unlabeled

trace has a profile, we know that every labeled trace also has a profile. It is then easy
to verify that the respective equality holds.

COROLLARY 7.5. Languages recognized by game automata are locally game.

Being locally game is necessary but not sufficient to be recognizable by a game
automaton.

PROPOSITION 7.6. There exists a regular tree language L such that L is locally game
but L cannot be recognized by a game automaton.

PROOF. Consider the alphabet A = {a, b}. Let t ∈ TrA be a tree. Let us denote Cut(a, t)
as the subtree of t containing those nodes that are accessible by only letters a from the
root of t. A total tree t ∈ TrA is called thin if Cut(a, t) has only countably many infinite
branches. Let Thin be the language of all thin trees. This language is regular by the
equivalence of the following conditions for each tree t ∈ TrA:

(1) t is not thin,
(2) there exists an embedding of the full binary tree {L, R}∗ into Cut(a, t).

Note that every trace w has a profile Zw in Thin:

—if w contains a letter b, then Zw = ∗;
—otherwise, either w is labeled and therefore Zw = Thin × Thin, or w is unlabeled and

Zw = Thin.

This means that Thin is locally game.
Assume that Thin is recognized by a game automaton B. In that case, all transitions

of B have profile Thin × Thin (see Lemma 7.4 in Section 7), so B is a deterministic
automaton. However, a standard argument shows that Thin is not recognizable by any
deterministic automaton.

In what follows, for a given locally game language M, we construct a game automaton
GM that locally computes the profiles and globally reflects the infinitary aspects of M.
We show that M is recognized by a game automaton if and only if it is recognized by GM.

We say that a DFA A = 〈A, Q, qI, δ, F〉 computes a partial function f : A∗ ⇀ X if A
recognizes dom( f ) and it comes equipped with a function τA : F → rg( f ), such that
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τA(δ(qI, w)) = f (w) for each w ∈ dom( f ), where δ(q, v) is the state of A after reading
word v from state q.

The following lemma shows that for each regular tree language M, one can effectively
construct a DFA A that computes (a finite representation of) the profile in M of given
trace w. In particular, it is decidable whether M is locally game, and the set ProfilesM
of all possible profiles of traces in M is finite and can be computed from M.

LEMMA 7.7. Let M be a regular tree language over an alphabet A. There exists a finite
automaton that reads a word w over A∪ {L, R} and outputs:

—NotTrace if w is not a trace;
—NoProfile if w is a trace but w has no profile in M; and
—a finite representation of pM(w) if w is a trace and has a profile in M.

A proof could easily be obtained by the composition method [Shelah 1975]. However,
to make the article self-contained, we give a direct reasoning. The crucial observation
is that if a tree t′ is put in a hole of a tree t, then the only thing that matters for
the acceptance of t is the type of t′. For the sake of this proof, let us fix a regular tree
language M recognized by a nondeterministic tree automaton B from an initial state
qI ∈ Q.

The type of a total tree t ∈ TrA is defined as follows:

tp(t) = {q ∈ Q : t ∈ L(B, q)} ⊆ Q.

The set of types of all total trees is finite and effective; we denote it by Tp ⊆ P(Q). For
a set T ⊆ Tp, by L(T ), we denote the language of all total trees t such that tp(t) ∈ T .

FACT 8. Let tL, tR, t′
L, t′

R ∈ TrA, let q be a state of B, and let t be a tree with two holes. If

(tp(tL), tp(tR)) = (tp(t′
L), tp(t′

R)),

then

t(tL, tR) ∈ L(B, q) ⇐⇒ t(t′
L, t′

R) ∈ L(B, q).

In particular, the type tp(t(tL, tR)) does not depend on the choice of representatives tL, tR.

By the previous fact, we can write t(τL, τR) for the type of t(tL, tR) for any tL, tR with
(tp(tL), tp(tR)) = (τL, τR).

Our aim is to construct a finite automaton A that reads a finite word w ∈ (A∪{L, R})∗,
checks that w is a trace, and computes a representation of pM(w), provided that w has
a profile.

First let us fix

Q1 = P(Tp),

Q2 = {
S ⊆ Tp2∣∣ L(S) is a profile

} ∪ {∅, Tp2},
QE = {NotTrace, NoProfile},
QA = Q1 ∪ Q2 ∪ QE,

qA
I = {T ⊆ Tp : qI ∈ T } ∈ Q1.

Our aim is to define the transition function δA in such a way that Lemma 7.8, given
later, is satisfied. First, for every T ∈ Q1, S ∈ Q2, U ∈ QA, a ∈ A, d ∈ {L, R}, and
l ∈ A∪ {L, R}, we put

—δA(T , d) = NotTrace,
—δA(S, a) = NotTrace,
—δA(U, l) = U .
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Second, assume that the current state is T ∈ Q1 and a letter a is given. We define
the successive state δA(T , a) ∈ Q2 ∪ {NoProfile}. Let us define the following set of pairs
of types

S = {
(τL, τR) : a(τL, τR) ∈ T

}
. (4)

Note that, given S, we can decide if L(S) is a profile and, if it is, we define δA(T , a) = S.
Otherwise, we put δA(T , a) = NoProfile.

Third, assume that the current state is S ∈ Q2 and a direction d is given. We define
the successive state δA(S, d) ∈ Q1. By the symmetry, assume that d = L. Consider the
following cases:

—if S = TL × Tp ∪ Tp × TR for some TL, TR ⊆ Tp, then δA(S, d) = TL;
—otherwise, δA(S, d) = π1(S)—the projection of S onto the first coordinate.

In the case d = R, we consider TR instead of TL and the projection onto the second
coordinate of S.

LEMMA 7.8. Let w be a word and U be the state of A after reading w. The following
conditions hold:

(i) if U ∈ (Q1 ∪ Q2) − {∅, Tp, Tp2}, then w is a trace and L(U ) is the profile of w in M;
(ii) if U ∈ {∅, Tp, Tp2}, then w is a trace and has profile ∗ in M;

(iii) if U = NotTrace, then w is not a trace;
(iv) if U = NoProfile, then w is a trace but has no profile in M.

PROOF. The first three items follow easily from the definition of profile.
What remains is to show that if U = NoProfile, then the trace w has no profile in M.
Assume the contrary and consider a minimal counterexample. Notice that, by defini-

tion, such minimal counterexample is a trace of the form wa for some letter a. Assume
that wa has profile Z in M. Let T be the state of A after reading w and let S be the
set computed according to Equation (4). If T ∈ {∅, Tp}, then w has profile ∗ in M by
Item (ii). Then wa also has profile ∗ in M and the state of A after reading wa belongs to
{∅, Tp2}. Assume that T /∈ {∅, Tp}. By Item (i), we obtain that w has profile L(T ) in M.

Let t0 be a realization of w such that t−1
0 (M) = L(T ). Then, by the definition of t−1,

we obtain that

(t0[w := a])−1 (M) = a−1(L(T )) = Z. (5)

It is enough to show that L(S) = Z and thus S ∈ Q2 and S �= NoProfile.
To see this, note that the following conditions are all equivalent for a pair of trees

tL, tR ∈ TrA:

(a) (tL, tR) ∈ Z;
(b) a(tL, tR) ∈ L(T );
(c) a(tp(tL), tp(tR)) ∈ T ;
(d) (tp(tL), tp(tR)) ∈ S;
(e) tL, tR ∈ L(S).

Indeed, the equivalence between conditions (a) and (b) is given by Equation (5), the
equivalence between conditions (b) and (c) follows by the definition of a(τL, τR), the
equivalence between conditions (c) and (d) is a consequence of Equation (4), and finally
the equivalence between conditions (d) and (e) is by the definition of L(S).

The infinitary aspects of M are captured by the notion of correct infinite traces. An
infinite trace is an infinite word π over A∪ {L, R} with letters from A on even positions
and directions from {L, R} on odd positions. Just like a finite trace, π can be seen as a
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tree tπ consisting of a single infinite branch that has only side holes. A tree t realizes π
if it is obtained by plugging total trees in the side holes of tπ .

Assume that M is locally game and let pM(w) be the profile of w in M. We say that t
resolves M up to π if t realizes π and for each labeled trace w that is a prefix of π , if wL
is a prefix of π, then

—t �wR /∈ ZR if pM(w) = (ZL × TrA) ∪ (TrA × ZR),
—t �wR∈ ZR if pM(w) = ZL × ZR,

and symmetrically if wR is a prefix of π . An infinite trace π is M-correct if some tree
t ∈ M resolves M up to π .

There is an automata-theoretic counterpart of the notion of M-correct infinite traces.
Consider a game automaton C, an initial state qI , and an infinite trace π . Notice that
π corresponds to a play of the game ρ = ρ(C, tπ , qI) associated with C. We say that C
accepts π from qI if either ρ(v) = ∗ for some v ∈ dom(tπ ) and ρ(w) �= ⊥ for all w ∈ dom(tπ )
or ∃ wins the play corresponding to π in ρ.

LEMMA 7.9. A game automaton C accepts π from qI if and only if π is L(C, qI)-correct.

PROOF. Let use denote L(C, qI) as M′. Let π ∈ (A × {L, R})ω be an infinite trace.
First, assume that π is M′-correct. Let t′ ∈ M′ be a tree witnessing it. Recall that t′
is obtained by putting some total trees in the holes of tπ . Since t′ ∈ M′, there exists a
winning strategy σ for ∃ in Gρ(C, t′, qD

I ). Whenever ∃ could make a choice to leave the
branch π , the respective subtree in t′ is losing for him or her. Let ρ = ρ(C, t′, qD

I ). If
there exists v ∈ dom(tπ ) such that ρ(v) = ∗, then there cannot be any w ≺ dom(tπ ) with
ρ(w) = ⊥ (otherwise, the strategy σ would not be winning). In the opposite case, the
whole branch corresponding to π must be contained in the strategy σ . In both cases, C
accepts π from qC

I .
Now assume that C accepts π from qC

I . Let t′ be some realization of π . Consider σ to
be the strategy of ∃ in Gρ(C, t′, qC

I ) defined as follows:

—in all the nodes along π , follow this branch;
—whenever ∀ selects to go off the branch π , use some winning strategy in the respective

subtree (it exists by the construction).

By the definition, σ is a winning strategy for ∃ in the game Gρ(C, t′, qC
I ). Therefore,

t′ ∈ M′, so t′ is a witness that π is an M′-correct branch.

LEMMA 7.10. For each regular tree language M, one can effectively construct a deter-
ministic parity automaton D recognizing the set of M-correct infinite traces.

PROOF. Let B be a nondeterministic automaton recognizing the given regular tree
language M from a state gI . We show how to express in monadic second-order logic
over ω the fact that a given ω-word π is an M-correct branch. By the results of Büchi
[1962] and McNaughton [1966], such a formula ϕ can be effectively translated into a
deterministic parity ω-word automaton D.

As in the proof of Lemma 7.4, we make use of compositional tools. By Tp ⊆ P(QB),
we denote the set of all types of total trees with respect to the automaton B.

Intuitively, the formula ϕ guesses the types of the total subtrees that need to be put
in the side holes of tπ to obtain a tree t that resolves M up to π . Based on these guessed
types, ϕ can verify that t ∈ M.
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Recall that an infinite trace π is defined as a word in the language (A · {L, R})ω. A
witness for the existence of t will be an infinite word over the alphabet A∪ ({L, R} × Tp)
denoted π̂ and called enrichment of π by types. We require that every even position of
π̂ belongs to A and every odd position belongs to {L, R} × Tp:

π̂ = a0 · (d0, τ0) · a1 · (d1, τ1) · . . .

If w = a0 · d0 · a1 · d1 · . . . · dn−1 · an is a labeled trace that is a prefix of π , we say that dn
is the final direction of w and τn is the final type of w.

Let the formula ψR express that for every trace w ≺ π with final direction d, final
type τ , and such that S is the state of A (see Lemma 7.4) after reading w, the following
conditions are satisfied:

—if S = SL × Tp ∪ Tp × SR, then τ /∈ Sd̄;
—otherwise, τ ∈ πi(S), where i = 1, 2 for d = L, R, respectively.

Note that every π̂ that is an enrichment of π by types induces a total tree t̂π over the
alphabet A where in the nth side hole of π we put some total tree of type τn. Note also
that π̂ |= ψR if and only if t̂π resolves M up to π . In particular, the exact subtrees we
put in to side holes of tπ are irrelevant; we only need to take care of their types.

What remains is to express in MSO logic on π̂ that t̂π ∈ M. For this, we say that
there exists an infinite word ρ coding a run of the nondeterministic automaton B on tπ .
Formally, a word coding a run ρ is defined as a word over the alphabet QB ∪ {∗} ∪ DB,
where DB is the set of all deterministic transitions appearing in the transitions of B.
The elements of QB ∪ {∗} are supposed to appear on even positions of ρ and elements of
DB are supposed to appear on odd positions of ρ:

ρ = q0 · b0 · q1 · b1 · . . .

Let the formula ψM express the following facts about the combination of words π̂ ⊗ρ
in the language

[A× (QB ∪ {∗}) · (({L, R} × Tp) × DB)]ω :

—the state q0 equals qI ;
—for every n, the transition bn is one of the deterministic transitions appearing in

δB(qn, an);
—for every n, the state assigned to d̄n by bn (if any) belongs to τn;
—for every n, the state assigned to dn by bn (if any) equals qn+1; if there is no such state,

then qn+1 = ∗;
—either from some point on bn = ∗ or the parity condition is satisfied by the sequence

of states q0, q1, . . . .

Note that π̂ ⊗ρ |= ψM if and only if ρ encodes an accepting run of B on tπ that assigns
to the nth hole of tπ a state belonging to τn. Therefore, π̂ ⊗ρ |= ψM if and only if the run
encoded by ρ can be extended to an accepting run of B on t̂π .

Let ϕ express for a given infinite trace π that there exists an enrichment of π by
types τn and an encoding of run ρ such that π̂ |= ψR and π̂ ⊗ ρ |= ψM. Note that π |= ϕ
if and only if there exists a tree t = t̂π ∈ M that realizes π and that resolves M up to
π .

We define GM as a product of A and D, with priorities inherited from D and the
types of transitions (∨, ∧, etc.) determined by the type of profile computed by A. More
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precisely, for a ∈ A, (p, q) ∈ QA × QD, τ = τA(δA(p, a)), define δ((p, q), a) as

� if τ ∈ {∗, TrA × TrA};
⊥ if τ = ∅;

β(p, q, a, L) if τ = ZL × TrA;
β(p, q, a, R) if τ = TrA × ZR;

β(p, q, a, L) ∨ β(p, q, a, R) if τ = ZL × TrA ∪ TrA × ZR;
β(p, q, a, L) ∧ β(p, q, a, R) if τ = ZL × ZR;

where β(p, q, a, d) is defined as ((δA(p, ad), δD(q, ad)), d). Let qM = (qA
I , qD

I ).

THEOREM 7.11. A regular language M is recognized by a game automaton if and only
if M is locally game and L(GM, qM) = M.

PROOF. Assume that M = L(B, qB
I ) for some game automaton B and qB

I ∈ QB.
By Corollary 7.5, M is locally game. Fix t ∈ TrA and let ρM = ρ(GM, t, qM) and
ρB = ρ(B, t, qB

I ). By Lemma 7.4, pM(w) determines the profiles of the corresponding
transitions in ρB and ρM. Hence, the games associated to these runs are isomorphic
if the priorities are ignored. Let π be an infinite trace in t. By the construction, GM
accepts π from qM if and only if π is M-correct. By Lemma 7.9, π is M-correct if
and only if B accepts π from qB

I . It follows that ρB is accepting if and only if ρM is
accepting.

As an immediate corollary, we obtain the following.

THEOREM 7.12. Given an alternating automaton A and a state qI, it is decidable
whether L(A, qI) is recognized by a game automaton. If so, some game automaton rec-
ognizing L(A, qI) can be effectively constructed from A and qI.
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definability of Büchi definable tree languages. In Proceedings of the 22nd EACLS Annual Conference
(CSL’13). 215–230.
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Paris Diderot.
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ceedings of the 27th International Colloquium on Automata, Languages and Programming (ICALP’00).
663–674.

Michael Vanden Boom. 2012. Weak Cost Automata over Infinite Trees. Ph.D. Dissertation. University of
Oxford.

William Wadge. 1983. Reducibility and Determinateness in the Baire Space. Ph.D. Dissertation. University
of California, Berkeley.

Igor Walukiewicz. 2002. Deciding low levels of tree-automata hierarchy. Electr. Notes Theor. Comput. Sci. 67
(2002), 61–75.

Received June 2015; revised March 2016; accepted May 2016

ACM Transactions on Computational Logic, Vol. 17, No. 4, Article 24, Publication date: November 2016.


