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Abstract

We study the strength of axioms needed to prove various results
related to automata on infinite words and Büchi’s theorem on the
decidability of the MSO theory of (N,≤). We prove that the following
are equivalent over the weak second-order arithmetic theory RCA0:

1. Büchi’s complementation theorem for nondeterministic automata
on infinite words,

2. the decidability of the depth-n fragment of the MSO theory of
(N,≤), for each n ≥ 5,

3. the induction scheme for Σ0
2 formulae of arithmetic.

Moreover, each of (1)-(3) is equivalent to the additive version of
Ramsey’s Theorem for pairs, often used in proofs of (1); each of (1)-
(3) implies McNaughton’s determinisation theorem for automata on
infinite words; and each of (1)-(3) implies the “bounded-width” version
of König’s Lemma, often used in proofs of McNaughton’s theorem.
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1 Introduction

Büchi’s theorem [3] states that the monadic second-order theory of (N,≤)
is decidable. This is one of the fundamental results on the decidability of
logical theories, and no less fundamental are the methods developed in order
to prove it.

Typical proofs of Büchi’s theorem make use of automata on infinite words.
Büchi’s original argument involved obtaining a complementation theorem for
nondeterministic word automata: for each such automaton A, there is an-
other automaton B which accepts a given word exactly if A does not. Thanks
to the complementation theorem, an MSO formula can be inductively trans-
lated into an equivalent nondeterministic automaton. At that point, checking
satisfiability of the formula becomes a matter of elementary combinatorics.
Another approach to decidability of MSO was presented by Shelah in [17].
Shelah’s “composition method” is automata-free, but is similar to Büchi’s
proof in one important respect: both use a restricted form of Ramsey’s The-
orem.

McNaughton [13] showed that an infinite word automaton can be de-
terminised, though at the cost of allowing automata with a more general
acceptance condition than Büchi’s. Since deterministic automata are easy
to complement, this again gives the translation of formulae to automata and
thus decidability of MSO. To the best of our knowledge all determinisation
proofs known from the literature rely on either a restricted form of Ramsey’s
Theorem or a restricted form of König’s Lemma.

It is natural to ask how the various proofs of Büchi’s theorem and related
results compare to one another. For instance, is determinisation of word
automata an “essentially stronger” result than complementation? Also, is the
use of mildly nonconstructive principles à la Ramsey or König unavoidable?

A convenient framework for studying questions of this sort is provided by
the programme of reverse mathematics [18]. The idea is to compare various
theorems as formalised in the very expressive language of an axiomatic the-
ory known as second-order arithmetic. Typical subtheories of second-order
arithmetic are axiomatised by principles asserting the existence of more or
less complicated sets of natural numbers. An important example is the rel-
atively weak theory RCA0, which guarantees only the existence of decidable
sets. RCA0 can formalise a significant amount of everyday mathematics and
prove the termination of any primitive recursive algorithm, but it is unable
to prove the existence of noncomputable objects such as the homogeneous
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sets postulated by Ramsey’s Theorem or the infinite branches postulated by
König’s Lemma. Sometimes it is possible to show that two theorems not
provable in RCA0 are provably equivalent in it, and thus neither theorem is
logically stronger than the other in the sense of requiring more abstract or
less constructive sets. It is also often the case that a set existence principle
used to derive some theorem is actually implied by the theorem over RCA0.
This serves as evidence that the principle is in fact necessary to prove the
theorem.

In this paper, we carry out a reverse-mathematical study of the results
around Büchi’s theorem. We have two main aims in mind. One is to com-
pare complementation, determinisation and decidability of MSO in terms of
logical strength. The other aim is to clarify the role of Ramsey’s Theorem
and König’s Lemma in proofs of Büchi’s theorem and the related facts about
automata. This seems interesting in light of the fact that the usual formula-
tion of Ramsey’s Theorem for pairs and the so-called Weak König’s Lemma
(the form of König’s Lemma most commonly needed in practice) are known
to be incomparable over RCA0 [7, 12].

Our findings are as follows: firstly, determinisation of infinite word au-
tomata is no stronger than complementation, at least in the sense of impli-
cation over RCA0. Secondly, decidability of MSO over (N,≤) implies both
complementation and determinisation. Finally, the use of Ramsey- or König-
like principles in proofs of Büchi’s theorem is mostly spurious in the sense
that the versions that are actually needed follow from a very limited set-
existence principle, namely mathematical induction for properties expressed
by Σ0

2 formulae. More precisely, we prove:

Theorem 1. Over RCA0, the following statements are equivalent:

1. the principle of mathematical induction for the formulae in Σ0
2 (denoted

Σ0
2-IND),

2. the Additive Ramsey Theorem (see Definition 2),

3. complementation for Büchi automata: there exists an algorithm which
for each nondeterministic Büchi automaton A outputs a Büchi automa-
ton B such that for every infinite word α, B accepts α exactly if A does
not accept α,
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4. the decidability of the depth-n fragment of the MSO theory of (N,≤)
(where n ≥ 5 is a natural number)1.

Furthermore, each of 1.–4. implies:

5. determinisation of Büchi automata: there exists an algorithm which
for each nondeterministic Büchi automaton A outputs a deterministic
Rabin automaton B such that for every infinite word α, B accepts α
exactly if A accepts α.

We also give a precise statement of the bounded-width form of König’s
Lemma often used in proofs of Item 5., and show that it is implied by each
of 1.–4. Interestingly, it is not clear if 5. implies 1.–4. over RCA0: standard
arguments used to complement deterministic automata with acceptance con-
ditions other than Büchi seem to involve Σ0

2-IND.
It follows from our results that Büchi’s theorem is unprovable in RCA0,

but only barely: it is true in computable mathematics, in the sense that
the theorem remains valid if all the set quantifiers are restricted to range
over (exactly) the decidable subsets of N. This is in stark contrast to the
behaviour of Rabin’s theorem on the decidability of MSO on the infinite
binary tree, which is known to require the existence of extremely complicated
noncomputable sets [10]. Also Additive Ramsey’s Theorem and Bounded-
width König’s Lemma are true in computable mathematics—quite unlike
more general forms of Ramsey’s Theorem for pairs and König’s Lemma [8,
11].

To prove the implication (4 → 1) of Theorem 1, we come up with a family
of MSO sentences for which truth in (N,≤) is undecidable if Σ0

2-IND fails. The
other implications are proved by formalising more or less standard arguments
from automata theory. In some cases this is routine, but especially the proof
of (1 → 5) is quite delicate: we have to check not only that Σ0

2-IND implies
Bounded-width König’s Lemma, but also that constructing the objects to
which we apply the lemma is within the means of RCA0 + Σ0

2-IND.
The structure of the paper is as follows. Sections 2 and 3 discuss the

necessary background on reverse mathematics, automata, and MSO. We
prove (1 → 2) in Section 4, (2 → 3) in Section 5, (3 → 4) in Section 6, (4 → 1)
in Section 7. Section 8 contains a proof that Σ0

2-IND implies Bounded-width
König’s Lemma, which is then applied to prove (1 → 5) in Section 9.

1The restriction to fixed-depth fragments is a technicality related to undefinability of
truth. This is explained in more detail in Section 3.
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2 Background on reverse mathematics

Reverse mathematics [18] is a framework for studying the strength of axioms
needed to prove theorems of countable mathematics, that is, the part of
mathematics concerned with objects that can be represented using no more
than countably many bits of information. This encompasses the vast majority
of the mathematics needed in computer science.

The basic idea of reverse mathematics is to analyse mathematical theo-
rems in terms of subsystems of a strong axiomatic theory known as second-
order arithmetic. The two-sorted language of second-order arithmetic, L2,
contains first-order variables x, y, z, . . . (or i, j, k, . . .), intended to range over
natural numbers, and second-order variables X, Y, Z, . . ., intended to range
over sets of natural numbers. L2 includes the usual arithmetic functions and
relations +, ·,≤, 0, 1 on the first-order sort, and the ∈ relation which has
one first-order and one second-order argument. The intended model of Z2 is
(ω,P(ω)).

Notational convention. From this point onwards, we will use the let-
ter N to denote the natural numbers as formalised in second-order arithmetic,
that is, the domain of the first-order sort. On the other hand, the symbol
ω will stand for the concrete, or standard, natural numbers. For instance,
given a theory T and a formula ϕ(x), “T proves ϕ(n) for all n∈ω” will mean
“T ⊢ ϕ(0),T ⊢ ϕ(1), . . .”, which does not have to imply T ⊢ ∀x∈N. ϕ(x).

Full second-order arithmetic, Z2, has axioms of three types: (i) axioms
stating that the first-order sort is the non-negative part of a discretely ordered
ring; (ii) comprehension axioms, or sentences of the form

∀Ȳ ∀ȳ ∃X ∀x
(

x ∈ X ⇔ ϕ(x, Ȳ , ȳ)
)

,

where ϕ is an arbitrary formula of L2 not containing the variable X ; (iii) the
induction axiom,

∀X
[

0 ∈ X ∧ ∀x (x ∈ X ⇒ x+ 1 ∈ X) ⇒ ∀x. x ∈ X
]

.

The language L2 is very expressive, as the first-order sort can be used to
encode arbitrary finite objects and the second-order sort can encode even such
objects as complete separable metric spaces, continuous functions between
them, and Borel sets within them (cf. [18, Chapters II.5, II.6, and V.3]).
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Moreover, the theory Z2 is powerful enough to prove almost all theorems
from a typical undergraduate course that are expressible in L2. In fact, the
basic observation underlying reverse mathematics [18] is that many important
theorems are equivalent to various fragments of Z2, where the equivalence is
proved in some specific weaker fragment, referred to as the base theory.

Quantifier hierarchies. Typical fragments of Z2 are defined in terms
of well-known quantifier hierarchies whose definitions we now recall. A for-
mula is Σ0

n if it has the form ∃x̄1 ∀x̄2 . . . Qx̄n. ψ, where the x̄i’s are blocks
of first-order variables, the shape of Q depends on the parity of n, and ψ is
∆0

0, i.e. contains only bounded first-order quantifiers. A formula is Π0
n if it

is the negation of a Σ0
n formula. A formula is arithmetical if it contains only

first-order quantifiers (second-order parameters are allowed).
A formula is Σ1

n if it has the form ∃X̄1 ∀X̄2 . . .QX̄n. ψ, where the X̄i’s
are blocks of first-order variables, the shape of Q depends on the parity of n,
and ψ is arithmetical. A formula is Π1

n if it is the negation of a Σ1
n formula.

In practice, we say that a formula is Σi
n/Π

i
n if it equivalent to a Σi

n/Π
i
n

formula in the axiomatic theory we are working in at a given point.

Definition of RCA0. The usual base theory in reverse mathematics is
RCA0, which guarantees only the existence of decidable sets. RCA0 is defined
by restricting the comprehension scheme to ∆0

1-comprehension, which takes
the form:

∀Ȳ ∀ȳ
[

∀x (ϕ(x, Ȳ , ȳ) ⇔ ¬ψ(x, Ȳ , ȳ)) ⇒ ∃X ∀x (x ∈ X ⇔ ϕ(x, Ȳ , ȳ))
]

,

where both ϕ and ψ are Σ0
1. For technical reasons, it is necessary to strengthen

the induction axiom to Σ0
1-IND, that is, the scheme Σ0

1-IND consisting of the
sentences

∀Ȳ ∀ȳ
[

ϕ(0, Ȳ , ȳ) ∧ ∀x
(

ϕ(x, Ȳ , ȳ) ⇒ ϕ(x+ 1, Ȳ , ȳ)
)

⇒ ∀x. ϕ(x, Ȳ , ȳ)
]

for ϕ in Σ0
1. Σ0

1-IND makes it possible to define sequences by primitive re-
cursion (cf. [18, Theorem II.3.4]): given some x0 and a function f : N → N,
RCA0 proves that there is a unique sequence (xi)i∈N such that xi+1 = f(xi)
for each i.

RCA0 has a unique minimal model in the sense of embeddability. This
minimal model is (ω,Dec), where Dec is the family of decidable subsets of ω.
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The Σ0
n-IND scheme. In this paper we study an extension of RCA0

obtained by strengthening the induction scheme to Σ0
2 formulae. In general,

for n ∈ ω, the axiom scheme Σ0
n-IND is defined just like Σ0

1-IND, but with
the induction formula ϕ in Σ0

n rather than Σ0
1. For each n, RCA0 + Σ0

n-IND
is equivalent to RCA0 + Π0

n-IND, where the latter is defined in the natural
way, as well as to the least number principle for Σ0

n or Π0
n formulae (cf. [18,

Chapter II.3]).
Two important principles provable from Σ0

n-IND are Σ0
n-collection:

∀Z̄ ∀z̄
[

∀x≤ t ∃y. ϕ(x, y, Z̄, z̄)
]

⇒ ∃w ∀x≤ t ∃y≤w. ϕ(x, y, Z̄, z̄),

for ϕ in Σ0
n, and bounded Σ0

n-comprehension:

∀Ȳ ∀ȳ ∀w ∃X ∀x (x ∈ X ⇔ x ≤ w ∧ ϕ(x, Ȳ , ȳ)),

for ϕ in Σ0
n.

For each n, the theory RCA0 + Σ0
n+1-IND is strictly stronger than RCA0 +

Σ0
n-IND (cf. e.g. [5, Theorem IV.1.29]). However, note that the minimal

model (ω,Dec) of RCA0 satisfies RCA0+Σ0
n-IND for all n, because an induction

axiom is always true in a model with first-order universe ω.

Additive Ramsey’s Theorem; Bounded-width König’s Lemma.

Two prominent extensions of RCA0 are related to weak forms of important
nonconstructive set existence principles: König’s Lemma and Ramsey’s The-
orem.

Weak König’s Lemma is the statement: “for every k, every infinite tree
contained in {0, 1, . . . , k}∗ has an infinite branch”. The theory obtained by
adding this statement to RCA0 is known as WKL0. This is the minimal theory
supporting all sorts of “compactness arguments” in combinatorics, topology,
analysis, and elsewhere (cf. [18, Chapter IV]).

The theory RT
2
2 extends RCA0 by an axiom expressing Ramsey’s Theorem

for pairs and two colours2: for every 2-colouring of [N]2 there exists an infinite
homogeneous set. RT

2
<∞ is defined similarly but allowing k-colourings for

each k∈N.
Both RT

2
2 and RT

2
<∞ are known to be incomparable with WKL0 in the

sense of implication over RCA0 [7, 12]. WKL0, RT
2
2, and RT

2
∞ are all false in

the minimal model (ω,Dec) of RCA0 [8, 11]. Much more on these theories
can be found in [6].

2By [X ]2 we denote the set of unordered pairs of elements of X .
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In this paper, we study specific restricted versions of WKL0 and RT
2
<∞

which play a role in proofs of Büchi’s theorem. Recall that a semigroup is a
set S with an associative operation ∗ : S × S → S.

Definition 2 (Additive Ramsey Theorem). The Additive Ramsey Theorem
is the following statement: for every finite semigroup (S, ∗) and every colour-
ing C : [N]2 → S such that for every i < j < k we have C(i, j) ∗ C(j, k) =
C(i, k), there exists an infinite homogeneous set I ⊆ N. That is, there is a
fixed color a such that for every (i, j) ∈ [I]2, C(i, j) = a.

Definition 3 (Bounded-width König’s Lemma). Bounded-width König’s
Lemma is the following statement: for every finite set Q and every graph
G whose vertices belong to Q × N and whose edges are all of the form
((q, i), (q′, i+ 1)) for some q, q′∈Q, if there are arbitrarily long finite paths in
G starting in some vertex (q, 0), then there is an infinite path in G starting
in (q, 0).

Notice that Bounded-width König’s Lemma applied to a graph G is es-
sentially the same as Weak König’s Lemma applied to the tree obtained by
the so-called unraveling of G (in particular, Bounded-width König’s Lemma
is provable in WKL0). However, the graph formulation is more natural to
express.

3 Background on MSO and Büchi automata

Büchi automata and MSO logic are equivalent formalisms for specifying prop-
erties of infinite words. In this section we formally introduce these concepts.
If not stated otherwise, the formalisation presented here is carried out in
RCA0.

Infinite words By Σ we denote a finite nonempty set called an alphabet.
A finite word over Σ is a function w : {0, . . . , k − 1} → Σ; the length of w is
k. The set of all finite words over Σ is denoted Σ∗. An infinite word over Σ
is a function α : N → Σ. We write α ∈ ΣN for “α is an infinite word over Σ”.

Every infinite word can be treated as a relational structure with the uni-
verse N and predicates: the binary order predicate ≤ and a unary predicate
a for every a ∈ Σ. The semantics of these predicates over a given infinite
word α is natural, in particular a(x) holds if α(x) = a.
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When working with automata and logic it is natural to consider lan-
guages—sets of infinite words satisfying certain properties. However, from
the point of view of second-order arithmetic a language is a “third-order ob-
ject”. Therefore, in this paper we avoid talking directly about languages.
Instead, when we want to express some properties of languages, we explicitly
quantify over infinite words with a given property.

Automata over infinite words A (nondeterministic) Büchi automa-
ton is a tuple A = 〈Q,Σ, qI, δ, F 〉 where: Q is a finite set of states, Σ is an
alphabet, qI ∈ Q is an initial state, δ ⊆ Q× Σ ×Q is the transition relation,
and F ⊆ Q is the set of accepting states. Given an infinite word α ∈ ΣN, we
say that ρ ∈ QN is a run of A over α if ρ(0) = qI and for every n ∈ N we
have

(

ρ(n), α(n), ρ(n+1)
)

∈ δ. A run ρ is accepting if ρ(n) ∈ F for infinitely
many n ∈ N. An automaton A accepts α if there exists an accepting run of
A over α. An automaton is deterministic if for every q ∈ Q and a ∈ Σ there
is at most one transition of the form (q, a, q′) ∈ δ. When the automaton is
not clear from the context, we put it in the superscript, i.e. QA is the set of
states of A.

The possible transitions of a Büchi automaton over a particular letter
a ∈ Σ can be encoded as a transition matrix Ma : Q× Q → {0, 1, ⋆}, where
Ma(q, q

′) = 0 if (q, a, q′) /∈ δ, otherwise Ma(q, q
′) = ⋆ if q ∈ F , and otherwise

Ma(q, q
′) = 1. Let [Q] be the set of all such functions M : Q×Q→ {0, 1, ⋆}.

Since deterministic Büchi automata are strictly weaker than general Büchi
automata [15], one introduces the more flexible Rabin acceptance condition
in order to determinise Büchi automata. A Rabin automaton is a tuple A =
〈Q,Σ, qI, δ, (Ei, Fi)

k
i=1〉 as in the case of Büchi automata, where Ei, Fi ⊆ Q

for i = 1, . . . , k. A run ρ ∈ QN of A is accepting if and only if for some
i ∈ {1, . . . , k} each state in Ei appears only finitely many times in ρ and
some state in Fi appears infinitely many times in ρ.

In general (i.e. in Z2) Rabin automata can easily be complemented into
so-called Streett automata, and both classes can be transformed into nondeter-
ministic Büchi automata. However, the transformations into Büchi automata
require more than RCA0. For Streett automata, Σ0

2-IND seems necessary. For
Rabin, we need the Büchi automaton to guess that no state from a given set
of states will reappear in the run under consideration. To prove that such
a construction is correct one needs Σ0

2-collection—within RCA0 the fact that
in a given run ρ each state q ∈ E appears only finitely many times does not

9



imply a global bound after which no state from E reappears. That is the
essential reason why it is not clear whether Item 5. of Theorem 1 implies the
other items in RCA0.

Monadic Second-Order logic Monadic second-order logic (MSO) is
an extension of first-order logic. MSO logic allows: boolean connectives ¬,
∨, ∧; the first-order quantifiers ∃x and ∀x; and the monadic second-order
quantifiers ∃X and ∀X , where the variable X ranges over subsets of the
universe. Apart from predicates from the signature of a given structure, the
logic admits the binary predicate x ∈ X with the natural semantics.

Definition of truth for MSO over N In order to state our theorems
involving decidability of the MSO theory of (N,≤), we need to formulate
the semantics of monadic second-order logic within RCA0. This involves a
coding of formulae φ 7→ ⌈φ⌉; we identify a formula with its code. However,
in second-order arithmetic there is no canonical definition of truth in an
infinite structure which would work for all of MSO. Moreover, by Tarski’s
theorem on the undefinability of truth, for some infinite structures there is
no such definition at all. In particular, it is not at all clear how to state the
decidability of MSO(N,≤) as a single sentence.

On the other hand, already RCA0 is able to express a truth definition for
the depth-n fragment of MSO, for each n ∈ ω. Here the depth of a formula
is calculated as the largest number of alternating blocks of ∧/∀’s and ∨/∃’s
appearing on a branch in the syntactic tree of the formula (assume that all
negations are pushed inside using the De Morgan laws). Essentially, the
truth definition needs one universal set quantifier for a block of ∧/∀’s and
one existential set quantifier for a block of ∨/∃’s3.

So, what is possible is to provide formulae ϕn stating that the depth-n
fragment of MSO(N,≤) is decidable. We show in Section 6 that every ϕn

can be proved in RCA0 assuming a complementation procedure for Büchi
automata, and in Section 7 that ϕ5 implies Σ0

2-IND. As a corollary, we can
observe that RCA0 ⊢ ϕ5 ⇒ ϕn for every n ∈ ω.

3After slight modifications, the truth definition would still work if we allowed depth-n
formulas to contain arbitrarily many alternations ∧’s and ∨’s inside the scope of the last
quantifier counted towards the depth.
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The Büchi decidability theorem In [3] Büchi proved decidability of
the theory MSO(N,≤). The following theorem captures as much of Büchi’s
result as can be naturally expressed in relatively weak theories of second-
order arithmetic.

Theorem 4 (Büchi formalised). There exists an effective procedure P such
that for every fixed depth n∈ω the following is provable in RCA0 + Σ0

2-IND.
For every statement φ of MSO over an alphabet Σ such that the depth of φ is
at most n, the procedure P (φ) produces a nondeterministic Büchi automaton
A over Σ such that for every infinite word α ∈ ΣN, this word satisfies φ if
and only if A accepts α. Moreover, it is decidable if a given nondeterministic
Büchi automaton accepts any infinite word.

We discuss some issues related to formalising the inductive proof of Büchi’s
theorem in Section 6. The crucial step concerns complementation of au-
tomata, which is used to treat negations of subformulae in φ (or subformulae
beginning with ∀, assuming the negations have been pushed inside).

4 Σ0
2-IND implies Additive Ramsey

The aim of this section is to prove the following theorem.

Theorem 5. Over RCA0, Σ0
2-IND implies Additive Ramsey’s Theorem (see

Definition 2).

The proof consists of two steps. First, we prove another weakening of
Ramsey’s Theorem.

Definition 6. Ordered Ramsey’s Theorem for pairs states that if (P,�) is
a finite partial order and C : [N]2 → P is a colouring such that for every
i<j<k we have C(i, j) � C(i, k), then there exists an infinite homogeneous
set I ⊆ N, i.e. C(i, j) = C(i′, j′) for all (i, j), (i′, j′) ∈ [I]2.

Note that this statement follows immediately from the so-called Stable
Ramsey’s Theorem SRT

2
<∞ (cf. [6, Sections 6.4 and 6.8]), where the require-

ment on C is only that C(i, ·) should stabilise for each i.

Lemma 7. Over RCA0, Σ0
2-IND proves Ordered Ramsey’s Theorem.
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Proof. We call a colour p ∈ P recurring if ∀i ∃k>j > i. C(j, k) = p. Notice
that for each non-recurring colour p there exists ip such that there is no
occurrence of p to the right of ip (i.e. no k > j > ip such that C(j, k) = p).
By an application of Σ0

2-collection we obtain some i0 such that for every
non-recurring colour p and every k > j > i0 we have C(j, k) 6= p. In
particular, there is a recurring colour. Moreover, being a recurring colour is
a Π0

2 property, so by Σ0
2-IND we can find a �-minimal recurring colour p0.

We now define a sequence (ui, vi)i∈N by primitive recursion on i. Let
(u0, v0) be some pair such that i0 < u0 < v0 and c(u0, v0) = p0. Now assume
that u0 < v0 ≤ u1 < v1 . . . ≤ ui < vi have been defined, {u0, . . . , ui} is
homogeneous with colour p0, and C(ui, vi) = p0. Let (ui+1, vi+1) be the
smallest pair such vi ≤ ui+1 < vi+1 and C(ui+1, vi+1) = p0. Such a pair exists
because p0 is recurring. We know that C(ui, ui+1) = p0, since on the one
hand C(ui, ui+1) � C(ui, vi) = p0, and on the other hand ui > i0 and thus
C(ui, ui+1) is a recurring colour, so it cannot be �-strictly smaller than p0.
Similarly, for j < i we know that C(uj, ui+1) = p0 because C(uj, ui+1) � p0
and uj > i0. Therefore, the set {ui | i ∈ N} is homogeneous for C.

Before proceeding to prove the additive version of the theorem, we recall
a few basic facts about finite semigroups we shall use in our proof. The facts
are proved by elementary combinatorial arguments which readily formalise
in RCA0. The proofs can be found for instance in [15].

Definition 8. Green preorders over a semigroup S are defined as follows

• s ≤R t if and only if s = t or s ∈ t ∗ S = {t ∗ a | a ∈ S},

• s ≤L t if and only if s = t or s ∈ S ∗ t = {a ∗ t | a ∈ S},

• s ≤H t if and only if s ≤R t, and s ≤L t.

The associated equivalence relations are written R, L, H; their equivalence
classes are called respectively R, L, and H-classes.

Lemma 9. For every finite semigroup S and s, t ∈ S, s ≤L t and s R t
implies s H t.

Lemma 10 ([15, Proposition 2.4]). If (S, ∗) is a finite semigroup, H ⊆ S an
H-class, and some a, b ∈ H satisfy a ∗ b ∈ H then for some e ∈ H we know
that (H, ∗, e) is a group.
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Now we can prove our main statement.

Proof of Theorem 5. Let a colouring C take values in the finite semigroup
(S, ∗) and satisfy the additivity condition of Definition 2. For every position
i and every k ≥ j > i, let us observe that C(i, k) ≤R C(i, j). Let r be the
function mapping every element of S to its R-class. The function r ◦ C is
an ordered colouring; let us use Lemma 7 to obtain a homogeneous sequence
(ui)i∈N for r ◦ C.

Since S is finite, we can use Σ0
2-collection to prove that there is some

colour a such that C(u0, ui) = a for infinitely many i. This lets us take a
subsequence (vi)i≥0 of (ui)i≥0 such that C(v0, vi) = a for each i.

We now know that a = a ∗ C(vi, vj) for every 0 < i < j. In particular,
a ≤L C(vi, vj) by the definition of ≤L. Since a and C(vi, vj) are R-equivalent,
Lemma 9 implies that C(vi, vj) H a. Let H be the H-class of a. Since
a ∗ C(vi, vj) = a ∈ H we know by Lemma 10 that (H, ∗, e) is a group for
some e ∈ H . Using this group structure and the equation a = a ∗ C(vi, vj)
we obtain that C(vi, vj) = e. Hence, {vi+1 | i ∈ N} is a homogeneous set for
C with the colour e.

We will now sketch the opposite implication, as stated by the following
lemma. It follows from the other implications of Theorem 1, thus the reason-
ing presented here is not needed to obtain the theorem. However, we decided
to include it, as the argument is very straightforward and avoids the use of
automata and logic.

Lemma 11. Over RCA0, Additive Ramsey’s Theorem implies Σ0
2-IND.

Proof sketch. By the construction from Section 7, a failure of Σ0
2-IND gives

us a ∈ N and an infinite word α ∈ {0, . . . , a + 1}N such that there is no
highest letter i that appears infinitely many times in α. Fix such a word α
and consider the colouring with values in {0, . . . , a + 1} defined for i < j as
follows:

C(i, j) = max{α(k) | i ≤ k < j}.

Clearly, C is an additive colouring of [N]2 by elements of the semigroup
({0, . . . , a+1},max). Apply Additive Ramsey’s Theorem to obtain an infinite
homogeneous set I ⊆ N for C. Assume that i ∈ {0, . . . , a + 1} is the colour
of I. By the definition of C, i is the highest colour that appears infinitely
many times in α.

Additionally, in Appendix B we provide a direct proof that Ordered Ram-
sey’s Theorem implies Σ0

2-IND.
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5 Additive Ramsey implies complementation

In this section, we sketch a proof of the following theorem.

Theorem 12. Over RCA0, the Additive Ramsey Theorem (see Definition 2)
implies the following complementation result: there exists an algorithm which,
given a Büchi automaton A over an alphabet Σ, outputs a Büchi automaton
B over the same alphabet such that for every α ∈ ΣN we have that A accepts
α if and only if B does not accept α.

The proof of this theorem follows the standard construction of the au-
tomaton B [3]: the states of B are based on transition matrices of A (see Sec-
tion 3). The automaton B guesses a Ramseyan decomposition of the given
infinite word α with respect to a certain homomorphism into [Q]; and then
verifies that the decomposition witnesses that there cannot be any accepting
run of A over α. A complete proof of the theorem is given in Appendix A.

6 Complementation implies decidability

Theorem 13. For any n ∈ ω, the following is provable in RCA0: if there
exists an algorithm for complementing Büchi automata, then there exists an
algorithm which, given an MSO formula φ of depth at most n, outputs an
automaton Aφ such that for every word ν, ν satisfies the formula φ if and only
if ν is accepted by Aφ. As a consequence, the depth-n fragment of MSO(N,≤)
is decidable.

The proof of this theorem is given in Appendix C. Te argument is along
the lines of the standard inductive construction of an automaton Aφ that
simulates the behaviour of φ. Let us recall that in RCA0 we only have truth
definitions for fixed-depth MSO formulae. Additionally, each such truth def-
inition is not a Σ0

1 formula (it is not even arithmetical, as it quantifies over
infinite words). Therefore, in RCA0 we cannot perform any induction involv-
ing the truth definition. This fact has two consequences:

1. in the above theorem, the implication from complementation to decid-
ability is stated for all n ∈ ω separately and its proof is obtained via
an external induction over n,

14



2. our construction of Aφ needs to work in a fixed number of steps (de-
pending on n), no iterative procedure can be involved. In particular,
we need to simulate whole blocks of quantifiers or connectives at once.

To complete the proof of the theorem, we verify in RCA0 that the empti-
ness problem is decidable for Büchi automata, as expressed by the following
lemma.

Lemma 14. Provably in RCA0, it is decidable if, given a nondeterministic
Büchi automaton A, there exists an infinite word accepted by A.

7 Decidability implies Σ0
2-IND

In this section we prove the following theorem.

Theorem 15. Over RCA0, the decidability of the depth-5 fragment of the
theory MSO(N,≤) implies Σ0

2-IND.

The rest of this section is devoted to a proof of this theorem. Consider
a Π0

2 formula (with parameters we keep implicit) φ(i) ≡ ∀x ∃y. δ(i, x, y) and
suppose it satisfies the premises of induction, i.e. φ(0) holds and ∀i (φ(i) ⇒
φ(i + 1)). Take a ∈ N. We want to show that φ(a) holds. For that we will
use decidability of the depth-5 fragment of MSO(N,≤) to prove using Σ0

1-IND
that a certain formula ψa+1 is true in (N,≤). We will construct a specific
infinite word that encodes the semantics of φ(a) and use the fact that the
word satisfies ψa+1 to deduce that φ(a) holds.

For k ∈ N let ψk be the MSO formula stating “for every infinite word over
the alphabet {0, . . . , k} there is a maximal letter i ∈ {0, . . . , k} occurring
infinitely often”. More formally, ψk is defined as follows.

ψk ≡ ∀X0 ∀X1 . . .∀Xk

[

∀x

(

∨

i≤k

x ∈ Xi ∧
∧

i<j≤k

¬
(

x ∈ Xi ∧ x ∈ Xj

)

)

=⇒

(1)

∨

i≤k

(

(∀x ∃y≥x. y ∈ Xi) ∧
∧

i<j≤k

(∃x ∀y≥x. y /∈ Xj)

)]

.

The formula ψk is an MSO formula of depth 5. By the assumption on de-
cidability, the property that ψk belongs to the theory MSO(N,≤) can be
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expressed by a Σ0
1 formula of second-order arithmetic, Ψ(k) (and, in fact,

by a Π0
1 formula as well). Clearly, in RCA0 we can prove that ψ0 belongs

to MSO(N,≤) and for every i ∈ N, if ψi belongs to MSO(N,≤), then ψi+1

belongs to MSO(N,≤). Therefore, by the assumption on Ψ, we know that
Ψ(0) holds and ∀i (Ψ(i) ⇒ Ψ(i+ 1)). Then, Σ0

1-IND guarantees that Ψ(a+ 1)
is true and hence ψa+1 belongs to MSO(N,≤).

Now our aim is to construct a specific infinite word α over the alphabet
{0, . . . , a+ 1} in such a way to guarantee that Claim 16 below holds.

For i ≤ a and w ∈ N let C(i, w) = max
{

v ≤ w | ∀x<v ∃y<w. δ(i, x, y)
}

.
Clearly the function C(i, w) is computable. Assume a computable enu-

meration4 for pairs 〈·, ·〉 : N2 → N that is monotone with respect to the
coordinatewise order on N

2. Define an infinite word

α(n) =











i + 1 if n = 〈i, w〉, i ≤ a,

and C(i, w) >
∣

∣{w′ < w | α(〈i, w′〉) = i + 1}
∣

∣,

0 otherwise.

Again, α(n) is computable so α can be defined by ∆0
1-comprehension. We

will prove in RCA0 the following claim.

Claim 16. For every i ≤ a and v ∈ N the letter i+1 appears at least v times
in α if and only if ∀x<v ∃y. δ(i, x, y). In particular, i+ 1 appears infinitely
many times in α if and only if φ(i) holds.

Proof. First assume that ∀x<v ∃y. δ(i, x, y) holds for some i ≤ a and v ∈ N.
By Σ0

1-collection, there exists some w such that ∀x < v ∃y < w. δ(i, x, y).
Let k =

∣

∣{w′ < w | α(〈i, w′〉) = i + 1}
∣

∣. If k ≥ v then we are done.
Assume the contrary and notice that C(i, w) ≥ v. This means that for
w′ = w,w+ 1, . . . , w+ v− k− 1 we have α(〈i, w′〉) = i+ 1 (we use Σ0

1-IND to
prove this). In total this gives us v positions of α that are labelled by i+ 1.

Now assume that there are at least v positions of α labelled by i+ 1. Let
w0 be the minimal position such that

∣

∣{w′ ≤ w0 | α(〈i, w′〉) = i + 1}
∣

∣ = v.
In particular we know that α(〈i, w0〉) = i + 1 and

∣

∣{w′ < w0 | α(〈i, w′〉) =
i + 1}

∣

∣ = v − 1. This means that C(i, w0) ≥ v. By the definition of C(i, w),
it follows that ∀x<v ∃y. δ(i, x, y) holds.

Now we conclude the proof of Theorem 15. Since ψa+1 holds, we know that
its body holds for the sets Xi defined as Xi = {j | α(j) = i}, i = 0, . . . , a+ 1

4(n, k) 7→ (n+k+1)(n+k)
2 + k is one such map simple enough.
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(∆0
1-comprehension is used here). Clearly these sets form a partition of N and

thus the formula ψa+1 gives us an index i ≤ a+ 1 such that i is the maximal
letter that appears infinitely many times in α. Since φ(0) holds we know that
i > 0. If i = a + 1 then by Claim 16 we obtain our thesis that φ(a) holds.
Assume to the contrary that i < a+ 1. By Claim 16 it means that φ(i) and
¬φ(i + 1) hold. This contradicts the assumption that ∀i

(

φ(i) ⇒ φ(i + 1)
)

.
Thus, a proof of φ(a) is concluded.

Remark 17. The work of Sections 4–7 shows that the effectivity condition in
Item 3. of Theorem 1 is not necessary to derive the other items in RCA0. The
bare statement that for every Büchi automaton there exists a complementing
automaton already suffices.

The argument is as follows: assuming that each Büchi automaton can be
complemented, the fixed-depth expressible property that a given word α does
not satisfy the body of a formula ψk as in (1) can be recognised by a Büchi
automaton. By the proof of Lemma 14, if such an automaton accepts some
infinite word, then it accepts an ultimately periodic infinite word. But this
clearly shows that ψk is true for any k, thus proving Σ0

2-IND and hence also
the other items of Theorem 1.

8 Σ0
2-IND implies Bounded-width König

RCA0 + Σ0
2-IND is too weak to prove Weak König’s Lemma (in fact, Σ0

2-IND
and WKL0 are incomparable over RCA0). However, it turns out that Σ0

2-IND
proves a restricted version of the lemma, where the “width” of the trees under
consideration is globally bounded, in the sense that the subtree rooted in a
vertex 〈i0, . . . , iℓ〉 ∈ {0, . . . , k}∗ is completely determined by iℓ.

Theorem 18. Over RCA0, Σ0
2-IND implies Bounded-width König’s Lemma

(see Definition 3).

Let us fix a graph G with vertices contained in Q× N for some finite set
Q. The usual way of proving König’s Lemma starts by defining the subset
G′ of those vertices v of G for which the subgraph under v is infinite. Having
defined G′, we inductively pick any infinite path in G′ and—assuming G
does in fact contain arbitrarily long finite paths starting in Q × {0}—we
are guaranteed not to get stuck. The issue is whether we can obtain G′ by
∆0

1-comprehension.
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A Π0
1 definition of G′ is provided by a standard trick used in the context

of WKL0. Notice that for every fixed n there can be at most |Q| vertices of
G of the form (q, n). Thus a vertex (q, n) is in G′ if and only if it has the Π0

1

property that for every n′ ≥ n there exists a vertex (q′, n′) reachable from
(q, n) by a path in G.

What remains is to give a Σ0
1-definition of G′.

Consider two numbers n < m and a vertex v = (q, n) of G. We will say
that v dies before m if there is no path in G from v that reaches a vertex of
the form (q′, m). For i = 0, 1, . . . , |Q| we will say that i vertices die infinitely
many times if

∀k ∃n>k ∃m>n. there are at least i vertices of the form (q, n)

that die before m.

Notice that the property of i that i vertices die infinitely many times is
Π0

2. Clearly if i < i′ and i′ vertices die infinitely many times then i vertices
die infinitely many times. By Σ0

2-IND we can fix i0 as the maximal i such
that i vertices die infinitely many times. Notice that for each i > i0 there
exists k(i) such that for every m > n > k(i) there are fewer than i vertices
of the form (q, n) that die before m. By Σ0

2-collection, we can find a global
bound k0 such that k0 > k(i) for all i > i0. This means that for m > n > k0
we have at most i0 vertices of the form (q, n) that die before m. Additionally,
for infinitely many n there is m > n such that exactly i0 vertices of the form
(q, n) die before m. The following claim shows how one can find a witness
that the subgraph under a vertex v is infinite.

Claim 19. Assume that we are given m > n > k0 and a vertex v = (q, n)
such that exactly i0 vertices of the form (q′, n) with q′ 6= q die before m. Then
the subgraph under v is infinite.

Proof. Assume to the contrary that for some m′ > m there is no vertex of
the form (q′, m′) that can be reached from (q, n) by a path in G. It means
that (q, n) dies before m′. Therefore, there are at least i0 + 1 vertices of the
form (q′, n) that die before m′. This contradicts the way k0 was chosen.

Clearly, if for some m > n and a vertex v = (q, n) we know that v dies
before m then the subgraph of G under v is finite.

We shall now use Claim 19 to give a Σ0
1-definition of G′. We will say

that v = (q, n0) belongs to G′ if there exist m > n > max(k0, n0) and i0
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vertices of the form (q′, n) such that all of them die before m and some other
vertex of the form (q′′, n) is reachable in G by a path from v. Clearly this is
a Σ0

1-definition. It remains to prove that it defines G′. First assume that v
satisfies the above property and fix m, n, and (q′′, n) as in the definition. By
Claim 19 we know that the subgraph under (q′′, n) is infinite. Since (q′′, n) is
reachable from v in G, this implies that also the subgraph under v is infinite
and thus v ∈ G′. Now assume that v = (q, n0) ∈ G′. By the choice of i0
we know that there exist m > n > max(n0, k0) and exactly i0 vertices of the
form (q′, n) that die before m. Since the subgraph under v is infinite, we
know that some vertex of the form (p,m) is reachable from v in G. Notice
that any path connecting v and (p,m) needs to contain a vertex of the form
(q′′, n). Clearly (q′′, n) cannot be any of the i0 vertices that die before m.
Thus v satisfies the above condition.

Fact 20. If a vertex (q, 0) of G satisfies the hypothesis of Bounded-width
König’s Lemma, then (q, 0) ∈ G′. Moreover, if v = (q, n) ∈ G′ then there
exists (q′, n+ 1) ∈ G′ such that there is an edge between (q, n) and (q′, n+ 1).

Now, given (q, 0) ∈ G′, we can construct an infinite path in G′ using
∆0

1-comprehension. Fix any linear order on Q. Let π(0) be (q, 0). If π(n) is
defined let π(n+1) = (q′, n+1) for the minimal q′∈Q satisfying: (q′, n+1) ∈
G′ and there is an edge in G between π(n) and (q′, n + 1). Fact 20 implies
that π is well-defined. By the construction π is an infinite path in G′ and
thus in G.

9 Σ0
2-IND implies determinisation

In this section we will show the following theorem.

Theorem 21. Over RCA0, Σ0
2-IND implies the existence of an algorithm

which, given a nondeterministic Büchi automaton B over an alphabet Σ, out-
puts an equivalent deterministic Rabin automaton A—the alphabet of A is Σ
and for every infinite word α over Σ, A accepts α if and only if B accepts α.

The proof scheme presented here is based on a determinisation procedure
proposed in [14] (see [1, 9] for similar arguments and a comparison of this
determinisation method to the method of Safra). Our exposition follows
lecture notes of M. Bojańczyk [2]. Although the general structure of the
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argument is standard, we need to take additional care to ensure that the
reasoning can be conducted in RCA0 using only Σ0

2-IND.
The proof of Theorem 21 will be split into separate steps that will allow

us to successively simplify the objects under consideration. To merge these
steps we will use the notion of a deterministic transducer that transforms
one infinite word into another.

Definition 22. A transducer is a deterministic finite automaton, without
accepting states, where each transition is additionally labelled by a letter from
some output alphabet. More formally, a transducer with an input alphabet
Σ and an output alphabet Γ is a tuple T = 〈Q, qI, δ〉 where qI ∈ Q is an initial
state and δ : Q× Σ → Γ ×Q.

A transducer naturally defines a function T : ΣN → ΓN. Formally, such
a function is a third-order object and thus not available in second-order
arithmetic. However, given a word α, we can use ∆0

1-comprehension to obtain
the unique infinite word produced by T on input α. Whenever we write T (α),
we have this word in mind.

It is easy to see that a transducer can be used to reduce the question of
acceptance from one deterministic automaton to another, as stated by the
following lemma.

Lemma 23. For every deterministic Rabin automaton A with the input al-
phabet Γ, and every transducer T : ΣN → ΓN, there exists a deterministic
Rabin automaton A◦ T which accepts an infinite word α ∈ ΣN if and only if
A accepts T (α).

One of the steps in the proof of Theorem 21, expressed by the lemma
below, allows us to work with a fixed alphabet that depends only on the set
of states of the given automaton B. For that, we introduce a notion of a
Q-dag. A Q-dag is an infinite word over the alphabet of transition matrices
[Q] of B that represents all the possible runs of B over a given infinite word,
see Figure 1 (a formal definition will be given in the full paper).

Lemma 24. There exists a transducer T1 that inputs an infinite word α ∈ ΣN

and outputs a Q-dag T1(α) such that B accepts α if and only if T1(α) contains
an accepting path.

This lemma is trivial—the transducer T1, after reading a finite word w ∈
Σ∗, stores in its state the set of states of B reachable from qBI over w. The

20



· · ·

· · ·

· · ·

· · ·

Figure 1: A Q-dag and a single letter from the alphabet [Q]. The accepting
edges are represented by solid lines, and non-accepting edges are dashed lines.

· · ·

· · ·

· · ·

· · ·

Figure 2: A tree-shaped Q-dag.

initial state of T1 is {qI}. Given a state R ⊆ Q of T1 and a letter a, the
transducer moves to the state

R′ = {q′ | (q, a, q′) ∈ δB}

and outputs a letter M ∈ [Q] such that M(q, q′) = Ma(q, q
′) if q ∈ R and

M(q, q′) = 0 if q /∈ R (see Section 3 for the definition of Ma and [Q]). Clearly
there is a computable bijection between the accepting runs of B over α and
accepting paths in the Q-dag T1(α).

The next lemma shows that one can use a transducer to reduce general
Q-dags to so-called tree-shaped Q-dags—the graph structure of such a word
has the shape of a tree, see Figure 2.

Lemma 25. There exists a transducer T2 that inputs a Q-dag α
′ and outputs

a tree-shaped Q-dag T2(α
′) such that α′ contains an accepting path if and only

if T2(α
′) contains an accepting path.

To prove this lemma one uses a lexicographic order on paths in a given
Q-dag. A crucial ingredient here is Bounded-width König’s Lemma from Sec-
tion 8. Additionally, we need to make sure that the graph to which Bounded-
width König’s Lemma is applied can be obtained using ∆0

1-comprehension.
For this purpose we use Σ0

2-IND once again.
The proof of Theorem 21 is concluded by the following lemma and an

application of Lemma 32.
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Lemma 26. There exists a deterministic Rabin automaton A over the al-
phabet [Q] that for every tree-shaped Q-dag α′′ ∈ [Q]N accepts it if and only
if α′′ contains an accepting path.

10 Conclusions and further work

In this work we have characterised the logical strength of Büchi’s decidability
theorem and related results over the theory RCA0. We proved over RCA0

that complementation for Büchi automata is equivalent to Σ0
2-IND, as is the

decidability of MSO(N,≤) (to the extent that this can be expressed).
Without Σ0

2-IND, many aspects of automata on infinite words seem to
make little sense (note, for instance, that the very concept of “a state occurs
only finitely often” is Σ0

2). The picture suggested by our work is that this
minimal reasonability condition already suffices to prove all the basic results.
This situation is completely different for automata on infinite trees, where
the concepts also make sense already in RCA0 + Σ0

2-IND, but proving the
complementation theorem or decidability of MSO requires much more [10].

We are thus led to the general question whether the entire theory of
automata on infinite words requires exactly RCA0 + Σ0

2-IND. This includes
in particular the following issues:

• Does McNaughton’s determinisation theorem imply Σ0
2-IND over RCA0?

• How much axiomatic strength is needed to develop the algebraic ap-
proach to MSO ([15, Chapter II]), for instance to prove that Büchi-
recognisability is equivalent to recognisability by finite Wilke algebras?

• What about developing the Wagner hierarchy (see [15, Chapter V.6])?

• Does RCA0 + Σ0
2-IND prove the uniformisation theorem for automata,

in the form: for a given automaton A over the alphabet {0, 1}2 such
that ∀X ∃Y (A accepts X ⊗ Y ), there exists an automaton B such that
∀X ∃!Y (both A and B accept X ⊗ Y ) (see [16, Theorem 27])?
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[5] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1993.

[6] Denis R. Hirschfeldt. Slicing the truth, volume 28 of Lecture Notes Series.
Institute for Mathematical Sciences. National University of Singapore.
World Scientific, 2015.

[7] Jeffry L. Hirst. Combinatorics in Subsystems of Second Order Arith-
metic. PhD thesis, Pennsylvania State University, 1987.

[8] Carl G. Jockusch, Jr. Ramsey’s theorem and recursion theory. J. Sym-
bolic Logic, 37:268–280, 1972.

[9] Detlef Kähler and Thomas Wilke. Complementation, disambiguation,
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+ 0 1 ⋆

0 0 1 ⋆

1 1 1 ⋆

⋆ ⋆ ⋆ ⋆

∗ 0 1 ⋆

0 0 0 0

1 0 1 ⋆

⋆ 0 ⋆ ⋆

Figure 3: Two operations on {0, 1, ⋆} that induce multiplication on [Q].

A Proof of Theorem 12 from Section 5

In this section we prove the following theorem.

Theorem 12. Over RCA0, the Additive Ramsey Theorem (see Definition 2)
implies the following complementation result: there exists an algorithm which,
given a Büchi automaton A over an alphabet Σ, outputs a Büchi automaton
B over the same alphabet such that for every α ∈ ΣN we have that A accepts
α if and only if B does not accept α.

Let us fix a Büchi automaton A = 〈Q,Σ, qI, δ, F 〉. We will introduce a
structure of a semigroup over the transition matrices of A (see Section 3). Let
us define the natural operations of addition and multiplication over {0, 1, ⋆}
as depicted on Figure 3. The addition allows to choose preferred run (i.e. an
accepting transition is better than a non-accepting one) and the multiplica-
tion corresponds to concatenation of runs.

Now, given two transition matrices M,N ∈ [Q] we can naturally define
the matrix M ∗ N that is obtained by the standard matrix multiplication
formula. Let 1[Q] denote the matrix with 1 on the diagonal and 0 outside
of it. Notice that the mapping Σ ∋ a 7→ Ma ∈ [Q] from Section 3 can be
extended to a homomorphism h : Σ∗ → [Q]. Clearly, for a finite word u ∈ Σ∗

and a pair of states q, q′ ∈ Q the value h(u)(q, q′) ∈ {0, 1, ⋆} denotes what
are the possible runs of A over u that begin in q and end in q′.

We will say that a pair (N,M) ∈ [Q]×[Q] is rejecting if there is no q1 ∈ Q
such that:

• N ∗M = N ,

• M ∗M = M ,

• N(qI, q1) ∈ {1, ⋆},

• M(q1, q1) = ⋆.
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The structure of the automaton B is as follows: its set of states is ([Q])3∪
([Q])2 ∪ [Q] ∪ {qI}. Intuitively, the automaton needs to guess that a given
infinite word admits a homogeneous decomposition where the initial fragment
has type N and the homogeneous colour is M , for a rejecting pair (N,M).
The initial state of the automaton is qI. The accepting states are [Q]. The
automaton has the following transitions (we write K

a
−→ K ′ for a transition

(K, a,K ′) ∈ δ):

• qI
a

−→ (N,M,Ma) for all rejecting pairs (N,M),

• (N,M,K)
a

−→ (N,M,K ∗Ma),

• (N,M,K)
a

−→M , if K ∗Ma = N ,

• M
a

−→ (M,Ma),

• M
a

−→M if Ma = M ,

• (M,K)
a

−→ (M,K ∗Ma),

• (M,K)
a

−→ M , if K ∗Ma = M .

Lemma 27. Over RCA0, Additive Ramsey Theorem implies that for every
infinite word α the automaton A accepts α if and only if the automaton B
does not accept α.

The rest of this section is devoted to a proof of this lemma. First assume
that both A and B accept an infinite word α. Let ρ be an accepting run of A
and let τ be an accepting run of B. Let the state τ(1) be (N,M,K). Since τ
is accepting, we know that infinitely many times in τ appears a state from [Q].
Therefore, α can be decomposed as α = u0u1 . . . such that h(u0) = N and
for all i > 0 we have h(ui) = M . Let ni be the length of u0u1 . . . ui. Our aim
is to find a state q1 such that for some j > i > 0 we have ρ(ni) = ρ(nj) = q1
and there is some k such that ni ≤ k < nj and ρ(k) ∈ F . We can find such q1
by a pigeonhole principle: first define k0 = 1 and then let ki+1 be the smallest
number such that there is an accepting state in ρ between nki and nki+1

. The
sequence of ki is defined by primitive recursion, therefore can be constructed
in RCA0. By the finite pigeonhole principle, there exist 0 ≤ i < j ≤ |Q| + 1
such that ρ(nki) = ρ(nkj ) = q1. Since ρ has an accepting state between nki

and nkj we know that M(q1, q1) = ⋆. Similarly, since N ∗M = N , we know
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that N(qI, q1) ∈ {1, ⋆}. It means that the pair (N,M) is not rejecting, which
contradicts the definition of the transitions of B.

Now assume that the automaton B rejects a given infinite word α. Con-
sider a colouring C such that for i < j we have C(i, j) = h

(

α(i)α(i +
1) · · ·α(j − 1)

)

. Since h is a homomorphism, we know that C is additive.
By Additive Ramsey Theorem we know that there exists a decomposition
α = u0u1 . . . such that h(u0) = N and for all i > 0 we have h(ui) = M , for
some N,M ∈ [Q]. As before let ni be the length of u0u1 . . . ui. Without loss
of generality we can assume that N ∗M = M by skipping the first element
of the homogeneous set. If the pair (N,M) was rejecting, the automaton
B would accept α—we would be able to define using ∆0

1-comprehension an
accepting run τ of B over α such that τ(ni) = M for all i > 1. Therefore,
there exist states qI, q1 as in the definition of a rejecting pair. These two
states can be used to construct an accepting run ρ of A over α, such that
for every i > 0 we have ρ(ni) = q1, as above such a run can be defined by
∆0

1-comprehension.

B Ordered Ramsey implies Σ0
2-IND

In this section we prove that Σ0
2-IND follows from the Ordered Ramsey The-

orem.

Lemma 28. Over RCA0, the Ordered Ramsey Theorem implies Σ0
2-IND.

Consider a Π0
2 statement φ(x) ≡ ∀y ∃z. δ(x, y, z) such that both φ(0) and

∀x. φ(x) ⇒ φ(x + 1) hold. We want to show that φ(a) holds. Let us define
the following colouring by numbers between 0 and a+ 1.

C(i, j) := max
{

x ≤ a+ 1 | ∀x′<x ∀y<i ∃z≤j. δ(x′, y, z)
}

for i < j.

Since δ(x, y, z) is ∆0
0, this is a computable colouring and hence definable by

∆0
1-comprehension. Notice this is an ordered colouring for the usual order

over numbers (i.e. for every i < j ≤ k, C(i, j) ≤ C(i, k)). Thus, we can use
Ordered Ramsey Theorem to get an infinite homogeneous set I ⊆ N.

Now, let us call m the color of this homogeneous set I. It characterizes
up to which point φ(x) is inductive thanks to the following facts.

Fact 29. For x ≤ a+ 1, if φ(x′) is true for every x′ < x, then m ≥ x.
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Proof. For every i ∈ I and x′ < x we know that φ(x′) implies ∀y<i ∃z. δ(x′, y, z).
By Σ0

1-collection, we get a bound vx′ such that ∀y < i ∃z ≤ vx′. δ(x′, y, z).
Again by Σ0

1-collection, there exists a global bound v such that ∀x′<x ∀y<
i ∃z≤ v. δ(x′, y, z). Since I is infinite, there exists j ≥ v in I. We can relax
the bound on the existential to prove ∀x′<x ∀y< i ∃z≤ j. δ(x′, y, z). So by
the definition of the colouring, C(i, j) = m ≥ x.

Fact 30. For any x′ < m, φ(x′) holds.

Proof. Take x′ < m and any y. Since I is infinite, there exist j > i > y such
that i, j ∈ I, so in particular ∀y < i ∃z ≤ j. δ(x′, y, z). Hence there exists z
such that δ(x′, y, z) holds.

If m = a + 1, we can conclude by Fact 30 that φ(a) holds. Now let us
suppose that m ≤ a and derive a contradiction. Since φ(0) holds, m ≥ 1
by Fact 29. By Fact 30 we know that φ(x′) holds for every x′ < m. By
the inductive assumption, since φ(m − 1) holds, we know that φ(m) holds.
Therefore, for all x < m + 1 we have φ(x). Fact 29 implies in that case that
m ≥ m+ 1, a contradiction.

This concludes the proof of Lemma 28.

C Proof of Theorem 13 from Section 6

Theorem 13. For any n ∈ ω, the following is provable in RCA0: if there
exists an algorithm for complementing Büchi automata, then there exists an
algorithm which, given an MSO formula φ of depth at most n, outputs an
automaton Aφ such that for every word ν, ν satisfies the formula φ if and only
if ν is accepted by Aφ. As a consequence, the depth-n fragment of MSO(N,≤)
is decidable.

A minimal fragment of MSO In this section, we work with formulae
of the shape φ or ψ given by the following grammar:

ψ := ∀X̄.
∧k

i=0 φi | A

φ := ∃X̄.
∨k

i=0 ψi | A
A := Sing(X) | minX ≤ min Y | ¬Sing(X) | ¬minX ≤ minY

Sing(X) means that n ∈ X is true for a single n while min(X) ≤ min(Y )
means that if n ∈ Y holds, then there exists m ≤ n such that m ∈ X holds.
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One can elementarily show via external induction over its depth that every
MSO formula is equivalent to a formula of same depth given by this grammar:

• First, replace every first order variable x by a second-order variable X .
x ≤ y will be translated to min(X) ≤ min(Y ) and every quantification
over x will become a quantification over X relativised to the predicate
Sing.

• Push negations to the level of atomic formulae.

• Finally, make conjunctions (respectively disjunctions) commute with
universal (respectively existential) quantifiers.

This reduction enables us to consider formulae containing solely second-order
variables and to simplify the shape of our valuations: for a formula φ with n
(implicitly ordered) free variables, a valuation ν is an infinite word over the
alphabet {0, 1}n.

Proof. We need to show that we can build Aφ and show that it verifies if φ
holds. The construction is done via external induction on the depth n ∈ ω
of the formula φ5. Let us give the additional constructions we need and the
properties we require of them for this induction to go through.

1. First, let us remark that weakening can be easily be implemented.
Given a projection π : {0, 1}n → {0, 1}m (with m ≤ n) and an automa-
ton A = 〈Q, {0, 1}m, qI, δ, F 〉 over {0, 1}m, define π⋆A := 〈Q, {0, 1}n, qI, π

⋆δ, F 〉
where π⋆δ := {(q, a, q′) | ∃b ∈ π−1(a). (q, b, q′) ∈ δ}. Then it is straight-
forward to prove that π⋆A accepts those infinite words whose projection
is accepted by A. As a consequence, if φ is a formula with m free vari-
ables satisfied by those valuations recognised by Aφ, we can consider it
as a formula of n > m variables satisfied by those valuations recognised
by π⋆Aφ.

2. Let us turn to the base cases Sing(X) and min(X) ≤ min(Y ). Thanks
to weakening, we can restrict to the setting where the alphabet is {0, 1}
and {0, 1}2 respectively and use the automata ASing and Amin from
Figure 4 to recognise the proper set of valuations. If w |= Sing(X),

5Similarly to what happens during the complementation procedure, defining the au-
tomaton and proving soundness can be done by two separate inductions; only this second
part involves stronger principles than available in RCA0 to prove the statement for A

¬φ.
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Figure 4: Automata ASing and Amin.

then we can show using twice ∆0
1-IND that the runs over α stay in

the initial state until encountering a 1 and staying in the accepting
state. Conversely, for a run to stay stuck in the accepting state, twice
∆0

1-IND ensures that it encounters a single 1 before moving on to an
infinite word with only 0. Similarly, by ∆0

1-IND, we prove that for every
run ρ over α ⊗ β (where ⊗ designates the juxtaposition operations
{0, 1}n × {0, 1}m → {0, 1}n+m extended component-wise to infinite
words), ρ(i) is the first state if and only if α(j) = β(j) = 0 for every
j < i; hence, we get into the second state if and only if minX ≤ minY .

3. Given automata Ai = 〈Qi, {0, 1}n, qIi , δi, Fi〉 for 0 ≤ i ≤ k, we define
the union automaton as

∨

0≤i≤k Ai := 〈{q0} ⊔
⊔

iQi, {0, 1}n, q0, δ
′ ⊔

⊔

i δi,
⊔

Fi〉 where δ′ = {(q0, a, q) | ∃i ≤ k. (qIi , a, q) ∈ Qi}. If α is
accepted by some Ai by a run ρ then ρ′ defined as ρ′(0) = q0 and as
ρ everywhere else is an accepting run of

∨

i Ai over α. Conversely, if
ρ ∈ ({q0}⊔

⊔

iQi)
N is an accepting run of

∨

i Ai over α, ρ(1) belongs to
Qi for some i. Using ∆0

1-IND, every ρ(n) belongs to Qi for n > 0 and
has all the corresponding transitions in δi. Defining ρ′ by ρ′(0) = qIi
and as ρ everywhere else yields an accepting run of Ai over α.

4. Finally, given A = 〈Q, {0, 1}n+m, qI, δ, F 〉, define the projection au-
tomaton ∃A := 〈Q, {0, 1}n, qI, δ∃, F 〉 with δ∃ := {(q, (a1, . . . , an), q′) |
∃b. (q, (a1, . . . , an, b1, . . . , bm), q′) ∈ δ}. Then one can elementarily show
that ∃A accepts α if and only if there exists β ∈ ({0, 1}m)N such that
A accepts α ⊗ β. Indeed, suppose that α is accepted by ∃A using an
accepting run ρ ∈ QN. By the definition, it means that for every i,
there exists a ∈ {0, 1}m such that (ρ(i), α(i) ⊗ a, ρ(i + 1)) ∈ δ. Define
an infinite word β by picking a minimal such a for β(i) for every i.

30



Then α⊗β is accepted in A thanks to the run ρ. Conversely, it is clear
that an accepting run ρ over α⊗β in A is an accepting run of ∃A over
α.

Now, the external induction on the depth of a given formula φ can proceed
using the above constructions:

• If φ is atomic, then constructions 1, 2 and possibly complementation
do the job.

• If φ ≡ ∃X̄.
∨k

i=0 φi, construction 4 and 3 ensures the recurrence go
through.

• If φ ≡ ∀X̄.
∧k

i=0 φi, this formula is equivalent to ¬∃X̄.
∨k

i=0 ¬φi. We
use complementation twice in addition to constructions 3 and 4 to make
the induction go through.

C.1 Emptiness for Büchi automata

In order to deduce decidability of MSO(N,≤) from the automata construc-
tion, one needs to decide whether a given Büchi automaton over a singleton
alphabet accepts the unique infinite word. It is a consequence of the decid-
ability of the emptiness problem for Büchi automata, as expressed by the
following lemma.

Lemma 14. Provably in RCA0, it is decidable if, given a nondeterministic
Büchi automaton A, there exists an infinite word accepted by A.

Proof. Consider a Büchi automaton A = 〈Q,Σ, qI, δ, F 〉. The existence of a
cycle that is accessible from the initial state and contains an accepting state is
a decidable property; we need to check that it is equivalent to nonemptiness.

First assume that there exist:

• a path (q0, a0, . . . , αk−1, qk) with q0 = qI,

• a cycle (qk, ak, . . . , qk+k′−1, ak+k′−1, qk+k′) with qk+k′ = qk,

• a number m < k′ such that qk+m ∈ F .
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We can then define the a word α and an accepting run ρ of A over α by
∆0

1-comprehension as follows:

α′(n) =

{

an if n < k,

ak+i if n = k + jk′ + i for some j and some i < k′.

ρ(n) =

{

qn if n < k,

qk+i if n = k + jk′ + i for some j and some i < k′ when n ≥ k.

It is straightforward to check that ρ is an accepting run of A over α.
Conversely, if A accepts some infinite word α using a run ρ then there are

infinitely many n such that ρ(n) ∈ F . Since F is finite, we can define using
∆0

1-comprehension a sequence of numbers n0, . . . , n|F | such that ρ(ni) ∈ F
for i = 0, . . . , |F |. In that case, there must exist i < j ≤ |F | such that
ρ(ni) = ρ(nj) ∈ F . Then (ρ(0), α(0), . . . , ρ(ni)) is a path from qI to the cy-
cle (ρ(ni), α(ni), . . . , α(nj−1), ρ(nj)) which witnesses that the nonemptiness
condition holds for A.

D Detailed proofs from Section 9

In this section we provide the remaining parts of the proof of Theorem 21.
The rest of this section is done in RCA0 with Σ0

2-IND.

D.1 Transducers

For the sake of simplicity of the presentation, the proof presented here is
split into several steps which allow us to successfully simplify the structures
under consideration. This simplifications will be formalised using the notion
of a transducer, as follows.

Definition 31. A transducer is a deterministic finite automaton, without
accepting states, where each transition is additionally labelled by a letter from
some output alphabet. More formally, a transducer with an input alphabet
Σ and an output alphabet Γ is a tuple T = 〈Q, qI, δ〉 where qI ∈ Q is an initial
state and δ : Q×Σ → Γ×Q. Such a transducer naturally defines a function
T : ΣN → ΓN.
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It is easy to see that a transducer can be used to reduce the question of
acceptance from one deterministic automaton to the other, as stated by the
following lemma.

Lemma 32. For every deterministic Rabin automaton A with the input al-
phabet Γ, and every transducer T : ΣN → ΓN, there exists a deterministic
Rabin automaton A◦ T which accepts an infinite word α ∈ ΣN if and only if
A accepts T (α).

Proof. It is enough to take as A ◦ T an automaton with the set of states
being the product of the states of A and the states of T . The transition
function of A ◦ T follows the transitions of T and transitions of A over the
letters output by T :

δA◦T
(

(qA, qT ), a
)

= (δA(qA, b), q′) where δT (qT , a) = (b, q′).

The Rabin acceptance condition of A ◦ T is taken as the acceptance of A,
skipping the second coordinate of the states. Clearly A◦T accepts an infinite
word α if and only if A accepts the infinite word T (α)—the run of A ◦ T
over α equals on the first coordinate the run of A over T (α).

D.2 Q-dags

In the exposition below we will work with infinite words representing the
set of all possible runs of a nondeterministic automaton over a fixed infinite
word. Let us define a Q-dag to be a directed acyclic graph where the set of
nodes is Q× N and every edge is of the form

((q, n), (p, n+ 1)) for some p, q ∈ Q and n ∈ N.

Furthermore, every edge is coloured by one of the two colors: “accepting”
or “non accepting”. We assume that there are no parallel edges. A path in
a Q-dag is a finite or infinite sequence of nodes connected by edges (either
accepting or non-accepting). As we will see, we can assume that every Q-dag
is rooted—there is a chosen element qI ∈ Q such that all the edges of the
Q-dag lie on a path that starts in the vertex (qI, 0). We call a vertex (q, n)
reachable if there is a path from (qI, 0) to (q, n) in α. We say that an infinite
path in a Q-dag is accepting if it starts in (qI, 0) and contains infinitely many
accepting edges.
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Figure 5: A Q-dag and a single letter from the alphabet [Q]. The accepting
edges are represented by solid lines, and non-accepting edges are dashed lines.

· · ·

· · ·

· · ·

· · ·

Figure 6: A tree-shaped Q-dag.

Every Q-dag can be naturally represented as an infinite word, where the
n-th letter encodes the set of edges of the form ((q, n), (q′, n + 1)). The
alphabet used for this purpose will be the set of transition matrices [Q]
defined in Section 3. An example of a Q-dag and a letter in [Q] are depicted
on Figure 5.

We will be particularly interested in Q-dags that are tree-shaped. A Q-
dag is tree-shaped if every node (q, n) has at most one incoming edge (i.e. an
edge of the form (p, n − 1). Notice that it makes sense to say that a letter
M ∈ [Q] is tree-shaped and a Q-dag is tree-shaped if and only if all of its
letters are tree-shaped. Figure 6 depicts a tree-shaped Q-dag.

A Q-dag is infinite if for every n there exists a path connecting the root
(qI, 0) with a vertex of the form (q′, n). Similarly, a Q-dag is infinite under
(q, n) if for every n′ ≥ n there exists a path connecting the vertex (q, n) with
a vertex of the form (q′, n′).

D.3 Proof of Lemma 25

In this subsection we will show how to reduce the question whether a Q-dag
α contains an accepting path to the question whether a tree-shaped Q-dag
T (α) contains an accepting path. It is expressed by the following lemma.

Lemma 25. There exists a transducer T2 that inputs a Q-dag α
′ and outputs

a tree-shaped Q-dag T2(α
′) such that α′ contains an accepting path if and only
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if T2(α
′) contains an accepting path.

In the proof we will use the following definition.

Definition 33 (Profiles). For a finite path w in a Q-dag, define its profile to
be the word over the alphabet {1, ⋆}×Q2 which is obtained by replacing each
edge ((q, n), (q′, n + 1)) in w by (x, q, q′) where x ∈ {1, ⋆} is the type of the
edge (⋆ for accepting and 1 for non-accepting). Let us fix any linear order �
on {1, ⋆}×Q2 such that (⋆, q, q′) ≺ (1, p, p′). Let � be the lexicographic order
on paths induced by the order � on their profiles. We call a path w optimal
if it is lexicographically minimal among all paths with the same source and
target.

Lemma 25 follows from Claims 34 and 35.

Claim 34. There is a transducer T : [Q]N → [Q]N such that if the input is α
then T (α) is tree-shaped with the same reachable vertices as in α, and such
that every finite path from the root in T (α) is an optimal path in α.

Proof of Claim 34. We start with the following observation about the order
�. Let w,w′, u, u′ be paths in a Q-dag α such that the target of w (resp. u)
is the source of w′ (resp. u′); and w, u are of equal length. Then ww′ � uu′

if and only if w ≺ u or w = u and w′ � u′.
Now let us define T (α) by choosing, for every vertex reachable in α an

ingoing edge that participates in some optimal path. Putting all of these
edges together will yield a tree-shaped Q-dag as in the statement of the claim.
To produce such edges, after reading the first n letters, the automaton keeps
in its memory the lexicographic ordering on the optimal paths leading from
the root to the nodes at depth n.

Notice that the above proof is purely constructive and the statement of
Claim 34 involves only finite combinatorics, therefore it can be performed in
RCA0.

Claim 35. Let T be the transducer from Claim 34. Over RCA0, Σ0
2-IND

implies that if the input α to T contains an accepting path then so does the
output T (α).

The rest of this subsection is devoted to a proof of Claim 35. Let α be
an input to T . Assume that π ∈ (Q× N)N is a path that contains infinitely
many accepting edges in α. A node v in the Q-dag α is said to be π-merging
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if there exists a finite path in T (α) that leads from v to a vertex on π. Our
aim is to define the following set of vertices in α:

t = {v ∈ Q× N | v is π-merging}.

The above definition is clearly a Σ0
1 definition of t.

Subclaim 36. Thanks to Σ0
2-IND, there exists a Π0

1 predicate over vertices
v equivalent to “v is π-merging”. As a consequence, t is definable by ∆0

1-
comprehension.

The proof of this subclaim is similar to the proof of Theorem 18.

Proof. For i = 0, 1, . . . , |Q| we will say that i is π-merging infinitely often if

∀k ∃n>k. there are at least i π-merging vertices of the form (q, n) in T (α).

The above property of i is clearly a Π0
2 property. Let i0 be the maximal

i ≤ |Q| that is π-merging infinitely often. Such i0 exists by Σ0
2-IND. Clearly

if i ≤ i′ and i′ is π-merging infinitely often then i is also π-merging infinitely
often. By the definition, if i > i0 then there exists k(i) such that for all
n > k(i) there are strictly less than i π-merging vertices of the form (q, n)
in α. By Σ0

2-collection, we can choose k0 to be the maximal of k(i) for
i0 < i ≤ |Q|. It means that if n > k0 then there are at most i0 π-merging
vertices of the form (q, n) in T (α).

We can now provide a Π0
1 definition of t (actually a Σ0

1-definition of the
vertices outside t). A vertex v = (q, n) does not belong to t if (⋆): there
exists n′ > max(n, k0) and i0 vertices of the form v0 = (q0, n

′), v1 = (q1, n
′),

. . . , vi0 = (qi0 , n
′) such that:

• all the vertices v0, . . . , vi0 are π-merging in T (α),

• no path from v to any of vi for i = 0, 1, . . . , i0 exists,

• there is no path in T (α) from v to a vertex of the form (q′, m) that lies
on π with m ≤ n′.

The latter two conditions are decidable, while the first one is Σ0
1. In total,

the condition (⋆) is Σ0
1.

We will now prove that the negation of (⋆) in fact defines t. First assume
that v = (q, n) /∈ t. Recall that there are infinitely many n′ such that there
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are exactly i0 π-merging vertices of the form (q′, n′) in T (α). In particular,
there exists n′ > max(n, k0) and i0 vertices of the form v0 = (q0, n

′), v1 =
(q1, n

′), . . . , vi0 = (qi0 , n
′) such that all of them are π-merging. Since v is

not π-merging, there cannot be a path from v to any of the vertices vi for
i = 1, 2, . . . , i0. Similarly, there cannot be a path from v to π. Therefore, v
satisfies (⋆).

On the other hand, assume that v has the property (⋆) for some n′ and
vertices v0, . . . , vi0 . Assume to the contrary that v is π-merging. Let it be
witnessed by a path π from v to a vertex v′′ = (q′′, n′′) on π. If n′′ ≤ n′ then
it contradicts the last item of (⋆). If n′′ > n′ then let p ∈ Q be the state such
that the vertex (p, n′) lies on the path w. Clearly (p, n′) is π-merging so it
needs to be one of the vertices v1, . . . , vi0 . But in that case this vertex can
be reached from v by a path in T (α), a contradiction.

We now apply Bounded-width König’s Lemma (see Definition 3) to t.
This way we obtain an infinite path π′ that is contained in t. Our aim
is to prove that π′ contains infinitely many accepting edges. Assume to
the contrary, that for some k ∈ N there is no accepting edge of the form
((p, n), (p′, n + 1)) for n > k on π′. Let (p, k) be a vertex that belongs to
π′ ∩ Q × {k}. Since π′ is a path in t, we know that (p, k) is π-merging.
Let w be a path witnessing that, denote its final vertex on π by (p′, k′).
Since π is accepting, we know that there is an accepting edge of the form
((r, n − 1), (r′, n)) with k < n − 1. Let (q, n) be a vertex that belongs to
π′∩Q×{n}. Similarly as before, we have a path w′ witnessing that (q, n) ∈ t
that reaches π in a vertex (q′, n′). That means that in T (α) there are two
paths between (p, k) and (q′, n′): the first one follows w and π, the second
one follows π′ and w′. Notice that the latter path is contained in t. In means
that the profile of the path through π′ and w′ is smaller than the profile of the
path through w and π. By the definition of the order on the profiles, since
there is an accepting edge on the respective fragment of π, the corresponding
fragment of the path π′ needs to contain an accepting edge. This contradicts
the assumption that there is no accepting edge of the form ((p, n), (p′, n+ 1))
for n > k on π′.

This concludes the proof of Lemma 25.
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(p, k)

(p′, k′)

w

(q, n)

(q′, n′)

w′

π

π′

Figure 7: An illustration to the proof of Claim 35. The upper horizontal
line is the path π in α that may not be a path in T (α). The paths w and
w′ witness that (p, k) and (q, k′) are both π-merging. The boldfaced part
of π is the chosen accepting edge that appears on π. Among the two paths
from (p, k) to (q′, n′): one through w and the other through w′; the latter
belongs to T (α). Therefore, it has to have smaller profile than the former, in
particular it has to contain an accepting edge in between the vertices (p, k)
and (q, n).

D.4 Proof of Lemma 26

In this section we prove the remaining lemma that concludes the proof of
Theorem 21.

Lemma 26. There exists a deterministic Rabin automaton A over the al-
phabet [Q] that for every tree-shaped Q-dag α′′ ∈ [Q]N accepts it if and only
if α′′ contains an accepting path.

We will start by defining the states and transitions of the constructed
Rabin automaton. Then we will prove that it in fact verifies if a given
infinite word that is a tree-shaped Q-dag contains an accepting path.

In general, the size of the constructed Rabin automaton is one of the
crucial parameters of the construction, as it influences the running time of
the algorithms for verification and synthesis of reactive systems. However, in
this work we are mainly focused on the fact that an equivalent deterministic
automaton exists. Therefore, the construction presented here will be far from
optimal. For a discussion on optimality of the constructions involved, see [4].

Definition 37. Fix a finite nonempty set Q. We will say that τ is a Q-
scheme if τ is a finite tree with:

• internal nodes labelled by Q,
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Figure 8: A Q-scheme τ (a state of A) and a successive tree-shaped letter
M ∈ [Q]. The “non-accepting” edges in τ are dashed. The leafs of τ are
arranged according to some fixed order on Q in such a way to match the
layout of M ∈ [Q]. To simplify the picture we do not write down the states
in Q labeling the nodes of τ , instead we put dots.

• leaves uniquely labelled by Q,

• edges uniquely labelled by {0, 1, . . . , 2 · |Q|}, these labels are called iden-
tifiers,

• each edge additionally marked as either “accepting” or “non-accepting”.

Additionally, the root cannot be a leaf and every node of τ that is not a leaf
nor a root has to have at least two children. Except that, a Q-scheme doesn’t
need to be balanced as a tree.

It is easy to see that since the leaves of τ are uniquely labelled by Q, τ has
at most 2 · |Q| nodes in total. Therefore, the requirement that the labelling
by {0, . . . , 2 · |Q|} needs to be pairwise distinct is not restricting. Clearly
the number of Q-schemes is finite (in fact exponential in |Q|). Let the set
of states of A be the set of all Q-schemes. Let the initial state of A be the
Q-scheme consisting of two nodes: the root and its only child, both labelled
by qI. Let the edge between the root and the unique leaf be labelled by the
identifier 0 and be “non-accepting”.

We will now proceed to the definition of transitions of A. Assume that
the automaton is in a state τ and reads a tree-shaped letter M ∈ [Q], see
Figure 8.

The resulting state τ ′ is constructed by preforming the following four
steps, the successive evolution of τ ′ is depicted on Figure 9
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Figure 9: The successive transformation of the scheme τ when performing
steps 1 to 4 of a transition of A.

Step 1. We append the new letter M to the Q-scheme τ obtaining a new
tree. The identifiers on the newly created edges are undefined and some
nodes may have exactly one child. However, all the nodes are labelled
by the states in Q, either coming from τ or from M .

Step 2. We eliminate paths that die out before reaching the target states
of M . In the running example, this means eliminating edges with
identifiers 9 and 5.

Step 3. We eliminate unary nodes, thus joining several edges into a single
edge. This means that a path which only passes through nodes of
degree one gets collapsed into a single edge, the identifier for such an
edge is inherited from the first (i.e. leftmost) edge on the path. The
newly created edge is “accepting” if and only if any of the collapsed
edges was “accepting”. In the running example, this means eliminating
the unary nodes that are the targets of edges with identifiers 2 and 7.

Step 4. Finally, if there are edges that do not have identifiers, these edges
get assigned arbitrary identifiers that are not currently used. In the
running example we add identifiers 4, 5, 6, and 8.

This completes the definition of the state update function. We now define
the acceptance condition.

The acceptance condition. When executing a transition, the automaton
described above goes from one Q-scheme to another Q-scheme. For each
identifier, a transition can have three possible effects, described below:
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Delete An edge can be deleted in Step 2 (it dies out) or in Step 3 (it is
merged with a path to the left). The identifier of such an edge is said
to be deleted in the transition. The deleted identifiers in the running
example are 9, 5, and 6. Since we reuse identifiers, an identifier can
still be present after a transition that deletes it, because it has been
added again in Step 4, e.g. this happens to identifiers 5 and 6 in the
running example.

Refresh In Step 3, a whole path with edges identified by e1, e2, · · · , en is
folded into its first edge identified by e1. If any of the edges identified by
e2, · · · , en was “accepting” then we say that the identifier e1 is refreshed.
In the running example the refreshed identifiers are 2 and 7 (the edge
identified by 2 was already “accepting” while the edge identified by 7
become “accepting” because of the merging.

Nothing An identifier might be neither deleted nor refreshed, e.g. this is the
case for the identifier 1 in the running example.

The following lemma describes the key property of the above data struc-
ture.

Lemma 38. For every tree-shaped Q-dag α ∈ [Q]ω, the following are equiv-
alent:

1. α contains an accepting path,

2. some identifier is deleted finitely often but refreshed infinitely often.

Before proving the above lemma, we show how it completes the proof of
Lemma 26. Clearly the second condition above can be expressed as a Rabin
condition on transitions of A—the Rabin pairs (Ei, Fi) range over the set of
identifiers i = 1, . . . , 2 · |Q|, a transition is in Fi if an edge with identifier i is
deleted and is in Ei if the edge is refreshed.

Proof of Lemma 38. First assume that α contains an accepting path π. Let
ρ be the sequence of states of A when reading α. Notice that, for every n the
path π indicates a path in the Q-scheme ρ(n) that connects the root with a

leaf (labelled by a state q(n) such that π(n) = (q(n), n)). Let e
(n)
0 , . . . , e

(n)
k (n)

be the identifiers of the edges on this path. Notice that k(n) ≤ |Q| because
each internal node of a Q-scheme has at least two children and leafs of Q-
schemes are uniquely labelled by the states in Q. We will say that a position
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k = 0, 1, . . . , |Q| is unstable if for infinitely many n we have either k(n) < k

or some identifier e
(n)
k′ for k′ ≤ k is deleted in the n-th transition in ρ. Notice

that 0 is stable because we never delete the first edge of a Q-scheme. Let k0
be the greatest stable number, such a number exists by Σ0

2-IND.
By Σ0

2-collection we can find a number n0 such that for n ≥ n0 we have

k(n) ≥ k0 and no identifier e
(n)
k′ with k′ ≤ k0 is deleted in the n-th transition

in ρ. Therefore, for every k′ ≤ k0 and n ≥ n0 we have

e
(n)
k′ = e

(n0)
k′ .

Let i = e
(n)
k0

. Clearly by the definition of k0 we know that the identifier i is
not deleted for n ≥ n0. It remains to prove that i is refreshed infinitely many
times. Assume to the contrary that for some n1 ≥ n0 and every n ≥ n1 the
identifier i is never refreshed in the n-th transition in ρ. First notice that π
contains an accepting edge of the form ((q, n2−1), (q′, n2)) for some n2 ≥ n1.

It means that the edge identified by e
(n2)
k(n2)

is accepting in ρ(n2)—this is the
last edge on the path corresponding to π in the Q-scheme obtained after
reading the n2-th letter of α. By the definition of k0 we know that for some
n3 ≥ n2 the identifier e

(n3)
k0+1 is deleted in the n3-th transition in ρ. Notice

that since π is an infinite path, this identifier cannot be deleted in Step 2
as it never dies out. Therefore, k(n3 + 1) = k0. Let us prove by Σ0

1-IND on
n = n2, n2 + 1, . . . , n3 that either:

• the identifier i is refreshed in a n′-th transition of ρ for some n′ such
that n2 ≤ n′ ≤ n,

• there exists an accepting edge in the Q-scheme ρ(n) that is identified

by e
(n)
k′ for some k′ such that k0 < k′ ≤ k(n).

For n = n2 the second possibility holds. The inductive step follows di-
rectly from the definition of the transitions of A—an accepting edge prop-
agates to the left, firing successive refreshes for the merged identifiers. For
n = n3 we know that there is no k′ such that k0 < k′ ≤ k(n) thus the first
possibility needs to hold. This contradicts our assumption that there was
no refresh on i after the n2-th letter of α was read. This concluded the first
implication in the proof of Lemma 38.

Now assume that α is an infinite word such that the automaton A accepts
it. Let us fix the run ρ of A over α and assume that i0 is an identifier that
is deleted only finitely many times but refreshed infinitely many times. Our
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aim is to prove that the Q-dag α contains an accepting path. Again, by
Σ0

2-collection we find n0 such that the identifier i0 is never deleted after the
n0-th transition of A.

We start by noticing that for every n ≥ 0 and an edge identified by e in
the Q-scheme ρ(n), this edge corresponds to a finite path wn,e in the Q-dag
α. For the newly created edges that are assigned new identifiers in Step 4,
the corresponding path is an edge (q, n), (q′, n′) from the letter M . For edges
that were assigned an identifier earlier, the path is defined inductively, by
merging the paths whenever we merge edges in Step 3. Using Σ0

1-IND we
easily prove that a corresponding edge is marked “accepting” if and only if
the path contains an accepting edge in α. If an identifier i is refreshed then
the path gets longer and contains at least one new accepting transition.

In this way, we can track the path corresponding to the edges identified
by i0 for n ≥ n0. Since the identifier i0 is refreshed infinitely many times, the
path corresponding to it is prolonged infinitely many times. Notice that the
source of the paths corresponding to i0 are fixed and of the form (q(n0), n0)—
the identifier i0 is never merged to the left. Clearly, for every n ≥ n0 we can
effectively assign a state q(n) such that for some n′ > n0 the path wn′,i0 passes
through (q(n), n)—such n′ exists because i is refreshed infinitely many times.
It gives us a ∆0

1-definition of an infinite path π that starts in (q(n0), n0).
Notice that each refresh of i0 corresponds to a new accepting edge on π,
what means that π is accepting.
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