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Abstract. Game automata are known to recognise languages arbitrar-
ily high in both the non-deterministic and alternating Rabin–Mostowski
index hierarchies. Recently it was shown that for this class both hierar-
chies are decidable. Here we complete the picture by showing that the
weak index hierarchy is decidable as well. We also provide a procedure
computing for a game automaton an equivalent weak alternating au-
tomaton with the minimal index and a quadratic number of states. As
a by-product we obtain that, as for deterministic automata, the weak
index and the Borel rank coincide.

1 Introduction

Finite state automata running over trees constitute one of the main tools in
the theory of verification and model-checking. In the latter, for instance, the
model-checking problem is reduced to the non-emptiness problem for automata
by translating the given formula into an automaton recognizing its models. The
practical applicability of the automata-based approach thus relies on the possi-
bility of being able to simplify the considered finite state machine.

In virtue of the trade off between expressibility and simplicity they present,
weak alternating automata have emerged as a very appealing class of automata.
Formally introduced in [MSS86], they are known to capture regular properties
of infinite trees that are both Büchi and co-Büchi-recognizable, and to be ex-
pressively complete with respect to weak monadic second order logic [Rab70]
and the alternation free fragment of the modal µ-calculus [AN92]. Because of
their special structure, weak alternating automata have attractive computational
properties. The corresponding non-emptiness problem can be for instance solved
in linear time [BVW94], yielding an efficient (linear time) automata-based model
checking algorithm for CTL. On the other hand, given a non-deterministic Büchi
tree automaton A and another one recognizing its complement, [KV99] provide a
translation of A into an equivalent weak alternating automaton with a quadratic
number of states.

We can however look for more refined simplification procedures in which
the parameter in the definition of an automaton reflecting the complexity of
the recognised language is also taken into account. From this perspective, a
? The authors have been supported by Foundation for Polish Science grant Homing
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measure that has shown both practical and theoretical importance is the Rabin–
Mostowski index, which measures the nesting of positive and negative conditions
in the run of an automaton. The index orders tree automata into a hierarchy
that was proved strict for deterministic [Wag79], non-deterministic [Niw86], al-
ternating [Bra96], and weak alternating automata [Mos91b]. Computing the least
possible index for a given regular language is called the index problem.

The only case for which this problem is know to have a solution for each
of the four aforementioned modes is when the input language is determinis-
tic [NW98,NW05,NW03,Mur08]. In [FMS13], it was shown that for the class
of game automata (the closure of the class of deterministic automata under
complementation and substitution) the non-deterministic and alternating index
problems are solvable. The deterministic index problem being already solved
by [NW98], the only case left is the weak index, known to coincide with the
quantifier alternation depth for the weak monadic second order logic [Mos91b].

In this paper we show that the weak index problem is solvable for game
automata by providing an effective translation to a weak alternating automaton
with a quadratic number of states and the minimal index. As corollary of the
result, we also obtain that, as for the class of deterministic automata [Mur08],
for this class too the weak index and the Borel rank coincide.

2 Preliminaries

Trees. For a function f we write dom(f) for the domain of f and rg(f) for the
range of f . For a finite alphabet A, we denote by PTrA the set of partial trees over
A, i.e., functions t : dom(t)→ A from a prefix-closed subset dom(t) ⊆ {L, R}∗ to
A. By TrA we denote the set of total trees, i.e., trees t such that dom(t) = {L, R}∗.
For a direction d ∈ {L, R} by d̄ we denote the opposite direction. For v ∈ dom(t),
t�v denotes the subtree of t rooted at v. The sequences u, v ∈ {L, R}∗ are naturally
ordered by the prefix relation: u � v if u is a prefix of v.

A tree that is not total contains holes. A hole of tree t is a minimal sequence
h ∈ {L, R}∗ that does not belong to dom(t). By holes(t) ⊆ {L, R}∗ we denote the
set of holes of tree t. If h is a hole of t ∈ PTrA, for s ∈ PTrA we define the partial
tree t[h := s] obtained by putting the root of s into the hole h of t.

Games. A parity game G is a tuple 〈V = V∃ ∪ V∀, vI , E,Ω〉, where V is a
countable arena; V∃, V∀ ⊆ V are positions of the game belonging, respectively,
to player ∃ and player ∀, V∃ ∩ V∀ = ∅; vI ∈ V is the initial position of the
game; E ⊆ V×V is the transition relation; Ω : V → {i, . . . , j} ⊆ N is a priority
function. We assume that all parity games are finitely branching (for each v ∈ V
there are only finitely many u ∈ V such that (v, u) ∈ E), and that there are no
dead-ends (for each v ∈ V there is at least one u ∈ V such that (v, u) ∈ E).

A play in game G is an infinite sequence π of positions starting from vI . Play
π is winning for ∃ if lim infn→∞Ω(π(n)) is even. Otherwise π is winning for ∀.

A (positional) strategy σ for a player P ∈ {∃,∀} in a game G is defined as
usual, as a function assigning to every P ’s position v ∈ VP the chosen successor



σ(v) ∈ V such that (v, σ(v)) ∈ E. A play π conforms to σ if whenever π visits
a vertex v ∈ VP then the next position of π is σ(v). We say that a strategy σ
is winning for P if every play conforming to σ is winning for P . In each parity
game one of the players has a (positional) winning strategy [EJ91,Mos91a].

Automata. An alternating automaton A is a tuple 〈A,Q, δ,Ω〉, where A is a
finite alphabet, Q is a finite set of states, Ω : Q → N is a function assigning
to each state of A its priority, and δ assigns to each pair (q, a) ∈ Q × A the
transition b = δ(q, a) built using the grammar

b ::= >
∣∣ ⊥ ∣∣ (q, d)

∣∣ b ∨ b ∣∣ b ∧ b (1)

for states q ∈ Q and directions d ∈ {L, R}.
For an alternating automaton A, a state qI ∈ Q, and a tree t ∈ TrA we define

the game G(A, t, qI) as follows:

– V = dom(t)× (B ]Q), where B is the set of all formulae generated by (1);
positions of the form (v, b1 ∨ b2) belong to ∃ and the remaining ones to ∀; 3

the initial position is vI = (ε, qI);
– E contains the following pairs (for all v ∈ dom(t)):(

(v, b), (v, b)
)
for b ∈ {>,⊥},(

(v, b), (v, bi)
)
for b = b1 ∧ b2 or b = b1 ∨ b2,(

(v, (q, d)), (vd, q)
)
for d ∈ {L, R}, q ∈ Q,(

(v, q), (v, δ(q, t(v)))
)
for q ∈ Q;

– Ω(v,>) = 0, Ω(v,⊥) = 1, Ω(v, q) = ΩA(q) for q ∈ Q, v ∈ dom(t), and for
other positions Ω is max(rg(ΩA)), where ΩA is the priority function of A.

An automaton A accepts a tree t ∈ TrA from qI ∈ Q if ∃ has a winning strat-
egy in G(A, t, qI). By L(A, qI) we denote the set of trees accepted by automaton
A from state qI . Automaton A recognises a language L ⊆ TrA if L(A, qI) = L
for some qI ∈ Q.

The (Rabin–Mostowski) index of an automaton A is the pair (i, j) where i
is the minimal and j is the maximal priority of the states of A (⊥ and > are
counted as additional looping states with odd and even priority, respectively).
In that case A is called an (i, j)-automaton.

An automaton A is deterministic if all its transitions are deterministic, i.e.,
of the form >, ⊥, (qd, d), or (qL, L)∧(qR, R), for d ∈ {L, R}; A is non-deterministic
if its transitions are (multifold) disjunctions of deterministic transitions.

An automaton A is weak if whenever δ(q, a) contains a state q′ then Ω(q) ≤
Ω(q′). For weak automata, allowing transitions > or ⊥ interferes with the index
much more then for strong automata: essentially, it adds one more change of
priority. To reflect this, when defining the index of the automaton, we count ⊥
and > as additional looping states with priorities assigned so that the weakness
condition above is satisfied: ⊥ gets the lowest odd priority ` such that ⊥ is
accessible only from states of priority at most `, and dually for >. That is, if the
3 Positions (v, (q, d)), (v, q), (v,⊥), (v,>) offer no choice, so their owner is irrelevant.



automaton uses priorities i, i+ 1, . . . , 2k−1, we can use ⊥ for free (with priority
2k − 1), but for > we may need to pay with an additional priority 2k, yielding
index (i, 2k). To emphasise the fact that an automaton in question is weak, we
often call its index the weak index.

Game automata. In this work we study so-called game automata, i.e., alternating
automata with transitions of the following forms:

> , ⊥ , (qd, d) , (qL, L) ∨ (qR, R) , (qL, L) ∧ (qR, R)

for d ∈ {L, R} and qL, qR ∈ Q.
The class of languages recognized by game automata is closed under com-

plementation: the usual complementation procedure of increasing the priorities
by one and swapping existential and universal transitions works. However it
is neither closed under union nor intersection. For instance, let Lσ = {t ∈
T{a,b} : t(L) = t(R) = σ}. Obviously, La and Lb are recognisable by game au-
tomata, but La ∪ Lb is not. Note that the last example also shows that game
automata do not recognise all regular languages. On the other hand they extend
across the whole alternating index hierarchy [FMS13].

The main similarity between game automata and deterministic automata is
that their acceptance can be expressed in terms of runs, which are relabellings
of input trees induced uniquely by transitions. For a game automaton A and an
initial state qI , with each partial tree t one can associate the run

ρ(A, t, qI) : dom(t) ∪ holes(t)→ QA ∪ {>,⊥, ∗}

such that ρ(ε) = qI and for all v ∈ dom(t), if ρ(v) = q, δ(q, t(v)) = bv, then

– if bv is (qL, L) ∨ (qR, R) or (qL, L) ∧ (qR, R), then ρ(vL) = qL and ρ(vR) = qR;
– if bv = (qd, d) for some d ∈ {L, R}, then ρ(vd) = qd and ρ(vd̄ ) = ∗;
– if bv = ⊥ then ρ(vL) = ρ(vR) = ⊥, and dually for >;

and if ρ(v) ∈ {>,⊥, ∗}, then ρ(vL) = ρ(vR) = ∗. Observe that ρ(v) is uniquely
determined by the labels of t on the path leading to v.

A run ρ = ρ(A, t, qI) on a total tree t is naturally interpreted as a game
Gρ(A, t, qI) with positions dom(t)−ρ−1(∗), where edges follow the child relation
and loop on ρ−1({>,⊥}), priority of v is ΩA(ρ(v)) with ΩA(⊥) = 1, ΩA(>) = 0,
and the owner of v is ∃ iff δ(ρ(v), t(v)) = (qL, L) ∨ (qR, R) for some qL, qR ∈ QA.
Clearly Gρ(A, t, qI) is equivalent to G(A, t, qI). We say that ρ is accepting, if ∃
has a winning strategy in Gρ(A, t, qI).

3 Computing the weak index

Informally, we would like to compute the weak index of a regular language given
via a game automaton. There are two points to clarify here.

First, what is the weak index of a language L? We would like to say that it is
the minimal index of a weak alternating automaton recognizing L, but how do



we compare (i, j) and (i+ 2, j+ 2)? And what about (i, j) and (i+ 1, j+ 1)? We
resolve this issue by looking at the classes of recognised languages. For i ≤ j ∈ N,
letRMw (i, j) be the class of languages recognised by weak alternating automata
of index (i, j). We can always scale down the priorities so that the lowest one is
either 0 or 1, so it suffices to consider the following classes of languages:

Πw
n = RMw (0, n) , Σw

n = RMw (1, n+ 1) , ∆w
n = Πw

n ∩Σw
n

for n ∈ N (n > 0 in the case of ∆w
n). These classes, naturally ordered by inclusion,

constitute the weak index hierarchy. The weak index of a language L is the least
class C in the weak index hierarchy such that L ∈ C.

This brings us to the second issue: such class need not exist, because a game
language need not be weakly recognisable. In [NW03] it is shown that a deter-
ministic automaton recognises a weakly recognisable language if and only if it
does not contain a forbidden pattern called split. The pattern is defined in terms
of paths in the automaton, that is, sequences of states such that each state oc-
curs in some transition for its predecessor in the sequence. A split consists of a
branching transition δ(q, a) = (qL, L)∧(qR, R), and paths from qL to q and from qR
to q, one with odd minimal priority j1, the other with even minimal priority j2,
satisfying j1 < j2. Since game automata are closed under dualisation, we must
also be prepared for the dual split, which is defined like the split, except that
the transition is controlled by ∃, i.e., δ(q, a) = (qL, L) ∨ (qR, R), and the minimal
priorities satisfy j1 > j2. The following is an immediate corollary from the proof
of the result of [NW03].

Fact 1. If a game automaton A contains a split or a dual split reachable from
state p, then the language L(A, p) is not weakly recognisable.

Now we can properly formulate our main result.

Theorem 1. For a game automaton A with n states and a state q of A, if A
does not contain a split or a dual split reachable from q then L(A, q) is weakly
recognisable and its weak index can be computed effectively.

Moreover, the witnessing automata with at most quadratic state-space can be
constructed effectively within the time of solving the emptiness problem for A.

The proof consists in a procedure computing the least class in the weak index
hierarchy containing L(A, q), denoted wclass(A, q). The procedure works recur-
sively on the DAG of strongly-connected components, or SCCs, of A (maximal
sets of mutually reachable states). We identify SCCs of A with automata ob-
tained by restricting A to the set of states in the SCC. Note that transitions
originating in an SCC B can lead to states that are not in B any more. We
call these states the exits of B. Our procedure computes wclass(A, q) based on
wclass(A, p) for exits p of the SCC B containing q. Those classes are aggregated
in a way dependent on the internal structure of B, or more precisely, on the way
in which the state p is reachable from B. The aggregation is be done by means
of auxiliary operations on classes. Two most characteristic are(

Πw
n−1
)∃

=
(
∆w
n

)∃
=
(
Σw
n

)∃
= Σw

n ,
(
Πw
n

)∀
=
(
∆w
n

)∀
=
(
Σw
n−1
)∀

= Πw
n .



We also use the bar notation for the dual classes,

Πw
n = Σw

n , Σw
n = Πw

n , ∆w
n = ∆w

n,

and Φ ∨ Ψ for the least class containing Φ and Ψ .
Before moving on to the details of the algorithm, we perform simple pre-

processing. First, we eliminate trivial states. For each state q of A such that
L(A, q) = ∅, we change transitions of the form (q, d) ∨ (q′, d′) to (q′, d′), and
transitions of the form (q, d) ∧ (q′, d′) or (q, d) to ⊥. Dually, if L(A, q) = TrA,
we replace (q, d) ∧ (q′, d′) with (q′, d′), and (q, d) ∨ (q′, d′) and (q, d) with >.
After this phase, the automaton contains only non-trivial states, that is, from
each state q the automaton accepts some tree and rejects some other tree. The
algorithmic cost of this preprocessing amounts to testing emptiness for L(A, q)
and L(A, q), where automaton A is dualised automaton A. Emptiness for game
automata can be tested by determining the winner in a parity game similar to
the game G(A, t, q) discussed in Section 2. The difference is that the component
t of the game is not present, and instead ∃ chooses the labels determining the
transitions of A. Since each tree node can be only reached in one way by the
computation of A, these choices are trivially consistent, and a tree together with
an accepting run can be recovered from each winning strategy for ∃. The game
uses the same priorities as A, and its size is proportional to the size of A.

The second stage is eliminating useless priorities. An n-component of au-
tomaton A is a maximal set of states that are mutually reachable via states
of priority at least n. We say that an n-component is non-trivial if for some
of its states p, q (not necessarily different), p occurs in some transition from q.
Automaton A is priority-reduced, if for all n > 0, each n-component of A is
non-trivial and contains a state of priority n. Each game automaton can be ef-
fectively transformed into an equivalent priority-reduced game automaton. To
do it, we iteratively decrease priorities in the n-components of A, for n ≥ 1. We
pick an n-component that is not priority-reduced; if it is trivial, we set all its
priorities to n−1; if it is non-trivial but does not contain a state of priority n, we
decrease all its priorities by 2 (this does not influence the recognised language).
After finitely many steps the automaton is priority-reduced. Note that no trivial
states are introduced.

Let us now describe the conditions that trigger applying the operations de-
scribed above to previously computed classes. We begin with some shorthand
notation. Let q′, q′′ be a pair of states in B. Let maxΩ(q′ → q′′) be the maximal
n such that there exists an n-path (a path with minimal priority n) from q′ to
q′′ in B. Observe that since B is an SCC, such n is well-defined (at least 0). Also,
since the automaton is priority-reduced, for each n′ ≤ maxΩ(q′ → q′′) there is
an n′-path from q′ to q′′ in B.

An ∀-branching transition in B is a transition of the form δ(q′, a) = (qL, L)∧
(qR, R) with all three states q′, qL, qR in B; dually for ∃.

We say that a state p is (∃, n)-replicated by B if there are states q′, q′′ in
B and a letter a such that δ(q′, a) = (q′′, L) ∨ (p, R) (or symmetrically) and
maxΩ(q′′ → q′) ≥ n. Dually, p is (∀, n)-replicated if the transition above has the
form δ(q′, a) = (q′′, L) ∧ (p, R) (or the symmetrical).



We can now describe the procedure. By duality we can assume that the min-
imal priority in B is 0. If A contains no loop reachable from q, set wclass(A, q) =
∆w

1 . If it contains an accepting loop reachable from q, but no rejecting loop reach-
able from q, set wclass(A, q) = Πw

1 . Symmetrically, if it contains a rejecting loop
reachable from q, but no accepting loop reachable from q, set wclass(A, q) = Σw

1 .
Otherwise, consider two cases.

Assume first that B contains no ∀-branching transition. In that case, for every
transition δ(q, a) of B that is controlled by ∀, at most one of the successors of
δ(q, a) is a state of B. Hence, B can be seen as a co-deterministic tree automaton
(exits are removed from the transitions; if both states in a transition are exits,
the transition is set to ⊥). Thus, the automaton B̄ dual to B is a deterministic
tree automaton. For deterministic tree automata it is known how to compute
the weak index [Mur08]. Set wclass(A, q) to

∆w
2 ∨ wclass(B̄, q) ∨

∨
p∈F

wclass(A, p) ∨
∨

p∈F∃,1

wclass(A, p)∃ ∨
∨

p∈F∀,0

wclass(A, p)∀ (2)

where F ⊆ QA is the set of exits of B, F∃,1 ⊆ F is the set of states (∃, 1)-
replicated by B, and similarly for F∀,0.

Assume now that B does contain an ∀-branching transition. By the hypothesis
of the theorem, for every ∀-branching transition δ(q′, a) = (qL, L) ∧ (qR, R) in B,
it must hold that maxΩ(qL → q′) ≤ 1 and maxΩ(qR → q′) = 0, or symmetrically.
We call a state q′′ (either qL or qR) in an ∀-branching transition bad if maxΩ(q′′ →
q′) = 0. Let B− be obtained from B by replacing all these bad states in the ∀-
branching transitions with >, and let A− be the automaton A with B replaced
by B− (B− contains no ∀-branching transitions). Let us put

wclass(A, q) = ∆w
2 ∨

(
wclass(A−, q)

)∀
. (3)

4 On the correctness of the algorithm

To show correctness of the algorithm described in Section 3, we need to prove
that wclass(A, q) ≤ RMw (i, j) if and only if L(A, q) can be recognised by a weak
alternating automaton of index (i, j). The left-to right part of this equivalence
is proved by constructing an appropriate weak alternating automaton (see Ap-
pendix A); the construction is effective and involves only quadratic blow-up in
the number of states, thus proving the additional claim of Theorem 1. We discuss
in more detail the opposite implication, equivalently formulated as follows.

Lemma 1. If wclass(A, q) ≥ RMw (i, j) then L(A, q) cannot be recognised by a
weak alternating automaton of index (i+ 1, j + 1).

To prove it we use a topological argument, relying on the following simple
observation [DM07], essentially proved already by Mostowski [Mos91b]. Let us
assume the usual Cantor-like topology on the space of trees, with the open sets
defined as arbitrary unions of sets of the form {t ∈ TrA

∣∣ t(v) = a} for v ∈ {L, R}∗



and a ∈ A. Let Π0
n, Σ0

n, and ∆0
n be the finite Borel classes; that is, Σ0

1 is the class
of the open sets, Π0

n consists of the complements of sets from Σ0
n, ∆0

n = Σ0
n∩Π0

n,
and Σ0

n+1 consists of countable unions of sets from Π0
n.

Fact 2. If L is recognisable by a weak alternating automaton of index (0, j) then
L ∈ Π0

j . Dually, for index (1, j + 1), we have L ∈ Σ0
j .

Thus, in order to show that a language is not recognisable by weak alternating
automaton of index (0, j) it is enough to show that it is not in Π0

j . This can be
done by providing a continuous reduction of some language K /∈ Π0

j to L. By
a continuous reduction of K ⊆ TrA to L ⊆ TrB we mean a continuous function
f : TrA → TrB such that f−1(L) = K. The fact that K can be continuously
reduced to L is denoted byK ≤W L, yielding so-called Wadge pre-order [Wad83].
The pre-order ≤W is consistent with the Borel hierarchy: for K ≤W L, if L ∈ C
for some Borel class C, then also K ∈ C. By contraposition, if K /∈ C, then L /∈ C.

The yardstick languages we shall use, introduced by Skurczyński [Sku93], can
be defined by means of two dual operations on tree languages.

Definition 1. For L ⊆ TrA define

L∀ =
{
t ∈ TrA

∣∣ ∀n∈N t�LnR∈ L} , L∃ =
{
t ∈ TrA

∣∣ ∃n∈N t�LnR∈ L} .
It is straightforward to check that these operations are monotone with respect

to the Wadge ordering; that is,

L ≤W M implies L∀ ≤W M∀ and L∃ ≤W M∃.

Definition 2 ([Sku93]). Consider the alphabet {⊥,>}. Let

S(0,1) =
{
t ∈ Tr{⊥,>}

∣∣ t(ε) = >
}∀

, S(1,2) =
{
t ∈ Tr{⊥,>}

∣∣ t(ε) = ⊥
}∃

.

The remaining languages are defined inductively,

S(0,j+1) = (S(1,j+1))
∀ , S(1,j+1) = (S(0,j−1))

∃ .

For notational convenience, let S(0,0) = Tr{⊥,>} and S(1,1) = ∅.
Note that the languages are dual to each other: S(1,j+1) = Tr{⊥,>} − S(0,j).

A straightforward reduction shows that S(i′,j′) ≤W S(i,j) whenever (i, j) is at
least (i′, j′). But the crucial property is the following.

Fact 3 ([Sku93]). S(0,n) ∈ Π0
n −Σ0

n and S(1,n+1) ∈ Σ0
n −Π0

n.

Summing up, if S(i,j) ≤W L then L is not recognisable by a weak alternating
automaton of index (i+ 1, j+ 1). Observe that the language S(i,j) can be recog-
nised by a weak game automaton of index (i, j). One consequence of this is the
strictness of the hierarchy.

Corollary 1. The weak index hierarchy is strict, even when restricted to lan-
guages recognisable by game automata.

Another consequence is that it is relatively easy to give the reductions we
need to prove Lemma 1, summarised in the claim below (see Appendix B).

Lemma 2. If wclass(A, q) ≥ RMw (i, j) then S(i,j) ≤W L(A, q).



5 Conclusions

Game automata were originally introduced as the largest class extending deter-
ministic automata (satisfying natural closure properties), such that substitution
preserves the Wadge equivalence [DFM11]. Despite structural simplicity, they
have enough expressive power to inhabit all levels of the non-deterministic index
hierarchy and the alternating index hierarchy. In [FMS13] it was shown that
these two hierarchies are decidable when the input language is recognized by a
game automata.

So far, the only known class having all index problem decidable was the class
of deterministic automata. In this paper we have shown that the same holds for
game automata. This has been done by providing a procedure computing for a
game automaton an equivalent weak alternating automaton with the minimal
index and a quadratic number of states.

Another notable feature of tree languages recognised by deterministic au-
tomata is that within this class, the properties of being Borel and being weakly
recognizable are coextensive. Since the former is decidable [NW03], the latter
is also decidable. This correspondence can be made even more precise: for lan-
guages recognised by deterministic automata, the weak index and the Borel rank
coincide [Mur08]. Notice that this implies that the Borel rank for deterministic
languages is also decidable, a result originally proved in [Mur05]. As a corollary
of the work presented in the previous sections, we obtain that the same is true
for game automata.

Corollary 2. Under restriction to languages recognised by game automata, the
weak index hierarchy coincides with the Borel hierarchy, and both are decidable.

Proof. From [Mur08], we know that if wclass(A, q) ≤ RMw (i, j) then L(A, q) ≤W

S(i,j). The coincidence between weak index and Borel rank thence follows by ap-
plying Lemma 2 and Fact 3. Decidability is a consequence of Theorem 1.

This last result is yet another argument in support of the claim that all good
properties enjoyed by languages recognised by deterministic automata are also
enjoyed by languages recognised by game automata.
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A Upper bounds

Lemma 3. If wclass(A, q) ≤ RMw (i, j), one can construct effectively a weak
alternating automaton of index (i, j) with O(|QA|2) states, recognising L(A, q).

The algorithm never returns Πw
0 = RMw (0, 0) nor Σw

0 = RMw (1, 1), so the
lowest (i, j) to consider are (0, 1) and (1, 2). Assume (i, j) = (0, 1). Examining
the algorithm we see that this happens only if no rejecting loop is reachable
from state q. Since automaton A is priority-reduced, it means that A uses only
priority 0. Hence, it is already a (0, 1) weak automaton (not (0, 0), because of
possible ⊥ transitions). For (i, j) = (1, 2) the argument is entirely analogous.

For higher indices we consider three cases, leading to three different construc-
tions of weak alternating automata recognising L(A, q).

B has no ∀-branching transitions, (i, j) = (1, j), j ≥ 3. In an initial part of the
weak automaton recognising L(A, q) the players declare whether during the play
on a given tree they would leave component B or not. Since B has no ∀-branching
transitions, as long as the play stays in B, each choice of ∀ amounts to leaving
B or staying in B. Hence, each strategy of ∃ admits exactly one path staying in
B, finite or infinite. We first let ∃ declare l∃ ∈ {leave, stay}: leave means that the
path is finite, stay means that it is infinite.

– If l∃ = leave, we move to a copy of B with all the priorities set to 1. By
Equation (2), for every exit f of B we have wclass(A, f) ≤ RMw (1, j).
Therefore, we can compose this copy of B with all the automata for L(A, f)
to obtain an automaton of index (1, j), and we are done.

– Assume that l∃ = stay. Given the special shape of ∃’s strategies, this means
that ∃ claims that the play will only leave B if at some point ∀ chooses an exit
f in a transition whose other end is in B. Since the minimal priority in B is
0, all these exists are (∀, 0)-replicated. We check ∃’s claim by substituting all
other exits in transitions with rejecting states, i.e. weak alternating automata
of index (3, 3) (recall that j is at least 3). Thus, the only exits that are not
substituted are the (∀, 0)-replicated ones.

Now, assuming l∃ = stay, we ask ∀ whether he plans to take one of these
exists: he declares l∀ ∈ {leave, stay}, accordingly.

– If l∀ = stay, the play moves to the weak alternating automaton of index
wclassdet(B̄), corresponding to the co-deterministic automaton B with the
remaining exits removed from transitions (they were only present in transi-
tions of the form (qL, L) ∧ (qR, R), with the other state in B).

– Assume that l∀ = leave. In that case we move to a copy of B with all
the priorities set to 2. The only exits left are the (∀, 0)-replicated ones. By
Equation (2), for such exists f , wclass(A, f) ≤ RMw (0, j − 2): otherwise
wclass(A, f) ≥ RMw (1, j − 1), so

(
wclass(A, p)

)∀ ≥ RMw (0, j − 1) and
RMw (0, j − 1) is not smaller than RMw (1, j). In particular, we can find a
weak alternating automaton of index (2, j) recognising L(A, f). So the whole
subautomaton is a weak alternating automaton of index (2, j).



B has no ∀-branching transitions, (i, j) = (0, j), j ≥ 2. The simulation starts
in a copy of B with all the priorities set to 0. If the play leaves B at this stage
then we move to the appropriate automaton of index (0, j). At any moment ∀
can pledge that:

– the play will no longer visit transitions δ(q′, a) of the form (fL, L) ∧ (fR, R),
(fL, L) ∨ (fR, R), (qL, L) ∨ (fR, R), (fL, L) ∨ (qR, R), or (qL, L) ∨ (qR, R), where
maxΩ(qL → q′) = maxΩ(qR → q′) = 0 and fL, fR are exits of B;

– in the transitions he controls, he will always choose the state in B, and win
regardless of ∃’s choices.

If the play stays forever in B but ∀ is never able to make such a pledge, he
loses by the parity condition — it means that infinitely many times a loop from
qL → q′ or qR → q′ is taken with maxΩ(qd → q′) = 0 therefore, the minimal
priority occurring infinitely often is 0.

After ∀ has made the above pledge, ∃ has the following choices:

– She can challenge the first part of ∀’s pledge, declaring that at least one
such transition is reachable. In that case we move to a copy of B with all the
priorities set to 1 and all the transitions controlled by ∃. In this copy, reaching
any of the disallowed transitions entails acceptance—the play immediately
moves to a (2, 2) final component.

– She can accept the first part of ∀’s pledge.

After ∃ has accepted the first part of ∀’s pledge, we can assume that the rest
of the game in B is a single infinite branch. Indeed, by the hypothesis of the
theorem, for every ∃-branching transition δ(q′, a) = (qL, L) ∨ (qR, R) in B it must
hold that maxΩ(qL → q′) = maxΩ(qR → q′) = 0; otherwise, B would contain a
dual split. Thus, no ∃-branching transition can be reached, and since B contains
no ∀-branching transitions at all, the game can continue in B in only one way.

Now ∃ must challenge the second part of ∀’s pledge. We ask her whether she
plans to leave B or not, and she declares l∃ ∈ {leave, stay}.

– If l∃ = stay then we proceed to the weak automaton of index wclass(B, q),
corresponding to B treated as a co-deterministic automaton. We are only
interested in the behaviour of this automaton over trees in which there is
exactly one branch in B, and it is infinite. Over such trees we want to make
sure that neither players ever chooses to exit. This is already ensured: when
B is turned into a co-deterministic tree automaton, the exits are simply
removed from transitions (if both states are exits, the transition is changed
to a transition to a (2, 2) automaton, but such transitions will never be used
over trees we are interested in).

– If l∃ = leave then we move to a copy of B with all the priorities set to 1.
The only available exits of B in this copy are those in transitions of the form
δ(q′, q) = (qL, L) ∨ (f, R) (or symmetrical) with maxΩ(qL → q′) > 0 (in other
transitions the exits are removed, if both states are exits, they are replaced
by a final (2, 2)-component); therefore wclass(A, f) ≤ RMw (1, j) and we
can simulate it with a (1, j)-automaton.



B contains ∀-branching transitions If B contains an ∀-branching transition, the
algorithm returns wclass(A, q) of the form RMw (0, j). Let us construct a weak
automaton of index (0, j) that recognises L(A, q). The automaton starts in a copy
of B with all the priorities set to 0. At any moment ∀ can declare that no-one will
ever take any bad transition in B. If he cannot make such a declaration, it means
that ∃ can force infinitely many bad transitions to be taken, and she wins. After
∀ has made such declaration, we need to recognise the language L(A−, q) (note
that the bad transitions in A− are made directly losing for ∀). For this we can
use a weak automaton of index wclass(A−) ≤ RMw (0, j), already constructed.

Constructed automaton has quadratic number of states. The preprocessing we
make to guarantee that the automaton is priority-reduced does not increase the
number of states. The resulting automaton consists of:

– a fixed number of copies of B,
– a weak alternating automaton of index wclassdet(B̄),
– a fixed number of states where players make decisions (e.g. l∀ ∈ {leave, stay}),
– inductively constructed automata recognizing L(A, f) for all exists f of B.

By [Mur08, Theorem 5.5], the automaton in the second item has O(|QB|2) states.
Hence, we inductively ensure the constructed automaton has O(|QA|2) states.

When A is priority-reduced with all the states productive, the rest of the
construction is polynomial in the number of states of A. Therefore, the whole
construction can be done in the time of solving the emptiness and completeness
problems of L(A, q) for each state q of A separately.

B Lower bounds

Lemma 2. If wclass(A, q) ≥ RMw (i, j) then S(i,j) ≤W L(A, q).

We prove this claim by induction on the structure of the DAG of SCCs
of A reachable from q, following the cases of the algorithm just like for the
upper bound. One of the cases is covered by the procedure for deterministic
automata, which we use as a black box. But in order to prove Lemma 1 we need
to know that it preserves our invariant. And indeed, just like here, it is a step
in the correctness proof: if the procedure returns at least RMw (i, j), then S(i,j)

continuously reduces to the recognised language [Mur08]. The remaining cases
essentially correspond to the items in Lemma 4 (below).

Lemma 4. Assume that q is a state of A, B is the SCC of A containing q, and
p is a state of A reachable from q (from the same or different SCC).

1. L(A, p) ≤W L(A, q).
2. L(A−, q) ≤W L(A, q).
3. If an accepting loop is reachable from q, then S(0,1) ≤W L(A, q).
4. If a rejecting loop is reachable from q, then S(1,2) ≤W L(A, q).



5. If p is (∀, 0)-replicated by B then (L(A, p))∀ ≤W L(A, q).
6. If p is (∃, 1)-replicated by B then (L(A, p))∃ ≤W L(A, q).

Proof. The proof is based on the following observation. Let t ∈ PTrA be a partial
tree and ρ = ρ(A, t, qI) be the run of an automaton A on t. We say that t resolves
A from qI ∈ QA if ρ(h) 6= ∗ for each hole h of t and whenever t �vd is the only
total tree in {t �vL, t �vR}, either ρ(vd) = ∗ or Gρ(A, t �vd, ρ(vd)) is losing for
the owner of v. Assume that a tree t with a single hole h resolves A from qI
and take ρ = ρ(A, t, qI). The notion of resolving is designed precisely so that
t[h := s] ∈ L(A, qI) iff s ∈ L(A, ρ(h)) for all s ∈ TrA.

Let us begin with (1). Since all the states of A are non-trivial, we can
construct a tree t with a hole h such that t resolves A from q and the state
ρ(A, t, q)(h) is p. In that case t[h := s] ∈ L(A, q) if and only if s ∈ L(A, p).
Therefore, the function s 7→ t[h := s] is a continuous reduction witnessing that
L(A, p) ≤W L(A, q).

For (2), recall that A− is obtained from A by turning some choices for ∀ to
>; that is, some transitions δ(q′, a) of the form (qL, L) ∧ (qR, R) are set to (qL, L),
(qR, R), or >. This means that if a node v of tree t has label a and gets state q′ in
the associated run ρ(A−, t, q), then t�vL, t�vR, or both of them, respectively, are
immediately accepted by A−. In the corresponding run of the original automaton
A, however, these subtrees will be inspected by the players and we should make
sure they are accepted. Since qL and qR are non-trivial in A, we can do it by
replacing these subtrees with tqL ∈ L(A, qL), or tqR ∈ L(A, qR), accordingly. This
gives a continuous reduction of L(A−, q) to L(A, q).

To prove (3), let us fix a state p on an accepting loop C, reachable from
q. By (1) and transitivity of ≤W, it is enough to show that S(0,1) ≤W L(A, p).
Let t be a tree with hole h such that t resolves A from p, the state ρ(A, t, p)
is p, and the states on the shortest path from the root to h correspond to the
accepting loop C. Since all states in A are non-trivial, we can also find a full
tree t′ /∈ L(A, p). Let t0 = t′ and tn = t[h := tn−1] for n > 0, and let t∞ be the
tree defined co-inductively as

t∞ = t[h := t∞] .

Then, tn /∈ L(A, p) for all n ≥ 0, but t∞ ∈ L(A, p). To get a continuous
function reducing S(0,1) to L(A, p), map tree s ∈ Tr{⊥,>} to tm, where m =

min
{
i
∣∣ s(LiR) = ⊥

}
, or to t∞ if

{
i
∣∣ s(LiR) = ⊥

}
is empty. Item (4) is analo-

gous.
For (5), let us assume that δ(q, a) = (qL, L)∧(p, R) is the transition witnessing

that p is (∀, 0)-replicated by A. Let us also fix the path qL → q with minimal
priority 0. Now, let t be a tree with a hole h that resolves A from q and the
value of the run of A in h is q. Similarly, let t′ be the tree with a hole h′ that
resolves A from qL and the value of the respective run is q. Let us construct a
continuous function that reduces (L(A, p))∀ to L(A, q). Assume that a given tree
s has subtrees si under the nodes LiR. Let us define co-inductively ti as

ti = a(t′[h′ := ti+1], si),



i.e. the tree with the root labelled by a and two subtrees: t′[h′ := ti+1] and si.
Finally, let f(s) be t[h := t0]. Note that the run ρ(A, f(s), q) labels the hole h of t
by q′. Therefore, f(t) ∈ L(A, q) if and only if t0 ∈ L(A, q′) and ti ∈ L(A, q) if and
only if ti+1 ∈ L(A, q) and si ∈ L(A, p). Since the minimal priority on the path
from ti to ti+1 is 0, if no si belongs to L(A, p) then f(t) /∈ L(A, q). Therefore, f
is in fact the desired reduction. The proof of (6) is entirely analogous.

Using Lemma 4, and the guarantees for deterministic automata discussed
earlier, we prove Lemma 2 as follows.

Proof of Lemma 2. By induction on the recursion depth of the algorithm exe-
cution we prove that if wclass(A, p) ≥ RMw (i, j) then S(i,j) ≤W L(A, p).

Let us start with the lowest level. Assume that (i, j) = (0, 1) (for (1, 2) the
proof is analogous). Examining the algorithm we see that this is only possible if
there is an accepting loop in A, reachable from q. Then, by Lemma 4 Item (3),
S(0,1) ≤W L(A, q).

For higher levels we proceed by case analysis. First we cover the possi-
ble reasons why equation (2) can give at least RMw (i, j). If wclass(B̄, q) ≥
RMw (i, j), the invariant follows immediately from the guarantees for deter-
ministic automata, and the duality between indices and between Skurczyński
languages. If wclass(A, p) ≥ RMw (i, j) for some p ∈ F , we use the fact that
L(A, p) ≤W L(A, q), and get S(i,j) ≤W L(A, q) by transitivity. Then, assume
that wclass(A, p)∃ ≥ RMw (i, j) for some p ∈ F∃,1 (for p ∈ F∀,0 the proof is anal-
ogous). That means that wclass(A, p) ≥ RMw (0, j′) such that (RMw (0, j′))

∃
=

RMw (1, j′ + 2) ≥ RMw (i, j). By the inductive hypothesis S(0,j′) ≤W L(A, p),
so by the monotonicity of ∃ and Lemma 4 Item (6), S(1,j′+2) =

(
S(0,j′)

)∃ ≤W

(L(A, p))∃ ≤W L(A, q). But since RMw (1, j′ + 2) ≥ RMw (i, j), by the Wadge
ordering of Skurczyński’s languages S(i,j) ≤W S(1,j′+2), and S(i,j) ≤W L(A, q)
follows by transitivity.

Finally, assume that wclass(A, q) is computed according to (3); that is, the
component B contains an ∀-branching transition δ(q′, a) = (qL, L)∧(qR, R). As we
have already observed, the hypothesis of the theorem implies that in that case
maxΩ(qL → q′) = 0 and maxΩ(qR → q′) ≤ 1 (or symmetrically). That means
that qR is ∀, 0-replicated by B, so by Lemma 4 Item (5), (L(A, qR))∀ ≤W L(A, q).
But since B is strongly connected, q is reachable from qL and qL, so by Lemma 4
Item (1) we have L(A, q) ≤W L(A, qR). Since ∀ is monotone, we conclude that

(L(A, q))∀ ≤W L(A, q) . (4)

(It looks paradoxical, but note that (L∀)∀ ≤W L∀ for all L.) As wclass(A, q) ≥
RMw (i, j), it must hold that wclass(A−, q) ≥ RMw (1, j′) for some j′ such
that (RMw (1, j′))

∀
= RMw (0, j′) ≥ RMw (i, j). By the induction hypothe-

sis, S(0,j′) ≤W L(A−, q). Consequently, by Lemma 4 Item (2) and transitiv-
ity, S(0,j′) ≤W L(A, q). Since the operation ∀ is monotone, (4) gives S(0,j′) =(
S(1,j′)

)∀ ≤W L(A, q), and we conclude by the ≤W ordering of Skurczyński’s
languages.
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