On uniformisability in monadic second-order logic

Michał Skrzypczak

LIAFA, University of Warsaw

Relation $R \subseteq X \times Y$

Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$

Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Theorem [Axiom of Choice]

Every relation admits a uniformisation.

Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Theorem [Axiom of Choice]

Every relation admits a uniformisation.

What about definability?

Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Theorem [Axiom of Choice]

Every relation admits a uniformisation.

What about definability?

Theorem (Novikov, Kondô [1938])

Every co-analytic (Π_1^1) relation admits a co-analytic uniformisation.

Structures

w = (b)-(a (c)(b (a)

$$w = \underbrace{b}_{a} \underbrace{c}_{b} \underbrace{b}_{a} \underbrace{w}_{a} \underbrace{\{1, \dots, |w|\}}_{a} \rightarrow A$$

Words:

Trees:

Words:

 $t\colon \{0,1\}^{<\omega} \to A$

$$w = \underbrace{b}_{a} \underbrace{c}_{b} \underbrace{a}_{a} \underbrace{c}_{b} \underbrace{a}_{a} \underbrace{w: \{1, \dots, |w|\}} \to A$$

$$\alpha = \underbrace{a}_{a} \underbrace{b}_{c} \underbrace{c}_{c} \underbrace{b}_{b} \underbrace{\cdots}_{a} a: \omega \to A$$

Signature: \leq , $s(x)$, $a(x)$ for $a \in A$

Words:

$$w = \underbrace{b}_{a} \underbrace{c}_{b} \underbrace{a}_{a} \underbrace{c}_{b} \underbrace{a}_{a} \underbrace{w: \{1, \dots, |w|\}} \to A$$

$$\alpha = \underbrace{a}_{a} \underbrace{b}_{c} \underbrace{c}_{c} \underbrace{b}_{b} \underbrace{\cdots}_{a} \underbrace{a: \omega \to A}$$

Signature: \leq , $s(x)$, $a(x)$ for $a \in A$

M. Skrzypczak On uniformisability in monadic second-order logic 3 / 19

First-order (FO) logic:

First-order (FO) logic:

$$\exists_x \quad \forall_x \quad \neg\psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates}$$

First-order (FO) logic:

$$\exists_x \quad \forall_x \quad \neg\psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates} \\ [x, y - \text{nodes of the structure}]$$

First-order (FO) logic:

$$\exists_x \quad \forall_x \quad \neg\psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates} \\ [x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

First-order (FO) logic:

$$\exists_x \quad \forall_x \quad \neg\psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates} \\ [x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

 $+ \exists_X \quad \forall_X \quad x \in X$

First-order (FO) logic:

$$\exists_x \quad \forall_x \quad \neg\psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates} \\ [x, y - \text{nodes of the structure}]$$

Monadic second-order (MSO) logic:

$$\begin{array}{ll} + \ \exists_X & \forall_X & x \in X \\ & & \left[X, \, Y - \text{sets of nodes of the structure}\right] \end{array}$$

First-order (FO) logic: $\exists_x \quad \forall_x \quad \neg \psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates}$ [x, y - nodes of the structure]

Monadic second-order (MSO) logic:

$$+ \exists_X \quad \forall_X \quad x \in X \\ [X, Y - sets of nodes of the structure]$$

 \longrightarrow expressive power subsuming LTL, CTL*, modal μ -calculus, ...

First-order (FO) logic: $\exists_x \quad \forall_x \quad \neg \psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates}$ [x, y - nodes of the structure]

Monadic second-order (MSO) logic:

$$+ \exists_X \quad \forall_X \quad x \in X \\ [X, Y - \text{sets of nodes of the structure}]$$

 \cdots expressive power subsuming LTL, CTL*, modal μ -calculus, ...

Theorem (Rabin [1969])

The satisfiability problem is decidable for MSO over infinite trees.

First-order (FO) logic: $\exists_x \quad \forall_x \quad \neg \psi \quad \varphi \lor \psi \quad \varphi \land \psi \quad \text{predicates}$ [x, y - nodes of the structure]

Monadic second-order (MSO) logic:

$$+ \exists_X \quad \forall_X \quad x \in X \\ [X, Y - \text{sets of nodes of the structure}]$$

 \cdots expressive power subsuming LTL, CTL*, modal μ -calculus, ...

Theorem (Rabin [1969])

The satisfiability problem is decidable for MSO over infinite trees.

vvv applications to verification and model-checking

Fix a formula φ over $A \times B$

Fix a formula φ over $A \times B$

Fix a formula φ over $A\times B$

$$R = \left\{ (s, s') \mid s \otimes s' \models \varphi \right\}$$

Is there ψ such that
Fix a formula φ over $A \times B$

$$R = \left\{ (s, s') \mid s \otimes s' \models \varphi \right\}$$

Is there ψ such that $F = \{(s, s') \mid s \otimes s' \models \psi\}$ uniformises R?

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')Variants:

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')

Variants:

— φ , ψ in FO / MSO?

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')

Variants:

- φ , ψ in FO / MSO?
- Struct are: finite/infinite words/trees?

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')

Variants:

- φ , ψ in FO / MSO?
- Struct are: finite/infinite words/trees?
- ψ may use additional monadic parameters P_1, \ldots, P_n :

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')

Variants:

- φ , ψ in FO / MSO?
- Struct are: finite/infinite words/trees?
- ψ may use additional monadic parameters P_1, \ldots, P_n :

$$F = \{(s,s') \mid s \otimes s' \models \psi(P_1,\ldots,P_n)\}?$$

Fix a formula φ over $A\times B$

Technical assumption: we restrict φ to (s, s') s.t. dom(s) = dom(s')

Variants:

- φ , ψ in FO / MSO?
- Struct are: finite/infinite words/trees?
- ψ may use additional monadic parameters P_1, \ldots, P_n :

$$F = \{(s,s') \mid s \otimes s' \models \psi(P_1,\ldots,P_n)\}?$$

— ψ can be effectively constructed from $\varphi?$

 $_{\rm MSO}$ over finite words \checkmark

 $_{\rm MSO}$ over finite words \checkmark

Take φ over $A \times B$

Take φ over $A\times B$

Take φ over $A \times B$ Let $(s, s') \in F$ if:

 $\begin{array}{l} \mathsf{Take} \ \varphi \ \mathsf{over} \ A \times B \\ \mathsf{Let} \ (s,s') \in F \ \mathsf{if:} \\ \hline - s \otimes s' \models \varphi \end{array}$

$_{\rm MSO}$ over finite words \checkmark

Take φ over $A \times B$ Let $(s, s') \in F$ if:

$$-s \otimes s' \models \varphi$$

— for every s'' such that $s \otimes s'' \models \varphi$

- Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$
- for every s'' such that $s \otimes s'' \models \varphi$

s' is lexicographically smaller than s''

- Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$
- for every s'' such that $s \otimes s'' \models \varphi$

s' is lexicographically smaller than s''

- Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$ - for every s'' such that $s \otimes s'' \models \varphi$
 - s^\prime is lexicographically smaller than $s^{\prime\prime}$
- \dashrightarrow F is effectively MSO-definable

- Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$ - for every s'' such that $s \otimes s'' \models \varphi$
 - s' is lexicographically smaller than s''
- \dashrightarrow F is effectively MSO-definable

Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$ - for every s'' such that $s \otimes s'' \models \varphi$ s' is lexicographically smaller than s'' $\dashrightarrow F$ is effectively MSO-definable

MSO over infinite words ?

Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$ - for every s'' such that $s \otimes s'' \models \varphi$ s' is lexicographically smaller than s'' $\dashrightarrow F$ is effectively MSO-definable

MSO over infinite words ?

Problem: there may be no lexicographically minimal witness:

Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$ - for every s'' such that $s \otimes s'' \models \varphi$ s' is lexicographically smaller than s'' $\dashrightarrow F$ is effectively MSO-definable

MSO over infinite words ?

Problem: there may be no lexicographically minimal witness:

 $\varphi \equiv$ "s' has finitely many a"

Take φ over $A \times B$ Let $(s, s') \in F$ if: $-s \otimes s' \models \varphi$ - for every s'' such that $s \otimes s'' \models \varphi$ s' is lexicographically smaller than s'' $\dashrightarrow F$ is effectively MSO-definable

MSO over infinite words ?

Problem: there may be no lexicographically minimal witness: $\varphi \equiv "s'$ has finitely many a" $(bbbb...) \ge_{\text{lex}} (abbb...) \ge_{\text{lex}} (aabb...) \ge_{\text{lex}} (aaab...) \ge_{\text{lex}} ...$

Lifsches, Shelah, JSL [1998]

THEOREM 6.3. $(\omega, <)$ has the uniformization property. PROOF. By [1].

REFERENCES

[1] J. R. BÜCHI and L. H. LANDWEBER, Solving sequential conditions by finite-state strategies, Transactions of the American Mathematical Society, vol. 138 (1969), pp. 295–311.

Lifsches, Shelah, JSL [1998]

THEOREM 6.3. $(\omega, <)$ has the uniformization property. PROOF. By [1].

REFERENCES

[1] J. R. BÜCHI and L. H. LANDWEBER, Solving sequential conditions by finite-state strategies, Transactions of the American Mathematical Society, vol. 138 (1969), pp. 295–311.

Theorem (Siefkes [1975], Rabinovich [2007])

MSO has effective uniformisation property over infinite words.

Lifsches, Shelah, JSL [1998]

THEOREM 6.3. $(\omega, <)$ has the uniformization property. PROOF. By [1].

REFERENCES

[1] J. R. BÜCHI and L. H. LANDWEBER, Solving sequential conditions by finite-state strategies, Transactions of the American Mathematical Society, vol. 138 (1969), pp. 295–311.

Theorem (Siefkes [1975], Rabinovich [2007])

MSO has effective uniformisation property over infinite words.

Proof

Uniformise accepting runs of a non-deterministic Büchi automaton equivalent to φ :

Lifsches, Shelah, JSL [1998]

THEOREM 6.3. $(\omega, <)$ has the uniformization property. PROOF. By [1].

REFERENCES

[1] J. R. BÜCHI and L. H. LANDWEBER, Solving sequential conditions by finite-state strategies, Transactions of the American Mathematical Society, vol. 138 (1969), pp. 295–311.

Theorem (Siefkes [1975], Rabinovich [2007])

MSO has effective uniformisation property over infinite words.

Proof

Uniformise accepting runs of a non-deterministic Büchi automaton equivalent to φ :

pick the \leq_{lex} -minimal accepting run $(F <_{\text{lex}} (Q-F))$

Lifsches, Shelah, JSL [1998]

THEOREM 6.3. $(\omega, <)$ has the uniformization property. PROOF. By [1].

REFERENCES

[1] J. R. BÜCHI and L. H. LANDWEBER, Solving sequential conditions by finite-state strategies, Transactions of the American Mathematical Society, vol. 138 (1969), pp. 295–311.

Theorem (Siefkes [1975], Rabinovich [2007])

MSO has effective uniformisation property over infinite words.

Proof

Uniformise accepting runs of a non-deterministic Büchi automaton equivalent to φ :

pick the \leq_{lex} -minimal accepting run $(F <_{\text{lex}} (Q-F))$

Theorem (?)

FO over finite words does not have uniformisation property.

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Consider $A = \{a, \sharp\}$, $B = \{0, 1, ?, \sharp\}$, and R containing:

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Consider $A = \{a, \sharp\}, B = \{0, 1, ?, \sharp\}$, and R containing: $a \ a \ a \ a \ \cdots \ a \ a \ \sharp \ a \ a \ a \ \cdots \ a \ a$ $0 \ 1 \ 0 \ 1 \ \cdots \ 0 \ 1 \ \sharp \ ? \ ? \ ? \ \cdots \ ? \ ?$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Consider $A = \{a, \sharp\}, B = \{0, 1, ?, \sharp\}$, and R containing: $a \ a \ a \ a \ \cdots \ a \ a \ \sharp \ a \ a \ a \ \cdots \ a \ a$ $0 \ 1 \ 0 \ 1 \ \cdots \ 0 \ 1 \ \sharp \ ? \ ? \ ? \ \cdots \ ? \ ?$ i.e. $\binom{a \ a \ a \ }{0 \ 1}^* \ \sharp \ \binom{a \ }{2}^*$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Consider $A = \{a, \sharp\}, B = \{0, 1, ?, \sharp\}$, and R containing: $a \ a \ a \ a \ \cdots \ a \ a \ \sharp \ a \ a \ a \ a \ \cdots \ a \ a$ $0 \ 1 \ 0 \ 1 \ \cdots \ 0 \ 1 \ \sharp \ ? \ ? \ ? \ \cdots \ ? \ ?$ and i.e. $\binom{a \ a \ a \ }{0 \ 1}^* \ \sharp \ \binom{a \ }{2}^*$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Theorem (?)

FO over finite words does not have uniformisation property.

Proof
Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

Take n big enough s.t. $uw^n v \in F$ iff $uw^{n+1}v \in F$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

 $\label{eq:constraint} \mbox{Take n big enough s.t.} \quad uw^n v \in F \quad \mbox{iff} \quad uw^{n+1} v \in F$

$$\begin{pmatrix} a \\ ? \end{pmatrix}^{2n+1} \sharp \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}^n \in F \quad \text{and} \quad \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}^n \sharp \begin{pmatrix} a \\ ? \end{pmatrix}^{2n+1} \in F$$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

 $\label{eq:constraint} \mathsf{Take}\ n\ \mathsf{big}\ \mathsf{enough}\ \mathsf{s.t.} \qquad uw^nv \in F \quad \mathsf{iff} \quad uw^{n+1}v \in F$

$$\begin{pmatrix} a \\ ? \end{pmatrix}^{2n+1} \sharp \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}^n \in F \quad \text{and} \quad \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}^n \sharp \begin{pmatrix} a \\ ? \end{pmatrix}^{2n+1} \in F$$
$$\begin{pmatrix} a \\ ? \end{pmatrix}^{2n} \sharp \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}^n \in F \quad \text{and} \quad \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}^n \sharp \begin{pmatrix} a \\ ? \end{pmatrix}^{2n} \in F$$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

 $\label{eq:constraint} \mathsf{Take}\ n\ \mathsf{big}\ \mathsf{enough}\ \mathsf{s.t.} \qquad uw^nv \in F \quad \mathsf{iff} \quad uw^{n+1}v \in F$

$$\binom{a}{?}^{2n+1} \sharp \binom{a}{0} \binom{a}{1}^n \in F \quad \text{and} \quad \binom{a}{0} \binom{a}{1}^n \sharp \binom{a}{?}^{2n+1} \in F$$
$$\binom{a}{?}^{2n} \sharp \binom{a}{0} \binom{a}{1}^n \in F \quad \text{and} \quad \binom{a}{0} \binom{a}{1}^n \sharp \binom{a}{?}^{2n} \in F$$

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

 $\label{eq:constraint} \mathsf{Take}\ n\ \mathsf{big}\ \mathsf{enough}\ \mathsf{s.t.} \qquad uw^nv \in F \quad \mathsf{iff} \quad uw^{n+1}v \in F$

$$\binom{a}{?}^{2n+1} \sharp \binom{a}{0} \binom{a}{1}^n \in F \quad \text{and} \quad \binom{a}{0} \binom{a}{1}^n \sharp \binom{a}{?}^{2n+1} \in F$$
$$\binom{a}{?}^{2n} \sharp \binom{a}{0} \binom{a}{1}^n \in F \quad \text{and} \quad \binom{a}{0} \binom{a}{1}^n \sharp \binom{a}{?}^{2n} \in F$$

 \dashrightarrow F is not uniformised!

Theorem (?)

FO over finite words does not have uniformisation property.

Proof

Assume that an FO-definable F uniformises R.

 $\label{eq:constraint} \mbox{Take n big enough s.t.} \quad uw^n v \in F \quad \mbox{iff} \quad uw^{n+1} v \in F$

$$\binom{a}{?}^{2n+1} \sharp \binom{a}{0} \binom{a}{1}^n \in F \quad \text{and} \quad \binom{a}{0} \binom{a}{1}^n \sharp \binom{a}{?}^{2n+1} \in F$$
$$\binom{a}{?}^{2n} \sharp \binom{a}{0} \binom{a}{1}^n \in F \quad \text{and} \quad \binom{a}{0} \binom{a}{1}^n \sharp \binom{a}{?}^{2n} \in F$$

 \dashrightarrow F is **not** uniformised!

vvv no uniformisation in FO over finite/infinite words/trees

Does MSO have uniformisation property over infinite trees?

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $y \in X$ does not admit MSO-def. uniformisation of y.

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $\mathbf{y} \in \mathbf{X}$ does not admit MSO-def. uniformisation of \mathbf{y} .

I.e. there is no $\psi(\mathbf{X}, \mathbf{y})$ such that:

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $y \in X$ does not admit MSO-def. uniformisation of y.

I.e. there is no $\psi(\mathbf{X}, \mathbf{y})$ such that:

 $\forall_{\varnothing \neq \mathbf{X} \subseteq \{0,1\}^{<\omega}} \exists !_{\mathbf{y} \in \mathbf{X}} \ \psi(\mathbf{X}, \mathbf{y})$

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $\mathbf{y} \in \mathbf{X}$ does not admit MSO-def. uniformisation of \mathbf{y} .

I.e. there is no $\psi(\mathbf{X}, \mathbf{y})$ such that:

 $\forall_{\varnothing \neq \mathbf{X} \subseteq \{0,1\}^{<\omega}} \exists !_{\mathbf{y} \in \mathbf{X}} \ \psi(\mathbf{X}, \mathbf{y})$

"no MSO-def. choice function over infinite trees"

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $y \in X$ does not admit MSO-def. uniformisation of y.

I.e. there is no $\psi(\mathbf{X}, \mathbf{y})$ such that:

 $\forall_{\varnothing \neq \mathbf{X} \subseteq \{0,1\}^{<\omega}} \exists !_{\mathbf{y} \in \mathbf{X}} \ \psi(\mathbf{X}, \mathbf{y})$

"no MSO-def. choice function over infinite trees"

Proof

A forcing-based argument. [with some subtleties]

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $y \in X$ does not admit MSO-def. uniformisation of y.

I.e. there is no $\psi(\mathbf{X}, \mathbf{y})$ such that:

 $\forall_{\varnothing \neq \mathbf{X} \subseteq \{0,1\}^{<\omega}} \exists !_{\mathbf{y} \in \mathbf{X}} \ \psi(\mathbf{X}, \mathbf{y})$

"no MSO-def. choice function over infinite trees"

Proof

A forcing-based argument. [with some subtleties]

Theorem (Carayol, Löding [2007])

The relation $\mathbf{y} \in \mathbf{X}$ does not admit MSO-def. uniformisation of \mathbf{y} .

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation $y \in X$ does not admit MSO-def. uniformisation of y.

I.e. there is no $\psi(\mathbf{X}, \mathbf{y})$ such that:

 $\forall_{\varnothing \neq \mathbf{X} \subseteq \{0,1\}^{<\omega}} \exists !_{\mathbf{y} \in \mathbf{X}} \ \psi(\mathbf{X}, \mathbf{y})$

"no MSO-def. choice function over infinite trees"

Proof

A forcing-based argument. [with some subtleties]

Theorem (Carayol, Löding [2007])

The relation $\mathbf{y} \in \mathbf{X}$ does not admit ${}_{MSO}\text{-def.}$ uniformisation of $\mathbf{y}.$ Proof

Pumping of runs of a marking automaton.

Theorem

Parameters do not help over the complete binary tree.

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \overrightarrow{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that:

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\left\{(s,s') \mid s \otimes s' \models \psi(\vec{P})\right\}$ uniformises $\left\{(s,s') \mid s \otimes s' \models \varphi\right\}$

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\left\{(s,s') \mid s \otimes s' \models \psi(\vec{P})\right\} \text{ uniformises } \left\{(s,s') \mid s \otimes s' \models \varphi\right\}$ [shortly: $\psi(\vec{P})$ uniformises φ]

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\begin{cases}
(s,s') \mid s \otimes s' \models \psi(\vec{P}) \\
\text{ [shortly: } \psi(\vec{P}) \text{ uniformises } \varphi
\end{cases}$ $[\text{shortly: } \psi(\vec{P}) \text{ uniformises } \varphi]$ $\text{Consider } L = \{\vec{P} \mid \psi(\vec{P}) \text{ uniformises } \varphi\}$

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\begin{cases}
(s,s') \mid s \otimes s' \models \psi(\vec{P}) \\
\text{ liniformises } \{(s,s') \mid s \otimes s' \models \varphi \\
\text{ [shortly: } \psi(\vec{P}) \text{ uniformises } \varphi \\
\end{cases}$ Consider $L = \{\vec{P} \mid \psi(\vec{P}) \text{ uniformises } \varphi \}$ L is MSO-definable

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\begin{cases} (s,s') \mid s \otimes s' \models \psi(\vec{P}) \end{cases} \text{ uniformises } \{(s,s') \mid s \otimes s' \models \varphi \} \\ \text{ [shortly: } \psi(\vec{P}) \text{ uniformises } \varphi \end{bmatrix}$ Consider $L = \{ \vec{P} \mid \psi(\vec{P}) \text{ uniformises } \varphi \}$ L is MSO-definable \checkmark there is an MSO-definable $\vec{P_0} \in L$

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\begin{cases} (s,s') \mid s \otimes s' \models \psi(\vec{P}) \end{cases} \text{ uniformises } \{(s,s') \mid s \otimes s' \models \varphi \} \\ \text{ [shortly: } \psi(\vec{P}) \text{ uniformises } \varphi \end{bmatrix}$ Consider $L = \{\vec{P} \mid \psi(\vec{P}) \text{ uniformises } \varphi \}$ L is MSO-definable \checkmark there is an MSO-definable $\vec{P_0} \in L$ Consider $\psi_0 = \psi(\vec{P_0})$

Theorem

Parameters do not help over the complete binary tree.

Proof

Assume that \vec{P} is a tuple of subsets of $\{0,1\}^{<\omega}$ such that: $\begin{cases} (s,s') \mid s \otimes s' \models \psi(\vec{P}) \end{cases} \text{ uniformises } \{(s,s') \mid s \otimes s' \models \varphi \} \\ \text{ [shortly: } \psi(\vec{P}) \text{ uniformises } \varphi \end{bmatrix}$ Consider $L = \{\vec{P} \mid \psi(\vec{P}) \text{ uniformises } \varphi \}$ L is MSO-definable \checkmark there is an MSO-definable $\vec{P_0} \in L$ Consider $\psi_0 = \psi(\vec{P_0})$

 ψ_0 has ${\bf no}$ parameters and uniformises φ

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t \colon \tau \to A$

Prefix-closed sets
$$\tau \subseteq \{0,1\}^{<\omega}$$
 and labellings $t: \tau \to A$
 $\left[\tau \sim \text{ a closed subset of } \{0,1\}^{\omega}\right]$

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t: \tau \to A$

 τ is scattered if it has only countably many branches

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t: \tau \to A$

 τ is scattered if it has only countably many branches

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t: \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t: \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$]

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t: \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$] For every prefix-closed $\tau \subseteq \{0,1\}^{<\omega}$ either:

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t \colon \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$] For every prefix-closed $\tau \subseteq \{0,1\}^{<\omega}$ either:

• τ is scattered and there exists $P \subseteq \tau$ such that:
Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t \colon \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$] For every prefix-closed $\tau \subseteq \{0,1\}^{<\omega}$ either:

• τ is scattered and there exists $P \subseteq \tau$ such that: $\forall_{\varphi} \exists_{\psi} \psi(P)$ uniformises φ over τ

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t \colon \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$] For every prefix-closed $\tau \subseteq \{0,1\}^{<\omega}$ either:

- τ is scattered and there exists $P \subseteq \tau$ such that: $\forall_{\varphi} \exists_{\psi} \psi(P)$ uniformises φ over τ
- τ contains a complete binary subtree (a perfect set) and:

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t \colon \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$] For every prefix-closed $\tau \subseteq \{0,1\}^{<\omega}$ either:

- τ is scattered and there exists $P \subseteq \tau$ such that: $\forall_{\varphi} \exists_{\psi} \psi(P)$ uniformises φ over τ
- τ contains a complete binary subtree (a perfect set) and: there exists φ non-uniformisable over τ (even with parameters)

Prefix-closed sets $\tau \subseteq \{0,1\}^{<\omega}$ and labellings $t \colon \tau \to A$

 τ is scattered if it has only countably many branches

"Scattered trees = Finite trees \otimes Infinite words"

Theorem (Lifsches, Shelah [1998], S. [2013]) [adjusted to $\{0,1\}^{<\omega}$] For every prefix-closed $\tau \subseteq \{0,1\}^{<\omega}$ either:

- τ is scattered and there exists $P \subseteq \tau$ such that: $\forall_{\varphi} \exists_{\psi} \psi(P)$ uniformises φ over τ
- τ contains a complete binary subtree (a perfect set) and: there exists φ non-uniformisable over τ (even with parameters)

 \cdots a complete characterisation (with parameters depending on τ)

$\label{eq:skeleton} \begin{array}{l} \mbox{Skeleton} = \mbox{well-founded decomposition of a scattered } \tau \\ & \mbox{into separate branches} \end{array}$

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

MSO, scattered trees, **no** parameters **?** Skeleton = well-founded decomposition of a scattered τ into separate branches [formally a subset of τ] MSO, scattered trees, **no** parameters **?** Skeleton = well-founded decomposition of a scattered τ into separate branches [formally a subset of τ]

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

1. τ has a skeleton $\iff \tau$ is scattered

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

- **1**. τ has a skeleton $\iff \tau$ is scattered
- **2**. $R = \{(\tau, \sigma) \mid \sigma \text{ is a skeleton of } \tau\}$ is MSO-def.

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

- **1**. τ has a skeleton $\iff \tau$ is scattered
- **2**. $R = \{(\tau, \sigma) \mid \sigma \text{ is a skeleton of } \tau\}$ is MSO-def.

Sets σ_{\uparrow}

 \rightarrow Trees τ

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

- **1**. au has a skeleton $\iff au$ is scattered
- **2**. $R = \{(\tau, \sigma) \mid \sigma \text{ is a skeleton of } \tau\}$ is MSO-def.

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

- **1**. au has a skeleton $\iff au$ is scattered
- **2**. $R = \{(\tau, \sigma) \mid \sigma \text{ is a skeleton of } \tau\}$ is MSO-def.

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

- **1**. au has a skeleton $\iff au$ is scattered
- **2**. $R = \{(\tau, \sigma) \mid \sigma \text{ is a skeleton of } \tau\}$ is MSO-def.

Theorem (S. [2013])

There is **no** MSO-def. uniformisation of R.

Skeleton = well-founded decomposition of a scattered τ

into separate branches

[formally a subset of τ]

- **1**. au has a skeleton $\iff au$ is scattered
- **2**. $R = \{(\tau, \sigma) \mid \sigma \text{ is a skeleton of } \tau\}$ is MSO-def.

Theorem (S. [2013])

There is **no** MSO-def. uniformisation of R.

vvv new non-uniformisability example

Conjecture (S. [2013])

The relation " $\mathbf{y} \in \mathbf{X}$ and \mathbf{X} is contained in a scattered tree" does not admit MSO-def. uniformisation of \mathbf{y} (without parameters).

Conjecture (S. [2013])

The relation " $\mathbf{y} \in \mathbf{X}$ and \mathbf{X} is contained in a scattered tree" does not admit MSO-def. uniformisation of \mathbf{y} (without parameters).

 \longleftrightarrow no MSO-def. choice function on scattered trees

Conjecture (S. [2013])

The relation " $\mathbf{y} \in \mathbf{X}$ and \mathbf{X} is contained in a scattered tree" does not admit MSO-def. uniformisation of \mathbf{y} (without parameters).

mo MSO-def. choice function on scattered trees

A side effect of a study on *thin algebras*...

Conjecture (S. [2013])

The relation " $\mathbf{y} \in \mathbf{X}$ and \mathbf{X} is contained in a scattered tree" does not admit MSO-def. uniformisation of \mathbf{y} (without parameters).

mo MSO-def. choice function on scattered trees

A side effect of a study on *thin algebras*...

Theorem (Bojańczyk, Idziaszek, S. [2013])

MSO over scattered (aka *thin*) trees is equivalent with thin algebra.

Conjecture (S. [2013])

The relation " $\mathbf{y} \in \mathbf{X}$ and \mathbf{X} is contained in a scattered tree" does not admit MSO-def. uniformisation of \mathbf{y} (without parameters).

mo MSO-def. choice function on scattered trees

A side effect of a study on *thin algebras*...

Theorem (Bojańczyk, Idziaszek, S. [2013])
MSO over scattered (aka *thin*) trees is equivalent with thin algebra.
↔ effective characterisations (weak MSO, ...)

A finite algebra H

e.g. MSO-types Tp_k , monoid, forest algebra, thin algebra,...

A finite algebra H

e.g. MSO-types Tp_k , monoid, forest algebra, thin algebra,...

element $h \in H$ ~ type of structures

A finite algebra ${\cal H}$

e.g. MSO-types Tp_k , monoid, forest algebra, thin algebra,...

element $h \in H$ ~ type of structures operation \cdot in H ~ composition of structures

A finite algebra H

e.g. MSO-types Tp_k , monoid, forest algebra, thin algebra,...

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism α : Struct $\rightarrow H \sim \alpha$ assignment of actual types

A finite algebra ${\cal H}$

e.g. ${}_{\mathrm{MSO}}\text{-}\mathrm{types}\ \mathrm{Tp}_k,$ monoid, forest algebra, thin algebra, \ldots

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism $\alpha: \text{Struct} \to H \quad \sim \quad \text{assignment of actual types}$

Marking : a labelling γ of a partial tree t by H

A finite algebra ${\cal H}$

e.g. ${}_{\mathrm{MSO}}\text{-}\mathrm{types}\ \mathrm{Tp}_k,$ monoid, forest algebra, thin algebra, \ldots

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures

homomorphism $\alpha: \text{Struct} \to H \quad \sim \quad \text{assignment of actual types}$

Marking : a labelling γ of a partial tree t by H $\gamma \colon \operatorname{dom}(t) \to H$

A finite algebra ${\cal H}$

e.g. ${}_{\mbox{MSO-types}}\ {\rm Tp}_k$, monoid, forest algebra, thin algebra, \ldots

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures

homomorphism $\alpha: \text{Struct} \to H \quad \sim \quad \text{assignment of actual types}$

Marking : a labelling γ of a partial tree t by H $\gamma: \operatorname{dom}(t) \to H$ $\gamma(v) \equiv$ v

A finite algebra ${\cal H}$

e.g. ${}_{\rm MSO}{}_{\rm types}\ {\rm Tp}_k,$ monoid, forest algebra, thin algebra, \ldots

- element $h \in H$ \sim type of structures
- operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \text{Struct} \to H \quad \thicksim \quad \text{assignment of actual types}$

Marking : a labelling γ of a partial tree t by H $\gamma: \operatorname{dom}(t) \to H$ $\gamma(v) \equiv \text{ declared type of } t \upharpoonright_v$ t

A finite algebra ${\cal H}$

e.g. ${}_{\rm MSO}{}_{\rm types}\ {\rm Tp}_k,$ monoid, forest algebra, thin algebra, \ldots

- element $h \in H$ \sim type of structures
- operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \text{Struct} \to H \quad \thicksim \quad \text{assignment of actual types}$

 $\begin{array}{l} \textbf{Marking} : \text{ a labelling } \gamma \text{ of a partial tree } t \text{ by } H \\ \gamma : \operatorname{dom}(t) \to H \\ \gamma(v) \ \equiv \ \texttt{declared type of } t \! \upharpoonright_{v} \end{array} \right/ t$

Actual marking : $\gamma(v) = \alpha(t \restriction_v)$

A finite algebra ${\cal H}$

e.g. ${}_{\rm MSO}{}_{\rm types}\ {\rm Tp}_k,$ monoid, forest algebra, thin algebra, \ldots

- element $h \in H$ \sim type of structures
- operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \text{Struct} \to H \quad \thicksim \quad \text{assignment of actual types}$

Marking : a labelling γ of a partial tree t by H $\gamma: \operatorname{dom}(t) \to H$ $\gamma(v) \equiv \text{ declared type of } t \upharpoonright_v$

Actual marking : $\gamma(v) = \alpha(t \upharpoonright_v)$ if there exists α : Trees $\rightarrow H_{\dots}$

 $\gamma \text{ is consistent}$ if the declarations are consistent along branches

 γ is consistent if the declarations are consistent along branches

 $\gamma \text{ is consistent}$ if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h'_0$]

 γ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h'_0$]

Example

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let:

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let: t(v) = b

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a")

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a" For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0 = h'_0$] Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a" For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0 = h'_0$] Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a" For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent! $\rightarrow \gamma(v) = h_1$

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0 = h'_0$] Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a" For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent! $\rightarrow \gamma(v) = h_1$

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0 = h'_0$] Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a" For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent! $\rightarrow \gamma(v) = h_1$

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a" For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent! $\rightarrow \gamma(v) = h_1$ $\rightarrow h_1$ ("exists a")

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

 γ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0 = h'_0$]

Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

Theorem (S. [2013])

There is no ${\rm MSO}\mbox{-def.}$ choice function on thin trees iff

 γ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h_0'$]

Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

Theorem (S. [2013])

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not)

 γ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h_0'$]

Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

Theorem (S. [2013])

There is no ${\scriptstyle\rm MSO}\xspace$ def. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

 γ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h_0^\prime$]

Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let: t(v) = b and $\gamma(v) = h_1$ ("exists a") γ is consistent!

Theorem (S. [2013])

There is no ${\scriptstyle\rm MSO-def.}$ choice function on thin trees \$iff\$

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

[no actual marking because $\alpha: \text{Scattered} \to H \pmod{\alpha: \text{Trees} \to H}$]

There is no ${\tt MSO-def.}$ choice function on thin trees \$iff\$

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not)

There is no ${\scriptstyle\rm MSO}\xspace$ def. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

Proof

 (\Downarrow) Assume that H is a thin algebra without consistent marking.

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

Proof

(\Downarrow) Assume that H is a thin algebra without consistent marking. Via determinacy we construct a choice function over thin trees.

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

- (\Downarrow) Assume that H is a thin algebra without consistent marking. Via determinacy we construct a choice function over thin trees.
- (\uparrow) Assume that φ is an MSO-def. choice function over scattered trees.

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

- (\Downarrow) Assume that H is a thin algebra without consistent marking. Via determinacy we construct a choice function over thin trees.
- (\uparrow) Assume that φ is an MSO-def. choice function over scattered trees. Construct a thin algebra H that guides φ .

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

- (\Downarrow) Assume that H is a thin algebra without consistent marking. Via determinacy we construct a choice function over thin trees.
- (\uparrow) Assume that φ is an MSO-def. choice function over scattered trees. Construct a thin algebra H that guides φ . Find a consistent marking $\gamma \colon \{0,1\}^{<\omega} \to H$.

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

- (\Downarrow) Assume that H is a thin algebra without consistent marking. Via determinacy we construct a choice function over thin trees.
- (\uparrow) Assume that φ is an MSO-def. choice function over scattered trees. Construct a thin algebra H that guides φ . Find a consistent marking $\gamma \colon \{0,1\}^{<\omega} \to H$. Guide φ using γ to find a *difficult* scattered tree t.

There is no $\ensuremath{\operatorname{MSO-def}}$. choice function on thin trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

- (\Downarrow) Assume that H is a thin algebra without consistent marking. Via determinacy we construct a choice function over thin trees.
- (\uparrow) Assume that φ is an MSO-def. choice function over scattered trees. Construct a thin algebra H that guides φ . Find a consistent marking $\gamma \colon \{0,1\}^{<\omega} \to H$. Guide φ using γ to find a *difficult* scattered tree t. $\rightsquigarrow \varphi$ is **not** a choice function on t.

Application : unambiguity

Application : unambiguity \mathcal{A} — non-deterministic tree automaton

Application : unambiguity \mathcal{A} — non-deterministic tree automaton

Application : unambiguity \mathcal{A} — non-deterministic tree automaton

Application : unambiguity \mathcal{A} — non-deterministic tree automaton

Application : unambiguity

 \mathcal{A} — non-deterministic tree automaton

$$R = \{(t, \rho) \mid \rho \text{ is accepting over } t\}$$
$$L(\mathcal{A}) = \{t \mid \exists_{\rho} (t, \rho) \in R\}$$

Application : unambiguity

 \mathcal{A} — non-deterministic tree automaton

 $R = \{(t, \rho) \mid \rho \text{ is accepting over } t\}$ $L(\mathcal{A}) = \{t \mid \exists_{\rho} (t, \rho) \in R\}$

 \mathcal{A} is unambiguous if R is uniformised

Application : unambiguity \mathcal{A} — non-deterministic tree automaton

 $R = \{(t, \rho) \mid \rho \text{ is accepting over } t\}$ $L(\mathcal{A}) = \{t \mid \exists_{\rho} \ (t, \rho) \in R\}$

 \mathcal{A} is unambiguous if R is uniformised

Theorem (Niwiński, Walukiewicz [1996])

The language $\exists_y a(y)$ cannot be recognised by any unambiguous automaton.

Application : unambiguity \mathcal{A} — non-deterministic tree automaton

 $R = \{(t, \rho) \mid \rho \text{ is accepting over } t\}$ $L(\mathcal{A}) = \{t \mid \exists_{\rho} (t, \rho) \in R\}$

 ${\mathcal A}$ is unambiguous if R is uniformised

Theorem (Niwiński, Walukiewicz [1996])

The language $\exists_y a(y)$ cannot be recognised by any unambiguous automaton.

Proof

Any unambiguous automaton for $\exists_y a(y)$ induces an MSO-definable choice function.

L is bi-unambiguous if both L and Trees-L are unambiguous

L is bi-unambiguous if both L and $\mathrm{Trees}{-L}$ are unambiguous

→ boolean algebra of languages

L is bi-unambiguous if both L and $\mathrm{Trees}{-L}$ are unambiguous

→ boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

L is bi-unambiguous if both L and Trees-L are unambiguous

 \leadsto boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])

If there is ${\bf no}$ ${\rm MSO}\text{-def.}$ choice function over scattered trees

L is bi-unambiguous if both L and Trees-L are unambiguous

 \leadsto boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])

If there is ${\bf no}$ ${\rm MSO}\text{-def.}$ choice function over scattered trees

then it is decidable if a regular language of complete trees

L is bi-unambiguous if both L and Trees-L are unambiguous

→ boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])

If there is ${\bf no}$ ${\rm MSO}\text{-def.}$ choice function over scattered trees

then it is decidable if a regular language of complete trees is bi-unambiguous.

L is bi-unambiguous if both L and Trees-L are unambiguous

→ boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])

If there is ${\bf no}$ ${\rm MSO}\text{-def.}$ choice function over scattered trees

then it is decidable if a regular language of complete trees

is bi-unambiguous.

a concrete, sound algorithm ${\mathcal P}$ but. . .

L is bi-unambiguous if both L and Trees-L are unambiguous

→ boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])

If there is no MSO-def. choice function over scattered trees

then it is decidable if a regular language of complete trees

is bi-unambiguous.

a concrete, sound algorithm \mathcal{P} but... completeness of \mathcal{P} depends on Choice Conjecture

L is bi-unambiguous if both L and Trees-L are unambiguous

→ boolean algebra of languages

Problem

How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])

If there is ${\bf no}$ ${\rm MSO}\text{-def.}$ choice function over scattered trees

then it is decidable if a regular language of complete trees is bi-unambiguous.

a concrete, sound algorithm \mathcal{P} but... completeness of \mathcal{P} depends on Choice Conjecture

Lemma (S. [2013])

If there is no MSO-def. choice function over scattered trees then finite *prophetic* thin algebras are closed under homomorphisms.

• Uniformisability:

- Uniformisability:
 - FO over finite words

X (?)

- Uniformisability:
 - FO over finite words
 - MSO over infinite words

✗ (?)✓ [S75], [R07]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters) X

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]
 - [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters) X
- Choice:

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]
 - [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters) X
- Choice:
 - MSO over finite/infinite words

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]
 - [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters)
- Choice:
 - MSO over finite/infinite words
 - MSO over complete trees

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]
- **X** [BS13]
- ✓
- **X** [GS83], [CL07]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters)
- Choice:
 - MSO over finite/infinite words
 - MSO over complete trees
 - MSO over scattered trees

X (?)

- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]

X [BS13]

✓

X [GS83], [CL07]**???** [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters)
- Choice:
 - MSO over finite/infinite words
 - MSO over complete trees
 - MSO over scattered trees
- Applications:

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]

X [BS13]

✓

X [GS83], [CL07]**???** [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters)
- Choice:
 - $_{\rm MSO}$ over finite/infinite words
 - MSO over complete trees
 - MSO over scattered trees
- Applications:
 - thin algebras

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]

X [BS13]

✓

X [GS83], [CL07]**???** [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters)
- Choice:
 - $_{\rm MSO}$ over finite/infinite words
 - MSO over complete trees
 - MSO over scattered trees
- Applications:
 - thin algebras
 - bi-unambiguous languages of complete trees

- **X** (?)
- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]
- **X** [BS13]

✓

x [GS83], [CL07]**???** [BS13]

- Uniformisability:
 - FO over finite words
 - MSO over infinite words
 - MSO over complete trees (with parameters)
 - MSO over scattered trees (with parameters)
 - MSO over scattered trees (without parameters)
- Choice:
 - $_{\rm MSO}$ over finite/infinite words
 - MSO over complete trees
 - MSO over scattered trees
- Applications:
 - thin algebras
 - bi-unambiguous languages of complete trees
 - maybe parity index bounds for unambiguous languages. . .

- ✓ [S75], [R07]
- **X** [GS83], [CL07]
- ✓ [LS98], [BS13]

X [BS13]

✓

✗ [GS83], [CL07]??? [BS13]