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Uniformisation

Relation R X x Y

‘ . Uniformisation F' < R
‘ ! Projection 7(F') = n(R)

Theorem [Axiom of Choice]

Every relation admits a uniformisation.
What about definability?

Theorem (Novikov, Kond6 [1938])

Every co-analytic (II}) relation admits a co-analytic uniformisation.
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t:{0,1}=¥ - A

Signature: <, so(z), si(z), a(z)forac A

Pairing: s =abcover A, s =uxyzover A’ [and dom(s) = dom(s')]

(5,8) ~ s®s = 2" over A x A’
TYz
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de Vo U vy AW predicates

[:c, 1y — nodes of the structure]

Monadic second-order (MsO) logic:
+dxy Vx xeX

[X, Y — sets of nodes of the structure|

v~ expressive power subsuming LTL, CTL*, modal u-calculus, . ..

Theorem (Rabin [1969])

The satisfiability problem is decidable for MSO over infinite trees.

w~> applications to verification and model-checking
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Uniformisability in FO/ MSO logic?
Fix a formula ¢ over A x B

R= {(S,s’) | s®s’):g0}

Is there v such that
F F={(s,5)|s®5 |-}

uniformises R7?
» Struct(A)

Struct(B)

Technical assumption: we restrict ¢ to (s,s’) s.t. dom(s) = dom(s’)

Variants:
— ¢, ¢ in FO / MSO?
— Struct are: finite/infinite words/trees?
— 1) may use additional monadic parameters P, ..., Py:
F={(s,5)]s®s Ev(P,...,P)}7?

— 1) can be effectively constructed from ¢?
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Problem: there may be no lexicographically minimal witness:

© = "5’ has finitely many a”
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Lifsches, Shelah, JSL [1998]

THEOREM 6.3. (w, <) has the uniformization property.

Proor. By [1]. -

REFERENCES

[1]J. R. Btccur and L. H. LANDWEBER, Solving sequential conditions by finite-state strategies, Trans-
actions of the American Mathematical Society, vol. 138 (1969), pp. 295-311.
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What about FO?
Theorem (7)

FO over finite words does not have uniformisation property.
Proof

Consider A = {a,t}, B ={0,1,7,4}, and R containing:
aaaa---aaffaaaa-- aa aaaa--

-aafaaaa---aa
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- ?27480101---01
[both fff,‘ggel‘ and 80{&?? belong to R]
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Assume that an FO-definable F' uniformises R.

Take n big enough s.t.  ww"ve F iff uw"lveF

(5)" D) e F oand (51)"
8
#

v~ F'is not uniformised!
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What about FO?
Theorem (7)

FO over finite words does not have uniformisation property.
Proof

Consider A = {a,t}, B ={0,1,7,4}, and R containing:
caaaa---aataaaa--- aaq

aaaa---aafaaaa---aaq
0101---01£2727--- 77 2

?2?2?27---2?280101---01
Assume that an FO-definable F' uniformises R.

Take n big enough s.t.  ww"ve F iff uw"lveF

v~ F'is not uniformised!

> no uniformisation in FO over finite/infinite words/trees

M. Skrzypczak On uniformisability in monadic second-order logic 8/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

M. Skrzypczak On uniformisability in monadic second-order logic 9/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

M. Skrzypczak On uniformisability in monadic second-order logic 9/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

l.e. there is no ¥(X,y) such that:

M. Skrzypczak On uniformisability in monadic second-order logic 9/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

l.e. there is no ¥(X,y) such that:
V@;&Xg{m}w 3!yex w(X,y)

M. Skrzypczak On uniformisability in monadic second-order logic 9/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

l.e. there is no ¥(X,y) such that:

V@#Xg{m}w 3!yex w(X,y)
v “no MSO-def. choice function over infinite trees”

M. Skrzypczak On uniformisability in monadic second-order logic 9/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

l.e. there is no ¥(X,y) such that:

V@#Xg{o;}w 3!yex w(X,y)
v “no MSO-def. choice function over infinite trees”

Proof

A forcing-based argument. [with some subtleties]

M. Skrzypczak On uniformisability in monadic second-order logic 9/ 19



Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

l.e. there is no ¥(X,y) such that:

V@;&Xg{m}w 3!yex w(X,Y)
v “no MSO-def. choice function over infinite trees”
Proof

A forcing-based argument. [with some subtleties]

Theorem (Carayol, Loding [2007])

The relation y € X does not admit MsO-def. uniformisation of y.
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Rabin’s Uniformisation Problem

Does MSO have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])

The relation y € X does not admit MsO-def. uniformisation of y.

l.e. there is no ¥(X,y) such that:
V@;&Xg{m}w 3!yex w(X,y)

v “no MSO-def. choice function over infinite trees”

Proof

A forcing-based argument. [with some subtleties]

Theorem (Carayol, Loding [2007])
The relation y € X does not admit MsO-def. uniformisation of y.
Proof

Pumping of runs of a marking automaton.
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Parameters
Theorem

Parameters do not help over the complete binary tree.
Proof

Assume that P is a tuple of subsets of {0,1}=% such that:
{(s,s/) |s®s @Z}(ID))} uniformises {(s,s’) |s®s' | go}
[shortly: 1/)(175) uniformises ¢ |
Consider L = {_]—5 | w(f’)) uniformises gp}
L is MsO-definable v~ there is an MSO-definable ]3(; el
Consider 1y = 1/)(1?’0))

1o has no parameters and uniformises ¢ |
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MSO over non-complete trees (with parameters)
Prefix-closed sets 7 < {0,1}~“ and labellings t: 7 — A
T is scattered if it has only countably many branches

“Scattered trees = Finite trees ® Infinite words”

Theorem (Lifsches, Shelah [1998], S. [2013])
[adjusted to {0, 1}<¢] g

For every prefix-closed 7 < {0, 1

}=¢ either:

e 7 is scattered and there exists P < 7 such that:

Ve, 3y ¢(P) uniformises ¢ over T

e 7 contains a complete binary subtree (a perfect set) and:

there exists ¢ non-uniformisable over 7 (even with parameters)

v~ a complete characterisation (with parameters depending on 7)
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MSO, scattered trees, no parameters ?
Skeleton = well-founded decomposition of a scattered 7
into separate branches

[formally a subset of 7]

1. 7 has a skeleton <= 7 is scattered .
2. R={(1,0) | o is a skeleton of 7} is MSO-def.

Sets o

- —> Trees 7
Scattered trees

Theorem (S. [2013])

There is no MSO-def. uniformisation of R.
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MSO, scattered trees, no parameters ?
Skeleton = well-founded decomposition of a scattered 7
into separate branches

[formally a subset of 7]

1. 7 has a skeleton <= 7 is scattered .
2. R={(1,0) | o is a skeleton of 7} is MSO-def.

Sets o

- —> Trees 7
Scattered trees

Theorem (S. [2013])

There is no MSO-def. uniformisation of R.

v~ new non-uniformisability example
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Choice on scattered trees
Conjecture (S. [2013])

The relation “y € X and X is contained in a scattered tree” does
not admit MSO-def. uniformisation of y (without parameters).

«~» no MSO-def. choice function on scattered trees
A side effect of a study on thin algebras. ..

Theorem (Bojanczyk, ldziaszek, S. [2013])

MSO over scattered (aka thin) trees is equivalent with thin algebra.

> effective characterisations (weak MsoO, ...)

M. Skrzypczak On uniformisability in monadic second-order logic 13 / 19



Consistent markings

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...

element he H ~ type of structures

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...

element he H ~ type of structures

operation - in H ~~ composition of structures

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H
e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...
element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...

element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types

Marking : a labelling v of a partial tree t by H

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H
e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...
element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types

Marking : a labelling v of a partial tree t by H
~v: dom(t) > H

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,...

element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types
Marking : a labelling v of a partial tree t by H

~v: dom(t) > H
V(v) =

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H
e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,. ..
element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types

Marking : a labelling v of a partial tree t by H
v:dom(t) - H
~v(v) = declared type of £,

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H
e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,. ..
element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types
Marking : a labelling v of a partial tree t by H
v:dom(t) - H

~v(v) = declared type of £,

Actual marking : ’Y(U) = Oé(t Fy)

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. MSO-types Tp,,, monoid, forest algebra, thin algebra,. ..

element he H ~ type of structures
operation - in H ~~ composition of structures

homomorphism «a:: Struct — H ~~ assignment of actual types

Marking : a labelling v of a partial tree t by H
~v: dom(t) > H
v(v) = declared type of £,

Actual marking : ’V(U) = Oé(t Fy)

if there exists o: Trees — H. ..
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(1) Assume that ¢ is an MsO-def. choice function over scattered trees.
Construct a thin algebra H that guides ¢.
Find a consistent marking ~v: {0,1}~“ — H.
Guide ¢ using v to find a difficult scattered tree t.

v~  is not a choice function on t.
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M R A is unambiguous if R is uniformised

— Trees t

L(A)
Theorem (Niwinski, Walukiewicz [1996])

The language 3, a(y) cannot be recognised by any unambiguous au-
tomaton.

Proof
Any unambiguous automaton for 3, a(y) induces an MSO-definable
choice function. m
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Problem
How to decide if L is bi-unambiguous?
Theorem (Bilkowski, S. [2013])
If there is no MsO-def. choice function over scattered trees
then it is decidable if a regular language of complete trees

is bi-unambiguous.

a concrete, sound algorithm P but. ..
completeness of P depends on Choice Conjecture

Lemma (S. [2013])

If there is no MSO-def. choice function over scattered trees then

finite prophetic thin algebras are closed under homomorphisms.
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e Applications:
— thin algebras
— bi-unambiguous languages of complete trees

— maybe parity index bounds for unambiguous languages. . .
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