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Uniformisation

Y

X

R

Relation R Ď X ˆ Y

F
Uniformisation F Ď R

πpF q

Projection πpF q “ πpRq

Theorem [Axiom of Choice]
Every relation admits a uniformisation.

What about definability?

Theorem (Novikov, Kondô [1938])

Every co-analytic (Π1
1) relation admits a co-analytic uniformisation.
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Structures

over an alphabet A — a finite set of symbols

Words:
w “ b a c b a w : t1, . . . , |w|u Ñ A

α “ a a b c c b ¨ ¨ ¨ α : ω Ñ A

Signature: ď, spxq, apxq for a P A

Trees:

t “

a
b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

t : t0, 1uăω Ñ A

Signature: ĺ, s0pxq, s1pxq, apxq for a P A

Pairing: s “ abc over A, s1 “ xyz over A1
“

and dompsq “ domps1q
‰

ps, s1q „ sb s1 “ a
x
b
y
c
z over AˆA1
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Logic

First-order (fo) logic:

Dx @x  ψ ϕ_ ψ ϕ^ ψ predicates
“

x, y — nodes of the structure
‰

Monadic second-order (mso) logic:

` DX @X x P X
“

X, Y — sets of nodes of the structure
‰

ù expressive power subsuming ltl, ctl*, modal µ-calculus, . . .

Theorem (Rabin [1969])
The satisfiability problem is decidable for mso over infinite trees.

ù applications to verification and model-checking
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Uniformisability in fo/ mso logic?

Fix a formula ϕ over AˆB

StructpBq

StructpAq

R

R “
 

ps, s1q | sb s1 |ù ϕ
(

Is there ψ such that
F F “

 

ps, s1q | sb s1 |ù ψ
(

uniformises R?

Technical assumption: we restrict ϕ to ps, s1q s.t. dompsq “ domps1q

Variants:
— ϕ, ψ in fo / mso?
— Struct are: finite/infinite words/trees?
— ψ may use additional monadic parameters P1, . . . , Pn:

F “
 

ps, s1q | sb s1 |ù ψpP1, . . . , Pnq
(

?
— ψ can be effectively constructed from ϕ?
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mso over finite words 3

Take ϕ over AˆB
Băω

Aăω

ϕ

Let ps, s1q P F if:
— sb s1 |ù ϕ

— for every s2 such that sb s2 |ù ϕ

s1 is lexicographically smaller than s2

ù F is effectively mso-definable

mso over finite trees 3

mso over infinite words ?

Problem: there may be no lexicographically minimal witness:
ϕ ” “s1 has finitely many a”

`

bbbb . . .
˘

ělex
`

abbb . . .
˘

ělex
`

aabb . . .
˘

ělex paaab . . .
˘

ělex . . .
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mso over infinite words ?

Lifsches, Shelah, JSL [1998]

Theorem (Siefkes [1975], Rabinovich [2007])
mso has effective uniformisation property over infinite words.

Proof
Uniformise accepting runs of a non-deterministc Büchi automaton
equivalent to ϕ:

pick the ďlex-minimal accepting run
`

F ălex pQ´F q
˘

�

mso over infinite words 3
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What about fo?

Theorem (?)
fo over finite words does not have uniformisation property.

Proof
Consider A “ ta, 7u, B “ t0, 1, ?, 7u, and R containing:

a

0
a

1
a

0
a

1
¨ ¨ ¨

¨ ¨ ¨

a

0
a

1
7

7

a

?
a

?
a

?
a

?
¨ ¨ ¨

¨ ¨ ¨

a

?
a

?
i.e.

`

a
0
a
1
˘˚ 7

7

`

a
?
˘˚

and
a

?
a

?
a

?
a

?
¨ ¨ ¨

¨ ¨ ¨

a

?
a

?
7

7

a

0
a

1
a

0
a

1
¨ ¨ ¨

¨ ¨ ¨

a

0
a

1
i.e.

`

a
?
˘˚ 7

7

`

a
0
a
1
˘˚“

both a
?
a
?
7

7

a
0
a
1 and a

0
a
1
7

7

a
?
a
? belong to R

‰

Assume that an fo-definable F uniformises R.
Take n big enough s.t. uwnv P F iff uwn`1v P F

`

a
?
˘2n`1 7

7

`

a
0
a
1
˘n
P F and

`

a
0
a
1
˘n 7
7

`

a
?
˘2n`1

P F

`

a
?
˘2n 7

7

`

a
0
a
1
˘n
P F and

`

a
0
a
1
˘n 7
7

`

a
?
˘2n

P F
`

a
?
˘2n 7

7

`

a
0
a
1
˘n
P F and

`

a
0
a
1
˘n 7
7

`

a
?
˘2n

P F

ù F is not uniformised! �

ù no uniformisation in fo over finite/infinite words/trees
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Rabin’s Uniformisation Problem
Does mso have uniformisation property over infinite trees?

Theorem (Gurevich, Shelah [1983])
The relation y P X does not admit mso-def. uniformisation of y.

I.e. there is no ψpX,yq such that:
@H‰XĎt0,1uăω D!yPX ψpX,yq

ù “no mso-def. choice function over infinite trees”

Proof
A forcing-based argument. [with some subtleties]

Theorem (Carayol, Löding [2007])
The relation y P X does not admit mso-def. uniformisation of y.

Proof
Pumping of runs of a marking automaton. �
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Parameters

Theorem
Parameters do not help over the complete binary tree.

Proof

Assume that #»

P is a tuple of subsets of t0, 1uăω such that:
!

ps, s1q | sb s1 |ù ψ
` #»

P
˘

)

uniformises
!

ps, s1q | sb s1 |ù ϕ
)

“

shortly: ψ
` #»

P
˘

uniformises ϕ
‰

Consider L “
!

#»

P | ψ
` #»

P
˘

uniformises ϕ
)

L is mso-definable ù there is an mso-definable # »

P0 P L

Consider ψ0 “ ψ
` # »

P0
˘

ψ0 has no parameters and uniformises ϕ �
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mso over non-complete trees (with parameters)

Prefix-closed sets τ Ď t0, 1uăω and labellings t : τ Ñ A
“

τ „ a closed subset of t0, 1uω
‰

τ is scattered if it has only countably many branches
“Scattered trees = Finite trees b Infinite words”

Theorem (Lifsches, Shelah [1998], S. [2013])
[adjusted to t0, 1uăω]

For every prefix-closed τ Ď t0, 1uăω either:

‚ τ is scattered and there exists P Ď τ such that:
@ϕ Dψ ψ

`

P
˘

uniformises ϕ over τ

‚ τ contains a complete binary subtree (a perfect set) and:
there exists ϕ non-uniformisable over τ (even with parameters)

ù a complete characterisation (with parameters depending on τ)
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mso, scattered trees, no parameters ?

Skeleton = well-founded decomposition of a scattered τ
into separate branches

[formally a subset of τ ]
1. τ has a skeleton ðñ τ is scattered
2. R “

 

pτ, σq | σ is a skeleton of τ
(

is mso-def.
Sets σ

Trees τ

R

Scattered trees
Theorem (S. [2013])

There is no mso-def. uniformisation of R.
ù new non-uniformisability example
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Choice on scattered trees

Conjecture (S. [2013])
The relation “y P X and X is contained in a scattered tree” does
not admit mso-def. uniformisation of y (without parameters).

ú no mso-def. choice function on scattered trees

A side effect of a study on thin algebras. . .

Theorem (Bojańczyk, Idziaszek, S. [2013])
mso over scattered (aka thin) trees is equivalent with thin algebra.
ù effective characterisations (weak mso, . . . )
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Consistent markings

A finite algebra H
e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures

operation ¨ in H „ composition of structures
homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t

γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings
A finite algebra H

e.g. mso-types Tpk, monoid, forest algebra, thin algebra,. . .

element h P H „ type of structures
operation ¨ in H „ composition of structures

homomorphism α : Struct Ñ H „ assignment of actual types

Marking : a labelling γ of a partial tree t by H

t
γ : domptq Ñ H

γpvq ”

v

declared type of tæv

tæv

Actual marking : γpvq “ αptævq

if there exists α : Trees Ñ H. . .

M. Skrzypczak On uniformisability in monadic second-order logic 14 / 19



Consistent markings

γ is consistent if the declarations are consistent along branches

h10

t

v

γpvq “ h0

a0

a2

a4

a6

a1

a3

a5

h1

h2

h3

h4

h5

h6

h7

[it is enough to use thin algebra to check if h0 “ h10]
Example
H “ th0, h1u, h0 ” “no letter a”, h1 ” “exists letter a”

For all v let: tpvq “ b and γpvq “ h1 (“exists a”)
γ is consistent!

h1 (“exists a”)

t
v

γpvq “ h1

b

b

b

b

b

b

b

h1
h1

h1

h1

h1

h1

h1

Theorem (S. [2013])
There is no mso-def. choice function on thin trees

iff
For every finite thin algebra H and every tree t (scattered or not)

there exists a consistent marking of t by H.

[no actual marking because α : Scattered Ñ H (not α : Trees Ñ H)]
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Assume that H is a thin algebra without consistent marking.
Via determinacy we construct a choice function over thin trees.

`
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˘

Assume that ϕ is an mso-def. choice function over scattered trees.
Construct a thin algebra H that guides ϕ.
Find a consistent marking γ : t0, 1uăω Ñ H.
Guide ϕ using γ to find a difficult scattered tree t.
ù ϕ is not a choice function on t.
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Application : unambiguity

A — non-deterministic tree automaton

Runs ρ

Trees t

R “
 

pt, ρq | ρ is accepting over t
(

R

LpAq

LpAq “
 

t | Dρ pt, ρq P R
(

R A is unambiguous if R is uniformised

Theorem (Niwiński, Walukiewicz [1996])
The language Dy apyq cannot be recognised by any unambiguous au-
tomaton.

Proof
Any unambiguous automaton for Dy apyq induces an mso-definable
choice function. �
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Bi-unambiguous languages

L is bi-unambiguous if both L and Trees´L are unambiguous
ù boolean algebra of languages

Problem
How to decide if L is bi-unambiguous?

Theorem (Bilkowski, S. [2013])
If there is no mso-def. choice function over scattered trees

then it is decidable if a regular language of complete trees
is bi-unambiguous.
“ ‰

a concrete, sound algorithm P but. . .
completeness of P depends on Choice Conjecture

Lemma (S. [2013])
If there is no mso-def. choice function over scattered trees then

finite prophetic thin algebras are closed under homomorphisms.
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Summary

‚ Uniformisability:
— fo over finite words 7 (?)
— mso over infinite words 3 [S75], [R07]
— mso over complete trees (with parameters) 7 [GS83], [CL07]
— mso over scattered trees (with parameters) 3 [LS98], [BS13]
— mso over scattered trees (without parameters) 7 [BS13]

‚ Choice:
— mso over finite/infinite words 3

— mso over complete trees 7 [GS83], [CL07]
— mso over scattered trees ??? [BS13]

‚ Applications:
— thin algebras
— bi-unambiguous languages of complete trees
— maybe parity index bounds for unambiguous languages. . .
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