
Theory Comput Syst
DOI 10.1007/s00224-014-9595-z

Regular Languages of Thin Trees

Tomasz Idziaszek · Michał Skrzypczak ·
Mikołaj Bojańczyk

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract An infinite tree is called thin if it contains only countably many infinite
branches. Thin trees can be seen as intermediate structures between infinite words
and infinite trees. In this work we investigate properties of regular languages of thin
trees. Our main tool is an algebra suitable for thin trees. Using this framework we
characterize various classes of regular languages: commutative, open in the standard
topology, and definable in weak MSO logic among all trees. We also show that in
various meanings thin trees are not as rich as all infinite trees. In particular we observe
a collapse of the parity index to the level (1, 3) and a collapse of the topological
complexity to co-analytic sets. Moreover, a gap property is shown: a regular language
of thin trees is either weak MSO-definable among all trees or co-analytic-complete.

Keywords Infinite trees · Regular languages · Effective characterizations ·
Topological complexity

All authors were supported by ERC Starting Grant “Sosna” no. 239850

T. Idziaszek · M. Skrzypczak (�) · M. Bojańczyk
Institute of Informatics, University of Warsaw, Warsaw, Poland
e-mail: mskrzypczak@mimuw.edu.pl

T. Idziaszek
e-mail: idziaszek@mimuw.edu.pl

M. Bojańczyk
e-mail: bojan@mimuw.edu.pl

mailto:mskrzypczak@mimuw.edu.pl
mailto:idziaszek@mimuw.edu.pl
mailto:bojan@mimuw.edu.pl


Theory Comput Syst

1 Introduction

Since the decidability results by Büchi [7] and Rabin [18], regular languages of
infinite words and trees have been studied intensively. These languages can be equiv-
alently described in monadic second-order (MSO) logic, by non-deterministic finite
automata, or in terms of homomorphisms to finite algebras. Apart from the emptiness
problem, which is known to be decidable, one can ask about decidability for other,
more subtle, properties of a given language.

Suppose that X is a subclass of regular languages of infinite trees, e.g. X can be the
languages that are definable in first-order (FO) logic with descendant; or definable in
weak monadic second-order (weak MSO) logic; or recognized by a non-deterministic
parity automaton with priorities {i, . . . , j}. An effective characterization for X is
an algorithm which inputs a regular language of infinite trees and answers if the
language belongs to X. As far as decidability is concerned the representation of the
language is not very important, since there are effective translations between the
many ways of representing regular languages of infinite trees.

Effective characterizations are a lively and important topic in the theory of regular
languages. In the case of finite words there are many celebrated results, e.g. charac-
terizations of FO [20], two-variable FO [24], or piecewise testable languages [21].
Many of these results carry over to infinite words, see [17, 25], or [13]. For finite
trees much less is known, but still there are some techniques [3]. The main reason
why effective characterizations are studied is that an effective characterization of a
class X requires a deep insight into the structure of the class. Usually this insight is
achieved through an algebraic framework, such as semigroups for finite words, Wilke
algebras for infinite words, or forest algebras for finite trees. Apart from having a
well-developed structure theory, another advantage of algebra is that many effective
characterizations can be elegantly stated in terms of identities.

Effective characterizations are technically challenging and in fact there are very
few effective characterizations for languages of infinite trees: for languages recog-
nized by top-down deterministic automata one can compute the Wadge degree [15],
for arbitrary regular languages one can decide definability in the temporal logic
EF [1] or in the topological class of Boolean combinations of open sets [4]. One of
the reasons why effective characterizations are so difficult for infinite trees is that, so
far, there is no satisfactory algebraic approach to infinite trees, or even a canonical
way to present a regular language. The algebras proposed so far are not completely
satisfactory. The algebras proposed in [1] can recognise non-regular languages, while
the algebras proposed in [2] are not closed under homomorphisms.

In this paper, we propose to study thin trees, which generalize both finite trees
and infinite words but which are still simpler than arbitrary infinite trees. A tree is
called thin if it has only countably many infinite branches (or equivalently, it does not
contain a full binary tree as a minor). We believe that thin trees are a good stepping
stone on the way to understanding regular languages of arbitrary infinite trees.

The developments presented in this paper, in particular introduction of thin forest
algebra, lead to some new results on unambiguity and uniformization on infinite
trees, see [6].



Theory Comput Syst

Our contributions can be divided into two sets:

Effective characterizations. We characterize the following classes of regular lan-
guages of thin trees in terms of finite sets of identities:

– closed under rearranging of siblings,
– open in the standard topology,

– definable in the temporal logic EF,

– definable among all trees in weak MSO logic.

The crucial ingredient of these characterizations is an observation that a regular lan-
guage of thin trees can be canonically represented by a finite algebraic object, called
its syntactic thin-forest algebra. For general trees no such representation is known.

Upper bounds. We show that in various contexts thin trees are not as rich as generic
trees:

– The Rabin-Mostowski index hierarchy collapses to the level (1, 3) on thin trees.

– The projective hierarchy of regular languages collapses to the level �1
1 on thin

trees (comparing to �1
2 in the case of all trees).

– We observe a gap property (see [16]): a regular language of thin trees, treated as
a subset of all trees, is either definable in weak MSO logic or �1

1-complete.

– If we treat thin trees as our universe then no regular language is topologically
harder than Borel sets.

2 Preliminaries

This section introduces basic notions and facts used in the proofs. To avoid techni-
cal difficulties when introducing algebras, we operate on finitely branching forests
instead of partial binary trees. The difference is only technical, all the results can be
naturally transferred back to the framework of partial binary trees.

2.1 Forests

Fix a finite alphabet A. By AFor we denote the set of all A-labelled forests. Formally
a forest is a mapping from its set of nodes dom(t) ⊂ ω+ into A. We additionally
assume that a forest is finitely branching: for every w ∈ ω∗ there are only finitely
many nodes of the form wn for n ∈ N in dom(t). We assume that these nodes are
w0, w1, w2, . . . , wm for some m. For w = ε these nodes are called roots of the
forest t and for w �= ε these are children of the node w. In both cases the list of the
nodes of the form wn ordered by n is called a list of siblings in t . The prefix order on
nodes of a forest is denoted x � y.

A node w ∈ dom(t) is branching if it has at least two distinct children wn1, wn2 ∈
dom(t). A node in dom(t) is a leaf of t if it has no children in t .



Theory Comput Syst

A forest with exactly one root is called a tree. The empty forest is denoted as 0.
For a given forest t and a node x ∈ dom(t) by t�x we denote the subtree of t rooted
in x: dom(t�x) = {0w ∈ ω∗ : xw ∈ dom(t)}, t�x(0w) = t (xw).

Let t be a forest. A sequence π ∈ ω∗ is a finite branch of t if either π = ε and
t = 0 or π ∈ dom(t) and π (as an element of ω+) is a leaf of t . A sequence π ∈ ωω

is an infinite branch of t if for every sequence w ∈ ω+ such that w ≺ π we have that
w is a node of t .

A forest is regular if it has only finitely many distinct subtrees. A forest is thin if it
has countably many branches. The set of all thin forests is denoted as AThinFor ⊂ AFor.

Some authors use different names to denote tree-like structures with countably
many branches. We recall here two of them: a forest that is a tree is thin if and only
if it is a scattered tree in the meaning of [19]. A forest is thin if and only if it is, up to
isomorphism, a tame tree in the meaning of [14].

We say that a forest s is a prefix of a forest t if dom(s) ⊆ dom(t) and for every
x ∈ dom(s) we have s(x) = t (x). We denote this fact by s ⊆ t .

Let t be a forest and s ⊆ t be a prefix of t . A node y ∈ dom(t) is off s if
y /∈ dom(s) and either y is a root or the parent of y is in dom(s). Since a branch π of
t can be treated as a prefix of t this definition also extends to branches.

An A-labelled context is a forest over the alphabet A ∪ {�}, where the label � is
a special marker, called the hole, which occurs exactly once and in a leaf. A context
is guarded if its hole is not in a root. For every letter a ∈ A, abusing the notation, we
denote by a the single-letter context with a in the root and the hole below it.

Since we are interested in algebraic frameworks for forests, we need a set of oper-
ations which will allow us to build forest from basic elements. Following [8] we
introduce the following operations on forests. For a graphical presentation of these
operations see Figs. 1, 2, and 3 (compare Figures 1 and 2 in [8]).

We can

– concatenate two forests s, t , which results in the forest s + t ,
– compose a context p with a forest t , which results in the forest pt , obtained from

p by replacing the hole with t ,
– compose a context p with a context q, which results in the context pq that

satisfies (pq)t = p(qt).

Fig. 1 Forest concatenation



Theory Comput Syst

Fig. 2 Context composition

We write at , ap for the composition of the single-letter context a with t or p (thus
a0 is a forest with one node labelled a). Additionally we have an operation which
allows us to produce infinite forests:

– we can compose a guarded context p with itself infinitely many times, which
results in the forest p∞ that satisfies p(p∞) = p∞. Note that we exclude non-
guarded contexts from this definition. (For example the result of (� + a0)∞,
even if well-defined, is not finitely branching.)

2.2 Automata and Regular Languages

A (non-deterministic parity) forest automaton over an alphabet A is given by a set of
states Q equipped with a monoid structure, a transition relation � ⊆ Q × A × Q,
a set of initial states QI ⊆ Q, and a parity condition � : Q → N. We use addi-
tive notation + for the monoid operation in Q and we write 0 for the neutral
element.

We say that a forest automaton A has index (i, j) (or shortly that A is an (i, j)-
automaton) if i is the minimal and j is the maximal value of � on Q.

Fig. 3 Infinite composition



Theory Comput Syst

A run of an automaton over a forest t is a labelling ρ : dom(t) → Q of forest
nodes with states such that for any node x with children x1, . . . , xn

(ρ(x1) + ρ(x2) + · · · + ρ(xn), t (x), ρ(x)) ∈ �.

Note that if x is a leaf then the above condition means (0, t (x), ρ(x)) ∈ �.
A run is accepting if for every (infinite) branch π of t , the highest value of �(q)

is even among those states q which appear infinitely often along the branch π . The
value of a run over a forest t is obtained by adding, using +, all the states assigned to
roots of the forest. A forest is accepted if it has an accepting run whose value belongs
to QI . The set of forests accepted by an automaton is called the language recognized
by the automaton.

We use MSO logic to describe properties of infinite forests. An infinite forest
is treated as a relational structure, where the universe contains the nodes, and the
predicates are: a binary child predicate, a binary next sibling predicate, and one unary
predicate for each label in the alphabet. Additionally, we consider weak MSO: the
logic with the same syntax as MSO but with the semantic restriction that all set
quantifiers range over finite subsets of the domain. Since the property that a given set
is finite is MSO-definable on finitely branching infinite forests, weak MSO can be
naturally embedded into MSO. There are examples of languages of infinite forests
that are definable in MSO but not in weak MSO.

A language is regular if it is definable by a formula of monadic second-order logic
(MSO).

Theorem 1 ([11]) A language of thin forests is regular if and only if it is recog-
nized by some forest automaton. Every nonempty language of thin forests contains a
regular forest.

2.3 Topology

A topological space X is Polish if it is separable and has a complete metrics. Polish
topological spaces are the principal objects studied in descriptive set theory.

The set of forests AFor, equipped with the natural Tikhonov topology, is an
uncountable Polish topological space. The base of the topology is given by the sets
of forests with a fixed prefix r of some depth d: {t : t�ω≤d = r} for a finite forest r

and a number (depth) d .
Let X be an uncountable Polish topological space. The class of open sets in X is

denoted as �0
1(X). The class of complements of open sets (called closed) is denoted

as �0
1(X). The Borel hierarchy is defined inductively, the building ingredients are

countable unions and intersections. For a countable ordinal α let:

– �0
α(X) be the class of countable unions of sets from ∪β<α�0

β(X),

– �0
α(X) be the class of countable intersections of sets from ∪β<α�0

β(X).

The class of Borel sets is the union of all classes �0
α and �0

α for α < ω1.
A more detailed introduction to the Borel hierarchy can be found e.g. in



Theory Comput Syst

Fig. 4 The boldface hierarchy

[12, Chapter II]. If the space is clear from the context we will omit it and write just
�0

α and �0
α .

The class of Borel sets is not closed under projection. Each set that is a projection
of a Borel set is called analytic. The class of analytic sets is denoted by �1

1. The
superscript 1 means that the class is a part of the projective hierarchy. The rest of the
projective hierarchy is defined as follows:

– �1
i consists of the complements of the sets from �1

i ,

– �1
i+1 consists of the projections of the sets from �1

i , for i < ω.

The sets from the class �1
1 are called co-analytic.

The Borel hierarchy together with the projective hierarchy constitute the so-called
boldface hierarchy. The most important property of this hierarchy is its strictness: all
the inclusions on Fig. 4 are strict.

Fact 2 Every regular language of forests is in the intersection of �1
2 and �1

2 (denoted
by �1

2).
The set of thin forests AThinFor is �1

1(A
For)-complete, thus non-Borel.

Proof The first statement follows by automata-theoretic techniques: a forest belongs
to a regular language if there exists a run that is accepting on every branch. This
statement is �1

2.
A forest is thin if and only if it does not contain a full binary subtree as a minor.

This definition is a co-analytic definition of AThinFor among all forests.
For hardness we can use the implication (3) ⇒ (4) in Theorem 46 — the lan-

guage of all thin forests violates condition (15) so it is �1
1-hard. It can also be proved

directly by repeating the construction of the reduction f from Section 7.2.

3 Ranks

The crucial tool in our analysis of thin forests is structural induction — we inductively
decompose a given forest into simpler ones. A measure of complexity of thin forests
is called a rank — a function that assigns to each thin forest a countable ordinal
number.

The definition of ranks we use is based on an appropriate notion of derivative: we
inductively remove simple parts of a given forest. Depending on which forests are
treated as simple, we obtain different ranks.



Theory Comput Syst

Definition 3 Let B be a set of thin trees. We say that B is good as a rank basis if it
satisfies the following conditions for every tree t :

1. if t belongs to B, then all the subtrees of t also belong to B (i.e. B is closed under
subtrees),

2. if no subtree of t belongs to B then t contains a branching node.

We use two families B giving rise to two ranks:

– Let BP contain all trees containing one node and those trees that consists of
exactly one infinite branch (i.e. without any finite branch),

– Let BCB contain all trees containing only finitely many finite and infinite
branches.

Note that both families BP , BCB are good as rank basis.
The definition of the derivative and rank on thin forests is an adopted version

of the Cantor-Bendixson derivative on closed sets (see e.g. [12, Exercise 6.15 and
Chapter IV Section 34.D]). In the case of BCB it is in principle the same operation.

Consider the following operation on forests called derivative, parametrized by a
set of thin trees B that is good as a rank basis.

Definition 4 For a forest t ∈ AFor we define the forest DvB(t) ⊆ t that contains only
those nodes x ∈ dom(t) such that t�x /∈ B.

We can iterate this derivative transfinitely many times, as expressed by the
following definition.

Definition 5 Put Dv0
B(t) = t . Inductively define Dvη

B(t) for any countable ordinal

η < ω1. Let Dvη+1
B (t) = DvB(Dvη

B(t)) and if η is a limit ordinal let

Dvη
B(t) =

⋂

β<η

Dvβ
B(t),

where the intersection is set-theoretical — it restricts the set of nodes of a forest to
the common fragment.

Fact 6 Let t ∈ AFor be a forest. The sequence Dvη
B(t) for η < ω1 is a decreasing

sequence of forests. There exists η0 < ω1 such that

Dvη0
B (t) = Dvη0+1

B (t) = Dvη0+2
B (t) = . . . .

The following proposition shows a connection of this iterated derivative and thin
forests.

Proposition 7 Let t be a forest and η0 < ω1 be an ordinal such that Dvη0
B (t) =

Dvη0+1
B (t). The forest Dvη0

B (t) is the empty forest if and only if t is a thin forest.



Theory Comput Syst

Proof Assume that Dvη0
B (t) is the empty forest. Observe that every application of

the derivative decreases the number of branches of t by countably many: there are
countably many nodes x ∈ dom(t) and the subtree under a removed node x belongs
to the family B, therefore is thin. Since there are countably many applications of the
derivative, the total number of removed branches is also countable.

Assume that t ′ = Dvη0
B (t) is not the empty forest. We show that in that case

t ′ ⊆ t has uncountably many branches. We construct an embedding of the complete
binary tree into t (also called a Cantor scheme). Such an embedding maps finite
sequences b ∈ {L, R}∗ into nodes xb ∈ dom(t ′). We start with any xε ∈ dom(t ′).
Let b ∈ {L, R}∗ be a sequence such that the node xb ∈ dom(t ′) is defined. Observe
that there must be a branching node y of t ′ under xb (since all the subtrees of t ′�xb

do
not belong to B and B is good as a rank basis). Put xbL, xbR as two arbitrary distinct
children of y in t ′.

The above definition gives us distinct infinite branches of t ′ for every π ∈
{L, R}ω. Therefore, t ′ has uncountably many infinite branches. So t /∈ AThinFor.

Definition 8 Let t ∈ AThinFor be a thin forest and B be good as a rank basis. We
define the B-rank of the forest t (denoted rB(t)) as the smallest ordinal η0 such that
Dvη0

B (t) = 0. We extend it to rB(x, t) (the rank of x in t) for a node x ∈ dom(t) in
such a way that rB(x, t) is the least η0 < ω1 such that x /∈ dom

(
Dvη0

B (t)
)
.

Fact 9 For every thin forest t ∈ AThinFor and node x ∈ dom(t) we have rB(x, t) =
rB(t�x).

If t is a non-empty thin forest and B is good as a rank basis then rB(t) is not a
limit ordinal. In particular the ordinal rB(t) − 1 is defined. Also:

DvrB(t)−1
B (t) is a concatenation of finitely many trees in B. (1)

If x � y are two nodes of a thin forest t then rB(x, t) ≤ rB(y, t).

The observation that rB(t) is not a limit ordinal follows from the fact that each
forest has only finitely many roots. By the definition of the limit composition of Dv,
for every x ∈ dom(t) we have rB(x, t) < η. In particular, if x is a root of t then
x /∈ Dvηx

B (t) for some ηx < η. Let η′ be the supremum of ηx among the roots x of t .

Since there are finitely many roots of t , η′ < η. It means that already Dvη′
B (t) = 0.

For a non-limit η we get (1).
Now we can fix our two derivatives: DvCB = DvBCB

, DvP = DvBP
, and ranks:

rankCB = rBCB
and rank = rBP

. rankCB is called the Cantor-Bendixson rank (shortly
CB-rank).

Definition 10 For an ordinal η < ω1 we denote by AThinFor≤η the set of thin forests
of CB-rank at most η.

The crucial way of using ranks is induction: we can decompose a given forest as
its core fragment and a number of trees connected to it. Since all those trees have



Theory Comput Syst

smaller rank, we can assume the induction hypothesis about them. There are two
notions of core fragments for our two ranks.

Definition 11 Let t be a nonempty thin forest. The spine of t is Dvrank(t)−1
P (t). The

final prefix of t is DvrankCB(t)−1
CB (t).

Using (1) we get the following fact.

Fact 12 Let t be a nonempty thin forest. The spine of t is of the form t1 + t2 + . . .+ tn
for some trees t1, . . . , tn belonging to BP — each ti is either an one-node tree or an
one-infinite-branch tree.

The final prefix t ′ of t is a thin forest of CB-rank 1. Therefore, t ′ has the form
of a finite forest r and finitely many infinite branches π1, π2, . . . , πn starting from
distinct leafs of r . If t is infinite then there are infinite branches in t ′ (i.e. n > 0).

Intuitively, a forest t has rankCB equal M if t contains M levels of infinite
branches:

– The CB-rank of the empty forest is 0,
– The CB-rank of a forest with finitely many branches is 1,
– if s is a prefix of t of CB-rank 1 and for every x that is off s we have rankCB(t�x)

≤ M , then rankCB(t) ≤ M + 1.

Figure 5 presents a sequence of forests of increasing CB-rank. The leftmost branch of
each forest is its final prefix. In the case of these forests the final prefix coincides with
the spine. However, the two notions diverge in general. For instance, every non-empty
finite forest coincides with its final prefix while its spine is of the form t1 + . . . + tn
where each ti is a one-node tree.

3.1 Skeletons

The second tool used to analyze structural properties of thin forests are skeletons. A
skeleton can be seen as a witness that a given forest is thin. Moreover, a skeleton of
a thin forest t represents a structural decomposition of t .

Fig. 5 Examples of trees of increasing CB-rank



Theory Comput Syst

A subset of nodes σ ⊆ dom(t) of a given forest t ∈ AFor is a skeleton of t if:

– from every set of siblings in t exactly one is in σ ,
– on every infinite branch π of the forest t all but finitely many nodes x ≺ π

belong to σ .

Observe that we can identify σ with its characteristic function — a labelling of
nodes of t by {0, 1}. Therefore, σ ∈ {0, 1}For and we can treat a pair of a forest and a
skeleton (t, σ ) as an element of (A × {0, 1})For.

Definition 13 Assume that (t, σ ) is a forest with a skeleton. Take any node x ∈
dom(t). The branch π starting in x that follows at every point the skeleton σ is called
the main branch of σ from x. More formally, it can be defined as the unique finite or
infinite branch π ∈ ω≤ω such that:

x � π ∧ ∀y�π (y � x ∨ y ∈ σ) .

Note that the main branch may be finite if it reaches a leaf of the forest. Otherwise
it is infinite. By the assumption that a skeleton contains almost all nodes on every
branch, we obtain the following fact.

Fact 14 Take a forest t ∈ AFor with a skeleton σ and an infinite branch π of t . There
exists a node x ∈ t such that π is the main branch of σ from x.

Proposition 15 A given forest t ∈ AFor has a skeleton if and only if t is thin.

Proof If a forest has a skeleton then by the above fact every infinite branch of t

is from some point on its main branch (from some node of t). So there are at most
countably many branches of t .

Now assume that a forest t is thin. Inductively on the rank of t we construct a
skeleton of t . For a technical reason the constructed skeleton will not contain any root
of the given forest. After the induction is performed, we can add one of the roots to σ .

If t = 0 then the empty set is its skeleton. Assume that rank(t) = η > 0 and let
s = s1 + s2 + . . . + sn be the spine of t (see Definition 11). Let σ contain all non-
root nodes of s1, s1, . . . , sn. Since all subtrees that are off s have smaller rank, we
can inductively define σ on them. Finally, for every si that is a single node and not a
leaf in t we add to σ the leftmost child of si .

First observe that σ defined this way contains exactly one node from each set of
siblings. Let us take any infinite branch π of a thin forest t . Note that ranks of nodes
along this branch are non-increasing, so from some point on they are all equal some
ordinal η. Therefore at the η-th step of our induction one of the trees si had the form
of one infinite branch containing almost all nodes along π . So, by the definition of
σ , almost all nodes along π belong to σ .

Definition 16 The skeleton σ constructed in the proof of Proposition 15 is called the
canonical skeleton for t and is denoted by σ(t).



Theory Comput Syst

4 Algebra

In this section we define two variants of thin-forest algebras. The operations and
axioms of the first variant, regular-thin-forest algebras, are constructed in such a
manner that the free object of this algebras is the set of all regular thin forests and
regular thin contexts. Regular-thin-forest algebras form a common generalization of
both Wilke algebras [26] and forest algebras [8].

The free object of the second variant, unrestricted-thin-forest algebras, is the set
of all thin forests and thin contexts. Unrestricted-thin-forest algebras form a common
generalization of both ω-semigroups and forest algebras.

A regular-thin-forest algebra is a three-sorted algebra (H, V+, V�, act, inl, inr,
inf ). It consists of two monoids H and V = V+∪V� (partitioned into a subsemigroup
V+ and a submonoid V�) along with an operation of an action act : V × H → H

of V on H , two operations inl, inr : H → V�, and an infinite loop operation
inf : V+ → H . Instead of writing act(v, h), we write vh. Instead of writing inf (v),
we write v∞. We will call H the horizontal monoid and V the vertical monoid.

The above construction is based on forest algebras (see [8]). In fact we take a
forest algebra and introduce the new operation inf ; this operation corresponds to infi-
nite composition of contexts. However, since infinite composition is defined only
for guarded contexts, we are forced to make a distinction between guarded and
non-guarded objects, therefore we partition the sort V into two parts V+ and V�
respectively.

Since the insertion operations are somewhat cumbersome to use, we will use the
operation + to concatenate forests with contexts, meaning h + v = inl(h)v, v + h =
inr(h)v.

The definition of an unrestricted-thin-forest algebra is the same as that of a regular-
thin-forest algebra, except that the infinite loop operation is replaced by an infinite
product: π :V ∞+ → H .

4.1 Axioms

A regular-thin-forest algebra must satisfy the following axioms:

(A1) (H, +, 0) is a monoid with multiplication + and neutral element 0,
(A2) (V , ·,�) is a monoid with multiplication · and neutral element �; it contains

two disjoint subalgebras: (V�, ·,�) is a monoid and (V+, ·) is a semigroup,

(A3) (action axiom) (vw)h = v(wh) for every v, w ∈ V , h ∈ H ,
(A4) (insertion axiom) inl(h)g = h + g, inr(h)g = g + h for every h, g ∈ H ,

(A5) (vw)∞ = v(wv)∞ for v, w ∈ V , excluding the case when v, w ∈ V�,
(A6) (vn)∞ = v∞ for v ∈ V+ and every n ≥ 1.

An unrestricted-thin-forest algebra has its own versions of Axioms (A5) and (A6):

(A5′) for every v ∈ V+ and for every sequence {vn}n≥0 ∈ V ∞+ ,

vπ(v0, v1, v2, . . .) = π(v, v0, v1, v2, . . .),



Theory Comput Syst

(A6′) for every increasing sequence {kn}n≥1 and each sequence {vn}n≥0 ∈ V ∞+ ,

π(v0v1 · · · vk1−1, vk1vk1+1 · · · vk2−1, . . .) = π(v0, v1, v2, . . .).

The infinite loop operation can be expressed as v∞ = π(v, v, v, . . .).

4.2 The Free Objects

Given an alphabet A we define the free regular-thin-forest algebra over A, which is
denoted by AregThin�, as follows:

(a) the horizontal monoid is the set of regular thin forests over A, with the operation
of forest concatenation;

(b) the vertical monoid is the set of regular thin contexts over A (respectively
guarded and non-guarded), with the operation of context composition;

(c) the action is the operation of composing a context with a forest,
(d) the inl operation takes a regular thin forest and transforms it into a regular thin

context with the hole to the right of all the roots in the forest (similarly for inr
but the hole is to the left of the roots);

(e) the infinite loop operation takes a regular thin context and transforms it into a
regular thin forest by performing infinite composition.

In the same manner we define the free unrestricted-thin-forest algebra over A,
which is denoted by AThin�, by above conditions (a)–(d) without the assumption of
regularity and a condition

(e′) the infinite product operation takes an infinite sequence of thin contexts and
transforms it into a thin forest by performing infinite composition.

Theorem 17 The algebra AregThin� is a regular-thin-forest algebra. Moreover it is
the free algebra (in the sense of universal algebra, see [5]) in the class of regular-thin-
forest algebras over the generator set A� = {a : a ∈ A} — the set of single-letter
tree contexts.

Similarly, the algebra AThin� is an unrestricted-thin-forest algebra and the free
algebra in the class of unrestricted-thin-forest algebras over the generator set A�.

Proof The proof is technical, but not surprising. It is divided into two parts: first we
show that the free objects are generated by the alphabet A�. Then we prove that if
two terms generate the same object then the axioms imply that they are equivalent.
See [11] for details.

4.3 Correspondence Between Two Algebras

Theorem 18 Every finite regular-thin-forest algebra can be equipped, in a unique
way, with a structure of an unrestricted-thin-forest algebra.

Proof Let (H, V+, V�) be a regular-thin-forest algebra. Consider a set Hω ⊆ H

which consists of all elements of form vw∞ for v, w ∈ V+. It is easy to see that



Theory Comput Syst

(V+, Hω) is a Wilke algebra. For a Wilke algebra we can, in a unique way, define
the operation π : V ∞+ → Hω such that (V+, Hω) is an ω-semigroup (see [17, Theo-
rem 5.1]). We can naturally extend the definition of the operation π to (H, V+, V�).
Since the axioms of an ω-semigroup regarding π are the same as the axioms of an
unrestricted-thin-forest algebra, we conclude that (H, V+, V�) with the operation π

is an unrestricted-thin-forest algebra.
The uniqueness of this extension follows from the fact that every extension must

map elements of V+ to some element from Hω (due to the axioms and Ramsey theo-
rem). Therefore, different extensions would differ on (V+, Hω) which is impossible,
since (V+, Hω) is unique [25].

5 Recognizability by Thin-Forest Algebras

A morphism between two thin-forest algebras is defined in the natural way. A set L

of thin forests over an alphabet A is recognized by a morphism α : AThin� → (H, V )

if L = α−1(I ) for some I ⊆ H .
We will consider terms over the signature of thin-forest algebras with typed vari-

ables. Variables can be of type τH , τV , or τV+ , which means that a valuation of a term
should assign to the variable an element of the sort H , V or V+ respectively. Simi-
larly, a term is of a certain type if a valuation of this term results in an element from
the corresponding sort.

Two thin forests t, s are L-equivalent if for every term σ over the signature of
thin-forest algebras of type τH with one variable x of type τH , either both or none of
the forests σ [x ← t], σ [x ← s] belong to L (note that we evaluate the term σ in the
free thin-forest algebra). Similarly we define L-equivalence of contexts (but now the
variable x is of type τV ).

The relation of L-equivalence is a congruence and the quotient of AThin� with
respect to L-equivalence is the syntactic unrestricted-thin-forest algebra for L. The
syntactic morphism of L assigns to every element of AThin� its equivalence class
in the syntactic unrestricted-thin-forest algebra of L. Similarly, in the case of the
regular-thin-forest algebra.

The following notion is technically useful. We say that a thin-forest algebra is
faithful if there are no two distinct elements v, w ∈ V such that

– vh = wh for all h ∈ H and

– (vu)∞ = (wu)∞ for all u ∈ V such that vu, wu ∈ V+.

Fact 19 Every syntactic unrestricted-thin-forest algebra (respectively syntactic
regular-thin-forest algebra) is faithful.

Proof There are only two ways a tree-valued term can use a context-valued variable
v: either by applying v to a tree-valued term or by using the infinite power. Therefore,
if two elements v, w ∈ V satisfy the conditions of faithfulness, then v and w are
L-equivalent and, hence, equal.



Theory Comput Syst

Theorem 20 A language of thin forests is recognizable by a finite unrestricted-thin-
forest algebra if and only if it is regular.

Every regular language of thin forests is recognizable by its syntactic morphism.
The syntactic unrestricted-thin-algebra and the syntactic morphism can effectively

be calculated, given a parity automaton recognising a given language.

The rest of this section is devoted to proving this theorem.

5.1 Automaton to Algebra

In this section we show how to calculate, given a non-deterministic forest automaton
A, an unrestricted-thin-forest algebra that recognizes the language recognized by A.
This algebra is called the automaton algebra.

Let us fix a non-deterministic forest automaton A, with states Q, input alpha-
bet A, priorities {0, . . . , k}, and a set of initial states QI ⊆ Q. Below we describe
the automaton algebra (H, V ), together with associated morphism α : AThin� →
(H, V ), which recognizes the language L(A).

Before describing the algebra itself, we define the morphism α. This morphism
should explain the intended meanings of H and V .

(a) The morphism α associates to each thin forest t a subset of Q. A state q belongs
to α(t) if some accepting run ρ over t has value q.

(b) The morphism α associates to each thin context p a subset of the product Q ×
{0, . . . , k}×Q. A triple (q1, i, q2) belongs to α(p) if there exists a thin forest s

and an accepting run ρ over ps such that the value of ps in ρ is q2, the value of
s in ρ is q1, and the highest priority assigned to nodes that are ancestors of the
hole in p is i (this priority is equal to 0 if p is non-guarded).

Therefore, the carriers of the horizontal and vertical monoids are subsets

H ⊆ P(Q), V ⊆ P(Q × {0, . . . , k} × Q),

which are images under α of thin forests and thin contexts, respectively. These might
be proper subsets, for instance not every subset of Q needs to be an image α(t). A
thin forest belongs to L if and only if its image under α contains a state from QI .

We say that two thin forests s, t are automaton-equivalent if the subsets associated
to these forests by the morphism α are the same. We denote it by s ∼A t . Similarly
we define automaton-equivalence of thin contexts.

Lemma 21 The relation of automaton-equivalence ∼A is a congruence with respect
to the operations of the free thin-forest algebra.

Proof We show the claim for forest concatenation and for infinite loop operation.
The proof for other operations follows along the same lines.

Let t, t ′, s be thin forests and t ∼A t ′. We must show that t +s ∼A t ′+s. Suppose
that q ∈ α(t + s). Thus there is an accepting run ρ over t + s such that the value of t

is q ′, the value of s is q ′′ in ρ, and q = q ′ +q ′′. The run ρ is accepting over the forest



Theory Comput Syst

t , and since t ∼A t ′, there is an accepting run ρ′ over t ′ with value q ′. Combining
the run ρ′ over t ′ with the run ρ over s we get an accepting run over t ′ + s of value
q = q ′ + q ′′. Thus q ∈ α(t ′ + s).

Let p, p′ be guarded thin contexts and p ∼A p′. We must show that p∞ ∼A p′∞.
Suppose that q ∈ α(p∞). Thus there is an accepting run ρ over the forest p∞ with
value q. For i ≥ 1 we denote by qi−1 the sum of states assigned to the roots of the
i-th (counting from the top) instance of the context p (of course q = q0), and by
ki the highest priority assigned to nodes on the path to the i-th hole. Thus for every
i ≥ 1 we have (qi−1, ki, qi) ∈ α(p), and therefore (qi−1, ki, qi) ∈ α(p′). That means
that for every i there is an accepting run ρi of value qi−1 over p′si for some forest si
evaluates to qi . Combining these runs we get that q ∈ α(p′∞).

The following fact is a direct consequence of Lemma 21 by a standard method of
universal algebra.

Fact 22 The function α induces a structure of an unrestricted-thin-forest algebra on
the sets (H, V ) in such a way that α : AThin� → (H, V ) is a homomorphism.

Lemma 23 The morphism α recognizes the language L(A).

Proof Let I = {h ∈ H : QI ∩ h �= ∅}. From the definition we have that a forest t is
in L if some accepting run over t has a value from QI . This is equivalent to saying
that QI ∩ α(t) �= ∅, thus α(t) ∈ I , and t ∈ α−1(I ). Therefore L(A) = α−1(I ).

Now we show how to effectively calculate the operations of finite arity of the
automaton algebra. Defining the operations is straightforward, keeping in mind the
intended meaning of the morphism α. We denote by T C(v) the transitive closure
of v with respect to the · operation. Formally (p, α, q) ∈ T C(v) if there exist a
sequence of states p = qn, qn−1, . . . , q0 = q and priorities αn, αn−1, . . . , α1 such
that α = max{αn, . . . , α1} and (qi, αi, qi−1) ∈ v for every 1 ≤ i ≤ n.

The operations are as follows (by (p, , q) we denote an arbitrary triple of the form
(p, j, q) for some j ):

h + g = {p + q | p ∈ h, q ∈ g} for h, g ∈ H

vw = {(p, max(i, j), q) | (p, i, r) ∈ w, (r, j, q) ∈ v} for v, w ∈ V

v∞ = {q | (p, i, p), (p, , q) ∈ T C(v), i is even} for v ∈ V+
vh = {q | p ∈ h, (p, , q) ∈ v} for v ∈ V, h ∈ H

inl(h) = {(q, 0, p + q) | p ∈ h} for h ∈ H

inr(h) = {(q, 0, q + p) | p ∈ h} for h ∈ H

Finally, we also define the morphism:

α(a) = {(q, �(p), p) | (q, a, p) ∈ �} for a ∈ A,

α(�) = � = {(p, 0, p) | p ∈ Q},
α(0) = 0 = {0}



Theory Comput Syst

The proof of correctness of the above operations mimics the reasoning in
Lemma 21.

Finally, to calculate the syntactic algebra of L, we can first calculate the automaton
algebra for A, and then calculate the L-equivalence relation ∼L over (H, V ) using
the idea from Moore’s algorithm for minimizing automata. First we put h �∼L g for
every h, g ∈ H such that exactly one of the types h, g belongs to I ⊆ H . Then we try
to extend the number of non-L-equivalent pairs of elements using every operation.
For example for forest concatenation and for infinite loop we do:

– if there are elements h, h′, g ∈ H such that h+g �∼L h′ +g or g +h �∼L g +h′,
then h �∼L h′,

– if there are elements v, v′ ∈ V+ such that v∞ �∼L v′∞, then v �∼L v′.

We terminate the algorithm when there is no new pair we can add. Note that we do
not take into account the operation π . Still it is correct due to the fact that minimizing
an unrestricted-thin-forest algebra is the same as minimizing a regular-thin-forest-
algebra:

Theorem 24 Let L be a regular language of thin forests with the syntactic
unrestricted-thin-forest algebra synt(L). Let synt(LR) be the syntactic regular-thin-
forest algebra of the language LR which contains all regular thin forests from L.
Then synt(L) is isomorphic to the extension of synt(LR) defined in Theorem 18.

Proof We prove that synt(L) is an extension of synt(LR). Isomorphism follows from
Theorem 18 which states that such an extension is unique.

Therefore we must show that for every two regular thin forests s and t which
are equivalent under L-equivalence relation ∼L, they are also equivalent under ∼LR

.
From the definition s ∼L t means that for every term σ from the signature of
unrestricted-thin-forest algebra we have σ [x ← s] ∈ L if and only if σ [x ← t] ∈ L.
This is equivalent to saying that for every thin forest u over the alphabet A ∪ {x}
we have u[x ← s] ∈ L if and only if u[x ← t] ∈ L. Finally, this is equivalent to
checking that two inverse images (x ← s)−1(L) and (x ← t)−1(L) are equal.

These images are regular languages, thus checking their equality is equivalent to
testing whether they contain the same regular forests. Since regular thin forests are
generated by terms of regular-thin-forest algebra, this is equivalent to stating that for
every term σ from the signature of regular-thin-forest algebras σ [x ← s] ∈ L if and
only if σ [x ← t] ∈ L, thus s ∼LR

t .

5.2 Algebra to (1, 3)-Automaton

Let L be a regular language of thin forests, (H, V ) the syntactic unrestricted-thin-
forest algebra of L, and α : AThin� → (H, V ) the syntactic morphism of L. We will
construct a forest (1, 3)-automaton A recognizing L. Let the set of states of A be

Q = H 3 ∪ Qσ ∪ q⊥ where Qσ = H 3 × V × (V ∪ {}).
The main idea is that the automaton A will (among other things) guess a skeleton

σ of the forest t . The nodes in σ are precisely those which will be assigned a state



Theory Comput Syst

from Qσ . The state q⊥ is the “error” state. Intuitively, a state of the form (h, e, u)

indicates that the main branch of the guessed skeleton that starts from the current
node can be decomposed into a sequence of contexts of types u, e, e, . . . In the case
u =  the decomposition has the form e, e, . . .

We will use the notation h = (h′, h, h′′) for h ∈ H 3. The idea is that if a node x

is assigned a state h or a state from
{
h
} × V × (V ∪ {}) ⊆ Qσ , then the type of

the subtree rooted at the node x is h (i.e. α(t�x) = h), and the type of the subforest
rooted in the siblings of x which lie to the left (respectively to the right) of x is h′
(respectively h′′).

First we define a monoid operation on Q. If h1, h2 ∈ H 3 then the result is from
H 3 ∪ {q⊥}:

h1 + h2 =
{

(h′
1, h1 + h2, h

′′
2) if h′

1 + h1 = h′
2 and h′′

1 = h2 + h′′
2,

q⊥ otherwise.

If one argument is from H 3 and another from Qσ then the result is from Qσ :

h1 + (h2, e, u) = (h1 + h2, e, u), (2)

(h1, e, u) + h2 = (h1 + h2, e, u), (3)

if h1 + h2 �= q⊥, or q⊥ otherwise.
Finally, if both arguments are from Qσ or at least one is q⊥, then the result is q⊥.
Now we define the transition relation �:

(h, a, h1) ∈ � iff h′ = h′′ = 0 and α(a) · h = h1. (4)

((h, e, ), a, h1) ∈ � iff (h, a, h1) ∈ � and h = e∞.

((h, e, u), a, (h1, e, u1)) ∈ � iff (h, a, h1) ∈ �

and

⎧
⎪⎪⎨

⎪⎪⎩

u(h′
1 + α(a) + h′′

1) = u1 if u, u1 ∈ V,

h′
1 + α(a) + h′′

1 = u1 if u = , u1 ∈ V,

u(h′
1 + α(a) + h′′

1) = e if u ∈ V, u1 = ,

h′
1 + α(a) + h′′

1 = e if u = u1 = .

(q⊥, a, q⊥) ∈ �.

Finally we define priorities �:

�(q) =
⎧
⎨

⎩

3 if q ∈ H 3,

2 if q ∈ H 3 × V × {},
1 otherwise.

The initial states of A are precisely those triples (0, h, 0) ∈ H 3 such that
α−1(h) ⊆ L.

Lemma 25 The language accepted by the automaton A equals L.

Proof First, we show that a forest t has an accepting run ρ with a value different
from q⊥ if and only if it is thin.

Suppose that t has an accepting run ρ. First we show that the set σ ⊆ dom(t)

defined as the set of nodes assigned a state in Qσ in ρ is in fact a skeleton of t . If



Theory Comput Syst

at least one node is assigned q⊥, then the “error” state propagates upwards and the
value of ρ is q⊥. From the acceptance condition the maximum priority which appears
infinitely often on each path must be 2. Thus priority 3 can appear only finitely often,
thus there is only finitely many nodes marked by a state from H 3, thus on every path
there is only finitely many nodes outside σ . Since Qσ + Qσ = {q⊥}, at most one
sibling is in σ . Since there is no transition in � of the form H 3 ×A×Qσ , every node
in σ has a child from σ . Therefore all conditions for σ are satisfied and t is thin.

Suppose now that t is thin. Denote Qh = (H × {h} × H) ∪ (H × {h} × H ×
V × (V ∪ {})). We prove by induction over the rank of the nodes that if a node x is
assigned a state from Qh then α(t�x) = h.

If all successors x1, . . . , xn of x have smaller ranks than rank(x), then from the
inductive assumption xi is assigned a state from Qhi

where hi = α(t �xi
). Then

from (2) we get that the sum of states assigned to these successors is from Qh1+···+hn .
Thus by (4) x is assigned a state from Qα(a)(h1+···+hn), where a is the label of x.

Assume otherwise that there is an infinite path π = x0x1x2 . . . from x of nodes
which have the same rank as rank(x). Every successor y of xi which does not belong
to π has smaller rank than rank(x), thus from the induction assumption ρ(y) ∈ Qh

if and only if α(t�y) = h. Let pi denote the context which comes after putting a hole
instead of xi+1 in t�xi

. We must ensure that α(p0p1 · · · ) = α(t�x0).
By Ramsey’s theorem there are u, e ∈ V+ and a partition

(p0p1 · · · pk0−1)(pk0 · · · pk1−1)(pk1 · · · pk2−1) · · ·
such that p0p1 · · · pk0−1 = u and pki

· · · pki+1−1 = e for all i ≥ 0. The transition
relation over Qσ is devised to guess the values of u and e and the partition. Let
xi be assigned a state (hi, e, ui). A block pki

· · · pki+1−1 of the partition is encoded
by uki

=  and uj = α(pjpj+1 · · · pki+1−1). Since there is an infinite number of
encoded blocks, on every path there must be an infinite number of states with priority
2. Finally, the transitions ensure that α(t�x0) = ue∞.

Therefore, from the assumption that t is thin we conclude that there is an accepting
run on t such that the sum of states assigned to the roots of t is α(t). Thus t is accepted
by A if and only if t ∈ L.

Therefore, we obtain the following theorem.

Theorem 26 Every regular language of thin forests can be recognized among all
forests by a non-deterministic (1, 3)-automaton.

6 Applications of Thin-Forest Algebras

In this section we show how thin-forest algebras can be used to give decidable char-
acterizations of certain classes of languages. Many such characterizations boil down
to checking whether the syntactic algebra of a given regular language satisfies a set of
identities. An identity is a pair of terms (of the same type) in the signature of regular-
thin-forest algebras over typed variables. An algebra satisfies an identity if for every
valuation the two terms have the same value.



Theory Comput Syst

We usually assume that the operation v �→ vω is a part of the signature. This
operation assigns to every v ∈ V its idempotent power, i.e. a power vk that satisfies
vk · vk = vk . For every v there exists a unique idempotent power, since V is a
semigroup [17] (the number k is not unique but the value vk is).

Since (thanks to Theorem 24) checking an identity in the syntactic unrestricted-
thin-forest algebra of a regular thin-forest language L is equivalent to checking it
in the syntactic regular-thin-forest algebra of L, we will shortly write that we check
identities in “the syntactic thin-forest algebra” of L.

In the following subsections we show how to decide whether a given regular lan-
guage of thin forests is commutative, open in the standard topology, and definable
by a formula of the temporal logic EF. We start by providing a tool used in the
proceeding characterizations.

6.1 Components in a Forest

Our proofs use induction over the number of components in a regular thin forest. In
this subsection we give the definition of a component.

Let t be a forest. We say that two nodes x, y of the forest are in the same
component if the subtree t�x is a subtree of the subtree t�y and vice versa.

To a regular forest we associate a directed graph Gt = (Vt , Et ) (we call it the com-
ponent graph of the forest) in which the set of nodes Vt contains all non-isomorphic
subtrees of t and there is an edge (t1, t2) ∈ Et if the subtree t2 is an immediate sub-
tree of the subtree t1 (i.e. t2 = t1�x for some child x of the root of t1). The graph Gt

is finite if and only if the forest t is regular. Every component in t corresponds to a
strongly connected component in Gt .

There are two kinds of components: singleton components, which correspond to
strongly connected components in Gt of exactly one node and no edges, and con-
nected components, which correspond to other strongly connected components in Gt .
Note that a node x in the forest is in a singleton component if and only if t�x is not a
proper subtree of t�x .

A component is a root component if it contains a root of the forest.
In Fig. 6 there is a tree t and the corresponding graph Gt . The tree has five com-

ponents: two connected ones (which correspond to strongly connected components
c1, c2 in Gt ) and three singleton ones (which correspond to s1, s2, s3). Note that the
component which corresponds to a strongly connected component c1 of one node but
with a loop edge is in fact connected. Note that the graph loses some information, so
it is not possible to fully reconstruct the forest t from Gt . However, it is only a matter
of adding the order and multiplicity to edges of Gt .

Lemma 27 In a thin regular forest t every connected component corresponds to a
strongly connected component in Gt which is a simple cycle, i.e. the graph induced
by the nodes of this component is a simple cycle.

Proof Let c be the strongly connected component in Gt which corresponds to a
connected component in t . Let G′ be the graph induced by the nodes of c.



Theory Comput Syst

Fig. 6 A tree t with the corresponding graph Gt

We first show that the out-degree of every node in G′ is at most 1. Let us assume
otherwise — then there is a node u with at least two outgoing edges u → v1, u → v2.
Adding a path from v1 and v2 back to u we get a full binary tree that is a minor of t ,
thus the forest is not thin.

Similarly we show that the in-degree of every node in G′ is at most 1. Since c does
not contain any isolated nodes, the out-degree and in-degree of any node is in fact
exactly 1. Since c is connected, it is indeed a simple cycle.

6.2 Commutative Languages

The notion of a commutative language of finite forests is quite natural: it is a lan-
guage closed under rearranging of siblings. In the case of finite forests, a language is
commutative if and only if its syntactic algebra satisfies the identity

h + g = g + h for g, h ∈ H. (5)

In the case of infinite forests we have more flexibility. We get different “degrees
of commutativity” by allowing rearranging of siblings finitely many times, finitely
many times on every branch, or arbitrarily many times. We believe that the last
(unrestricted) definition is the most appealing. However, it is not captured by the
identity (5). Consider the language L = “every node has 0 or 2 children and every
branch goes left only a finite number of times”. The language L does satisfy (5),
but it is not commutative, as witnessed by two thin forests a(a0 + a)∞ ∈ L,
a(a + a0)∞ �∈ L.

The problem with the above example is that we would like to be able not only
to rearrange forests, but also to rearrange a forest with a context. This property is
expressed by the following identity:

Theorem 28 A regular language of thin forests L is commutative if and only if its
syntactic thin-forest algebra satisfies the identity

h + v = v + h for h ∈ H and v ∈ V. (6)



Theory Comput Syst

Identity (5) corresponds to a weaker notion of commutativity (see [11]), where on
every branch we allow only a finite number of rearrangements of siblings.

The rest of this subsection is devoted to proving Theorem 28. We start by for-
malizing the definition of a commutative language. We say that two forests t0, t1
are commutatively equivalent (we denote it by t0 ∼C t1) if there exists a bijection
f : dom(t0) → dom(t1) such that for every x, y ∈ dom(t0):

(a) the nodes x and f (x) have the same labels,
(b) the node x is a parent of y if and only if f (x) is a parent of f (y).

Note that condition (b) implies that the node x is a root if and only if f (x) is a root.
Observe that for any node x ∈ dom(t0) the trees t0�x and t1�f (x) are commutatively
equivalent.

A forest language L is called commutative if for every two forests t0, t1 which are
commutatively equivalent, either both t0, t1 belong to L or none of them.

The definition of commutativity could be rephrased also in the language of
games. We define a game, called the commutative game, which is used to test the
commutative equivalence of two forests.

Let t0, t1 be two forests. The commutative game over t0 and t1, denoted by
Gcomm(t0, t1), is played by two players: Spoiler and Duplicator. For convenience we
add an auxiliary root node at the top of the forest ti , which results in a tree t ′i .

The game proceeds in rounds. Each state of the game is a pair (x0, x1), which
means that there is a pebble in a node xi ∈ dom(t ′i ). Initially both pebbles are in the
roots of the trees t ′0, t ′1. A round is played as follows. If the number of children of
node x0 is different from the number of children of node x1 then Spoiler wins the
whole game. Otherwise Duplicator chooses a bijection f which maps the children of
x0 to the children of x1.

Now Spoiler moves the pebble x0 to a child x of x0 and the pebble x1 to the
child f (x) of x1. If the labels of nodes x and f (x) are different then Spoiler wins.
Otherwise, the round is finished and a new round is played with the state updated to
(x, f (x)).

It is easy to see that two forests t0, t1 are commutatively equivalent if and only
if Duplicator can survive for infinitely many rounds in the commutative game
Gcomm(t0, t1).

Lemma 29 Let σ be a forest-valued term with one forest-valued variable over the
signature of regular-thin-forest algebras and let s, t be thin forests. If Duplicator
wins the commutative game Gcomm(s, t) then he also wins the commutative game
Gcomm(σ [x ← s], σ [x ← t]).

Proof The strategy of Duplicator is very simple. As long as the children of nodes
with pebbles are in σ , Duplicator chooses the identity bijection. Otherwise he uses
the strategy from the game Gcomm(s, t).

First, note the following easy fact.



Theory Comput Syst

Fact 30 Let t0 and t1 be two thin trees which are commutatively equivalent. Then
rank(t0) = rank(t1).

Lemma 31 Suppose that identity (6) holds. If two thin forests t0, t1 are commuta-
tively equivalent, then α(t0) = α(t1).

Proof We prove the lemma for trees, the generalization for forests is straightforward.
The proof is by induction on the rank of the trees.

First, observe that from Fact 30, rank(t0) = rank(t1). From the same argument,
the spines of the trees have the same number of nodes (i.e. the same length). Suppose
that they are infinite, the remaining case is similar.

Let xi
1, x

i
2, x

i
3, . . . be the nodes on the spine of ti which give us a decomposition

ti = pi
1p

i
2p

i
3 . . ., where pi

j is a context with a root in xi
j and a hole in xi

j+1.
Let f : dom(t0) → dom(t1) be a bijection which witnesses that t0 ∼C t1. Again

from Fact 30, f (x0
j ) = x1

j for all j .

Let T i
j be the multiset of trees rooted in the children of xi

j , but not in xi
j+1. Abusing

the notation slightly, we see that mapping f gives a natural bijection between T 0
j and

T 1
j , such that for any s ∈ T 0

j , the trees s and f (s) are commutatively equivalent.

Since trees from the sets T i
j have ranks smaller than rank(t0), we can use the inductive

assumption to get that α(s) = α(f (s)) for every s ∈ T 0
j . Thus from (6) we have

α(p0
j ) = α(p1

j ) for all j . Therefore we get that α(t0) = α(t1).

Proof of Theorem 28 The “if” part of the theorem follows directly from Lemma 31.
The “only if” part is standard: Suppose for a start that instead of (6) we want to

show that the simpler identity (5) is satisfied. By unravelling the definition of the
syntactic algebra we need to show that for any forest-valued term σ of one forest-
valued variable x and any thin forests t, s we have

σ [x ← t + s] ∈ L iff σ [x ← s + t] ∈ L. (7)

It is easy to see that Duplicator wins the commutative game on forests t + s and s + t ,
thus from Lemma 29 he wins the commutative game on forests σ [x ← t + s] and
σ [x ← s+ t]. Therefore we get (7) from the fact that the language L is commutative.

To show that (6) is satisfied, we use the faithfulness of the syntactic thin-forest
algebra and we show that the algebra satisfies the identities

h + vg = vg + h, for v ∈ V+, h, g ∈ H,

(u(v + h))∞ = (u(h + v))∞, for u, v ∈ V+, h ∈ H.

Again, this boils down to showing that Duplicator wins the commutative game on
forests t + s and s + t for any thin forests s, t as well as on forests (p + t)∞ and
(t + p)∞ for any thin forest t and thin guarded context p.



Theory Comput Syst

6.3 Open Languages

In this section we give a characterization of the class of languages that are open in
the standard topology on forests (see Section 2.3). An equivalent definition says that
a forest language L is open if for every forest t ∈ L there is a finite prefix of t such
that changing nodes outside of the prefix does not affect membership in L. Checking
whether a given regular forest language L is open was known to be decidable, our
contribution lies in showing that for thin forests it can be done by testing the syntactic
morphism of L:

Theorem 32 A regular language of thin forests L is open if and only if its syntactic
morphism α : AThin� → (H, V ) satisfies the following condition for v ∈ V+ and
h ∈ H :

if v∞ ∈ α(L) then vωh ∈ α(L). (8)

The notion of an open set is also applicable to the case of infinite words. It is inter-
esting to note that the above condition also characterizes open languages of infinite
words.

Moreover, one can extend the theory of ordered algebras (see [17]) to thin-forest
algebras. Then the above condition could be simply stated as v∞ ≥ vωh.

Let X be an infinite set of variable names. A thin multicontext over A is a thin
forest over A ∪ X in which every variable x ∈ X appears in a leaf. The number of
variables appearing in a thin multicontext is not restricted. An open thin multicontext
over A is a thin context p such that p0 is a thin multicontext. For an (open) thin
multicontext p we denote by vars(p) ⊆ X the set of variables appearing in p.

Let p be a (open) thin multicontext and ζ : vars(p) → AThinFor be a mapping
which assigns thin forests to variables appearing in p. We denote by p[ζ ] the forest
(context) which results from replacing every variable x in p by the forest ζ(x). We
say then that p is a cut-off of p[ζ ].

By pAThinFor we denote a language of all thin forests (contexts) such that p is their
cut-off.

For any forest s, the composition ps, for p from Fig. 7, is the thin multicontext
such that

psAThinFor = {a(b0 + t1 + a(s + t2)) : t1, t2 ∈ AThinFor}.

Fig. 7 An open thin
multicontext p with the set of
variables vars(p) = {x1, x2}



Theory Comput Syst

By the definition of open sets, L is open if there exists a (possibly infinite) set P

of finite thin multicontexts such that

L =
⋃

p∈P

pAThinFor.

Proof of Theorem 32 It is obvious that if L is open then it must satisfy (8). Indeed,
let v ∈ V+ and let t ∈ L be a thin forest of the form t = r∞ for some context
r ∈ α−1(v). In that case α(t) = v∞. Since L is open, then there exists a cut-off p (of
depth n) of the forest t such that pAThinFor ⊆ L. Thus rkAThinFor ⊆ L for any k ≥ n.
For k = n · |V |!, we have vk = vω for all v ∈ V . Since rks ∈ L for every thin forest
s, then for h = α(s), we have vkh = vωh ∈ α(L).

The converse implication will follow from Lemma 35, which is formulated at the
end of the section.

Let p, p′ be two thin multicontexts. We say that p can be immediately reduced to
p′ if

p = qr∞ and p′ = qrωx

for an open thin multicontext q, a thin context r , and a variable x �∈ vars(q). We
denote this fact by p → p′ (see Fig. 8). We say that p can be reduced to p′ if there
is a sequence p = p0, p1, p2, . . . , pn−1, pn = p′ of thin multicontexts such that pi

can be immediately reduced to pi+1. We denote this fact by p →∗ p′.

Lemma 33 Let L be a regular language of thin forests which satisfies (8) and let
p, p′ be two thin multicontexts. If pAThinFor ⊆ L and p → p′, then p′AThinFor ⊆ L.

Proof Let p = qr∞ and p′ = qrωx where q is an open thin multicontext, r is a thin
context, and x is a variable not in vars(q). Observe that all the variables appearing

Fig. 8 Thin multicontext
p = qr∞ can be immediately
reduced to thin multicontext
p′ = qrωx



Theory Comput Syst

in p are from q. Similarly all the variables appearing in p′ (except for the additional
variable x) are also in q.

Let t ′ be any forest from p′AThinFor and ζ : vars(p′) → AThinFor satisfies p′[ζ ] =
t ′. Applying ζ to thin multicontext p we get a forest t = p[ζ ] ∈ pAThinFor. Since
pAThinFor ⊆ L we get that the forest t = q[ζ ]r∞ is in L. From (8) the tree t ′ =
q[ζ ]rωζ(x) is also in L. Therefore p′AThinFor ⊆ L.

Let P ′ and P ′′ be the following two sets of cut-offs:

P ′ = {finite thin multicontext p | pAThinFor ⊆ L},
P ′′ = {finite thin multicontext p | t →∗ p for some t ∈ L}.

Lemma 34 Let L be a regular language of thin forests. For every regular thin forest
t ∈ L there is a finite thin multicontext p ∈ P ′′ which is a cut-off of t .

Proof Let t ∈ L. We prove the lemma by induction on the number of components
in the forest t , i.e. we prove the statement: if s is a subforest of t then there is a finite
thin multicontext p such that s →∗ p.

We can assume that t is a tree, otherwise we just concatenate prefixes for the trees
which are rooted in the roots of a forest t .

If the root component of the tree t is a singleton component then t = as for some
a ∈ A and a forest s. From the inductive assumption there is a finite thin multicontext
p such that s →∗ p. Clearly the thin multicontext ap satisfies t →∗ ap.

Let the root component of the tree t be connected. Thus t = (a1q1 · · · anqn)
∞ for

some labels a1, . . . , an ∈ A and non-guarded contexts q1, . . . , qn. It is easy to see
that for a variable x

t → (a1q1 · · · anqn)
ωx.

Let qi = t ′i + � + t ′′i for some forests t ′i , t ′′i . From the inductive assumption there
are finite thin multicontexts p′

i , p
′′
i such that t ′i →∗ p′

i and t ′′i →∗ p′′
i . Without loss

of generality we can assume that these thin multicontexts have different variables
appearing in them, i.e. the set {x} as well as the sets vars(p′

i ), vars(p′′
i ) for i =

1, . . . , n are pairwise mutually disjoint. Applying these thin multicontexts ω times
we get

t →∗ (a1(p
′
1 + � + p′′

1) · · · an(p
′
n + � + p′′

n))ωx.

Lemma 35 Let L be a regular language of thin forests which satisfies (8). Then
L = P ′AThinFor.

Proof Clearly P ′AThinFor ⊆ L. From Lemma 34 we have L ⊆ P ′′AThinFor when
restricted to regular forests. Finally, from Lemma 33, we have P ′′ ⊆ P ′, since for
every t ∈ L we have tAThinFor = {t} ⊆ L. Therefore

L ⊆ P ′′AThinFor ⊆ P ′AThinFor ⊆ L



Theory Comput Syst

when restricted to regular forests. Since both L and P ′AThinFor are regular languages
and they contain the same regular forests, they are equal.

6.4 The Temporal Logic EF

The logic EF is a simple temporal logic which uses only one operator EF, which
stands for “Exists Finally”. Formulas of the logic EF are defined as follows:

1. every letter a is an EF formula, which is true in trees with root label a,

2. EF formulas admit Boolean operations, including negation,

3. if ϕ is an EF formula then EFϕ is an EF formula, which is true in trees that have
a proper subtree where ϕ is true.

A tree t satisfies an EF formula ϕ if ϕ holds in the root of the tree t . There are some
technical difficulties with generalizing this definition to forests, therefore we will
only allow Boolean combinations of formulas of the form ϕ∨EFϕ to describe forests
(we call them forest EF formulas; a forest t satisfies such a formula if ϕ holds in any
node of t).

Two forests t0 and t1 are called EF-bisimilar if Duplicator wins the following
game, denoted by Gbis(t0, t1). Spoiler begins the game by choosing some i ∈ {0, 1}
and a node xi of the forest ti . Duplicator responds by choosing a node x1−i of the
other forest t1−i , which has the same label (if no such node exists, the game is
terminated and Spoiler wins). For i ∈ {0, 1}, let si be the forest obtained by tak-
ing the subtree of ti rooted in xi and removing the root. If Duplicator did not lose
then the next round of the game is played with the forests being s0 and s1. Dupli-
cator wins if infinitely many rounds are played without Spoiler winning. Note that
if t1, t2 are EF-bisimilar and ϕ is a forest EF formula then t1 |= ϕ if and only if
t2 |= ϕ.

A language of thin forests L is called invariant under EF-bisimulation if for every
forests which are EF-bisimilar, either both or none belong to L.

The results of [1] work without any difference if we restrict to the family of
thin forests. Also, the results can be formulated in two variants: for all thin forests
and only for regular ones (see [11]). The following theorem expresses these two
variants.

Theorem 36 (Bojańczyk and Idziaszek [1]) A regular language of (regular) thin
forests L can be defined by a forest EF formula among all regular thin forests if and
only if the following conditions hold:

1. L is invariant among all (regular) thin forests under EF-bisimulation,

2. the syntactic algebra of L satisfies

vωh = (v + vωh)∞. (9)

In this work we want to reformulate this theorem in the case of thin forests by
replacing condition 1 to a set of identities. For this purpose we prove the following
proposition.



Theory Comput Syst

Proposition 37 A regular language of regular thin forests L is invariant under EF-
bisimulation if and only if its syntactic thin-forest algebra satisfies the following
identities

h + v = v + h, (10)

vh = vh + h, (11)

(v + (vw)∞)∞ = (vw)∞, (12)

(vwu)∞ = (vuw)∞. (13)

Before proving this proposition, we formulate a theorem summarizing our charac-
terization.

Theorem 38 A regular language of thin forests L can be defined by a forest EF
formula if and only if its syntactic thin-forest algebra satisfies identities (9), (10)–
(13).

Proof Assume that a regular language of thin forests L is defined by a forest EF
formula. In particular, L ∩ AregThin� is closed under EF-bisimulation so by Propo-
sition 37 the syntactic algebra of L satisfies identities (10)–(13). By Theorem 36 it
satisfies also (9).

Now assume that the syntactic thin-forest algebra of L satisfies identities (9), (10)–
(13). Let L′ = L ∩ AregThin�. In that case, by Proposition 37 L′ is closed under
EF-bisimulation. Therefore, by Theorem 36 we know that L′ is definable among
regular thin forests by an EF forest formula ψ . Since L(ψ) is regular and agrees to L

on regular thin forests, L(ψ) = L.

We note that Proposition 37 could also be formulated for regular languages of thin
forests if the following conjecture should be true.

Conjecture 1 Let L be a regular language of forests. The language which consists of
all forests which are EF-bisimilar to some forest from L is regular.

The rest of this section is devoted to the proof of Proposition 37. It follows the
same lines as in [1] but we present it in full for the sake of completeness.

Note that the identity

h + g = g + h (14)

follows from (10). The identity (13) can be rephrased in a more general way:

Lemma 39 Let a thin-forest algebra (H, V ) satisfy (13). Then

(v1v2 · · · vn)
∞ = (vπ(1)vπ(2) · · · vπ(n))

∞

for every permutation π of {1, . . . , n} and every v1, . . . , vn ∈ V such that
v1v2 · · · vn ∈ V+.



Theory Comput Syst

Fig. 9 Example of a 4-ary
prime thin multicontexts over
the alphabet
{a, b, c} ∪ {x1, x2, x3, x4}

Proof Observe that for any v, w1, w2, u ∈ V such that vw1w2u ∈ V+ we have

(v w1 w2u)∞(13)= (vw2 u w1)
∞(13)= (vw2w1u)∞.

Now the lemma follows from the fact that every permutation is a product of adjacent
transpositions.

We recall the definition of thin multicontexts defined in Section 6.3. An n-ary thin
multicontext over the variables x1, . . . , xn is a regular thin forest over the alphabet
A∪{x1, . . . , xn} where the variables x1, . . . , xn are allowed only in leaves. We allow
multiple (possibly infinitely many) occurrences of each variable. Given thin forests
s1, . . . , sn and an n-ary thin multicontext p, the thin forest p(s1, . . . , sn) over A is
defined in the natural way.

An n-ary thin multicontext is called prime if, when treated as a thin forest over
the alphabet A ∪ {x1, . . . , xn}, it has one root component, and all of the non-variable
nodes are in this component.

An example of a 4-ary prime thin multicontext is given on Fig. 9.
We say that two thin multicontexts are EF-bisimilar if they are EF-bisimilar when

treated as forests over the alphabet A ∪ {x1, . . . , xn}.
We say that an element h ∈ H is reachable from g ∈ H if there is some v ∈ V

with h = vg.

Lemma 40 Let L be a regular language of regular thin forests invariant under EF-
bisimulation. The reachability relation in the syntactic thin-forest algebra of L is
antisymmetric.

Proof We recall the proof from [1]. We prove that invariance under EF-bisimulation
implies Property (11). Indeed, since α is surjective, there must be some context p

with α(p) = v and some forest t with α(t) = h. Since the forests pt + t and pt are
EF-bisimilar, their types must be equal, and hence (11) holds.

Suppose that g is reachable from h and vice versa. To prove antisymmetry, we
need to show that g = h. By the assumption there are v, w ∈ V with g = wh and
h = vg. Then we have

g = wh = wvg
(11)= wvg + vg = g + vg

(11)= vg = h.



Theory Comput Syst

The “only if” part of the proof of Proposition 37 is obvious — all the opera-
tions performed in the identities preserve EF-equivalence. The rest of this section is
devoted to the “if” part.

We want to show that if two regular thin forests s and t are EF-bisimilar then they
have the same types, i.e. α(s) = α(t). The proof is by the induction on the number
of components in s plus the number of components in t .

Lemma 41 Without loss of generality, we can assume that s and t are trees.

Proof Let s1, . . . , sn be all subtrees in a regular thin forest s and t1, . . . , tm be all
subtrees in a regular thin forest t . By using inductively identity (11) and the fact that
s1, . . . , sn are all the subtrees of s we have

α(s)
(11)= α(s) + α(s1) + · · · + α(sn).

Now, by using (11) and (14) with v = � we obtain

α(s) + α(s1) + · · · + α(sn)
(11),(14)= α(s1) + · · · + α(sn).

Similarly α(t) = α(t1) + · · · + α(tm). Since s and t are EF-bisimilar, every si is
EF-bisimilar to some ŝi ∈ {t1, . . . , tm} and every ti is EF-bisimilar to some t̂i ∈
{s1, . . . , sn}. Suppose we proved the proposition for trees. Then α(si) = α(ŝi) and
α(ti) = α(t̂i), thus {α(s1), . . . , α(sn)} = {α(t1), . . . , α(tm)}. Therefore α(s) = α(t).

The induction basis is when both trees s and t have a single component. If s is
finite then it has a single node a. In this case t also has to be a, since this is the
only tree that is EF-bisimilar to a. (Note that we cannot check the label in a root of
a tree but we can check whether a tree is of height 1 and check the label in a leaf.)
Suppose now that s and t are infinite. Let a1, . . . , an be the labels that appear in s

(and therefore also in t). It is easy to see that s and t are EF-bisimilar to the tree
u = (a1 · · · an)

∞. All of the trees s, t, u can be treated as prime thin multicontexts of
arity 0.

From Lemma 27, s = (aπ(1) · · · aπ(n))
∞ for some permutation π of the set

{1, . . . , n}. Applying Lemma 39 we get that α(s) = α(u). Analogously we get that
α(t) = α(u).

We now do the induction step. Let s1, . . . , sn be all the subtrees of s that have
fewer components than s. In other words, there is a prime n-ary thin multicontext p

such that
s = p(s1, . . . , sn).

Likewise, we distinguish all subtrees t1, . . . , tk inside t that have fewer components
than t and find a prime k-ary thin multicontext q with

t = q(t1, . . . , tk).

Since the trees s and t are EF-bisimilar, each tree si must be EF-bisimilar to some
subtree ŝi of t . By the inductive assumption, we know that the trees si and ŝi have
the same type (since si has fewer components than s and ŝi has not more components
than t). Likewise, each tree ti has the same type as some subtree t̂i of s.



Theory Comput Syst

By applying (11) in the same manner as in Lemma 41, we conclude that if either
p or q is finite then s and t have the same type. We are left with the case when both
p and q are infinite prime thin multicontexts. Suppose first that

(1) for some i, the tree ŝi has the same number of components as t ; and
(2) for some j , the tree t̂j has the same number of components as s.

We use the same notion of reachability on types as was used in Lemma 40. From (1)
we conclude that the tree ŝi is in the root component of t and therefore the type of
both si and ŝi is reachable from the type of t . Since si is a subtree of s, we conclude
that the type of s is reachable from the type of t . Reasoning in the same way from (2)
we conclude that type of t is reachable from the type of s. Therefore, by Lemma 40,
the types of s and t are equal (note that Lemma 40 used (11)).

Suppose now that one of (1) or (2) does not hold, say (1) does not hold (the other
case is symmetric).

Lemma 42 Without loss of generality, we can assume that n ≤ k and

s = p(t1, . . . , tn).

Proof Consider the tree ŝ = p(ŝ1, . . . , ŝn). Since we replaced trees with EF-
bisimilar ones, ŝ is EF-bisimilar to s. Since we replaced trees with ones of the same
type, ŝ has the same type as s. So it is enough to prove the result for ŝ and t .

Since (1) does not hold, then every ŝi is equal to some tj . Rename the subtrees
t1, . . . , tk such that {ŝ1, . . . , ŝn} = {t1, . . . , tn′ } for some n′ ≤ min(n, k). After
possibly renaming variables in p, the tree ŝ has the form p(t1, . . . , tn′), like in the
statement of the lemma.

What about the trees tn+1, . . . , tk that do not appear in s? Each of these is
EF-bisimilar to one of s, t1, . . . , tn. For those that are EF-bisimilar to some ti ∈
{t1, . . . , tn}, we use the tree instead. Therefore, we can assume without loss of
generality that

t = q(s, t1, . . . , tn).

Lemma 43 Any label a ∈ A that appears in q also appears in p.

Proof Let a ∈ A be a label in q and consider the following strategy for Spoiler in
the game over the trees s and t : he picks t and in that tree, some occurrence of a in
the root component. Duplicator, in his response, cannot pick a node inside any of the
trees t1, . . . , tn, since none of these is EF-bisimilar to a tree in the root component of
t , since (1) does not hold. Therefore, he must pick a node inside p.

Let a1, . . . , ai be the labels that appear in q. Thanks to the above lemma, the labels
that appear in p are a1, . . . , ai as well as possibly some other labels, say ai+1, . . . , aj

for some j ≥ i. Therefore the trees s, t look like on Fig. 10. Let us define the
following two contexts

x = a1 · · · ai(� + t1 + · · · + tn), y = ai+1 · · · aj .



Theory Comput Syst

Fig. 10 Two trees illustrating
the proof of Lemma 43

Observe that from Lemma 27 every tree with a connected component in the root
can be written as

u = (b1(t
′
1 + � + t ′′1 ) · · · bm(t ′m + � + t ′′m))∞

for some m ≥ 1, letters b1, . . . , bm ∈ A, and thin forests t ′1, t ′′1 , . . . , t ′m, t ′′m. From the
identities we conclude that for every v1, . . . , vm ∈ V+ and h1, . . . , hm, g1, . . . , gm ∈
H we have

(v1(h1 + � + g1) · · · vm(hm + � + gm))∞(13)=
= (v1 · · · vm(h1 + � + g1) · · · (hm + � + gm))∞ =
= (v1 · · · vm(h1 + · · · + hm + � + gm + · · · + g1))

∞(10)=
= (v1 · · · vm(� + h1 + · · · + hm + g1 + · · · + gm))∞.

That shows that the type of u is the same as the type of

(b1 · · · bm(� + t ′1 + · · · + t ′m + t ′′1 + · · · + t ′′m))∞

Using identities (13) and (10) we can further rearrange letters bi and trees from
forests t ′i , t ′′i . From this it is easy to show that α(s) = α((xy)∞) and α(t) =
α((x(� + s))∞).

7 Languages Weak MSO-Definable Among All Forests

In this section we consider a non-standard approach to restricting the family of all
forests to thin ones. In this setting we show that it is decidable whether a given regular
language of thin forests is weak MSO-definable. The difference between the standard
approach and the one used in this section is that we do not implicitly restrict our
universe to thin forests.

Definition 44 Let L be a regular language of thin forests and ϕ be a formula of weak
MSO. We say that ϕ defines L among all forests if

L = {
t ∈ AFor : t |= ϕ

}
.

Note that the class of languages definable in weak MSO among all forests is not
closed under complement with respect to thin forests: the relative complement of the
empty language ∅ ⊆ AThinFor is AThinFor which is not weak MSO-definable among
all forests.



Theory Comput Syst

The following fact says that even in this restricted setting we can define languages
as complicated as in the general case.

Fact 45 The examples of weak MSO-definable languages lying arbitrarily high on
the finite levels of the Borel hierarchy (see [22]) can be encoded into thin forests in a
way that is weak MSO-definable among all forests.

To formulate the algebraic characterization we use the notion of a bottom element:
let L be a regular language of thin forests and α : AThin� → (H, V ) its syntactic
morphism. We say that an element h ∈ H is the bottom element for L if α−1(h)∩
L = ∅ and vh = h for every v ∈ V . Note that the bottom element is unique, since if
h1 and h2 are both bottom elements then h1 = (� + h2)h1 = h1 + h2 = (h1 + �)

h2 = h2.
The main result of this section is the following characterization.

Theorem 46 Let L be a regular language of thin forests. The following conditions
are equivalent:

1. there exists M ∈ N such that every forest t ∈ L satisfies rankCB(t) ≤ M ,
2. L is weak MSO-definable among all forests,
3. L is not �1

1(A
For)-hard,

4. the syntactic morphism for L satisfies the following condition:

if h = v(w + h)∞ or h = v(h + w)∞ for some v ∈ V, w ∈ V+,

then h is the bottom element for L. (15)

The implication (2)⇒(3) is trivial — any language definable in weak MSO is
Borel, thus not �1

1-hard. The remaining implications are proved in the following
subsections.

Note that the last condition in the theorem is effective, therefore we obtain the
following corollary.

Corollary 47 It is decidable whether a given regular language of thin forests L is
weak MSO-definable among all forests.

One of the applications of our characterization is the following proposition.

Proposition 48 Assume that L is a regular language of forests that is recognized by
a non-deterministic (or equivalently alternating) (1, 2)-automaton. Assume addition-
ally that L contains only thin forests. Then L can be defined in weak MSO among all
forests.

Proof Since L is recognizable by a (1, 2)-automaton, L is an analytic subset of AFor

(c.f. [9]). Since the space of all forests is an uncountable Polish topological space,
�1

1 �= �1
1 (see [12, Corollary 26.2]). Therefore, L cannot be �1

1-hard, thus L satisfies
condition 3 in Theorem 46.



Theory Comput Syst

7.1 (1)⇒(2)

Definition 49 Assume that t ∈ AFor is a forest and x � y are two nodes of t . We say
that a node z is off the path from x to y if z is not an ancestor of y (z �� y) but there
exists x′ such that x � x′ ≺ y and z is a child of x′.

We start by showing the following lemma. The constructed formula ϕm will serve
as a basis in the following constructions.

Lemma 50 For every m ∈ N there exists a weak MSO formula ϕm defining among
all forests the language of thin forests of CB-rank at most m (denoted AThinFor≤m, see
Definition 10).

Proof Induction on m. For m = 0 it is trivial, since the only forest of CB-rank 0 is
the empty forest.

Assume that the thesis holds for m — we have defined a formula ϕm. Consider a
weak MSO formula ϕm+1 that for a given forest t ∈ AFor says that:

– there exists a finite forest r ⊆ t ,
– and a number of leafs x1, x2, . . . , xn of r (n may equal 0),

– such that if y is off r in t then y is a child of one of the leafs x1, . . . , xn and
– for every selected leaf xi of r ,

– there are infinitely many nodes y such that xi ≺ y and
– for every node z that is off the path from xi to y,
– the subtree t�z has CB-rank at most m (what corresponds to checking the formula

ϕm on t�z).

First assume that ϕm+1 holds on a given forest t . Take r ⊆ t and observe
that by König’s Lemma, there are infinite branches π1, π2, . . . , πn starting in leafs
x1, . . . , xn of r respectively such that for every node z that is off πi and below xi the
CB-rank of t�z is at most m. Therefore t ′ = Dvm

CB(t) does not contain any of these
nodes z. So the set of branches of t ′ is contained in π1, π2, . . . , πn and the branches
of r , so Dvm+1

CB (t) = 0. So rankCB(t) ≤ m + 1.
Now assume that rankCB(t) ≤ m + 1. Therefore, t ′ = Dvm(t) has only finitely

many infinite branches. So t ′ is of the form r(π1, π2, . . . , πn) where r is a finite
forest and branches πi go through some leafs x1, . . . , xn of r (see Fact 12, we assume
that r contains all finite branches of t ′ and π1, . . . , πn are the infinite branches of t ′).
We satisfy the formula ϕm+1 by taking r, π1, . . . , πn as above and using as nodes y

all the nodes of the form xi ≺ y ≺ πi . By the definition of t ′, every node z that is
off one of the branches πi and below xi has CB-rank at most m. So the subtree t�z
satisfies ϕm.

The crucial inductive part of the proof is expressed by the following proposition.

Proposition 51 Let (H, V ) be a finite thin-forest algebra, α : AThin� → (H, V ) be
a homomorphism, and let m be a number. For every type h ∈ H there exists a



Theory Comput Syst

weak MSO formula ϕm(h) that defines those forests t ∈ AFor such that t ∈ AThinFor,
rankCB(t) = m, and the type of t is h with respect to α (i.e. α(t) = h).

For m = 0 the only forest of CB-rank 0 is the empty forest. So for h = 0 the
formula ϕ0(h) is equivalent to ϕ0 from Lemma 50 and for other types h it is false.
Assume that the thesis of the proposition holds for all types h and a given number m.
We show it for m + 1.

First we write a formula ψm(x, y) expressing that for a given pair of nodes
x, y ∈ x ≺ y(t):

– x � y,
– the subtrees t�x and t�y have CB-ranks exactly m (we check it using ϕm and

¬ϕm−1), and
– for every z that is off the path from x to y

– the CB-rank of t�z is at most m − 1 (i.e. check ϕm−1 on t�z).

The following lemma summarizes the most important properties of formulas
ψm(x, y).

Lemma 52 Assume that for a given forest t ∈ AFor and a node x ∈ dom(t) there
are infinitely many nodes y such that ψm(x, y). Then rankCB(t�x) = m and the set
of nodes of CB-rank m below x in t is contained in a single infinite branch π of t .

Moreover, ψm(x, y) holds for some y ∈ dom(t) if and only if x � y ≺ π .

Proof Take a forest t and a node x ∈ dom(t) as in the statement. Observe that
rankCB(t�x) = m. Let S ⊆ dom(t) be the set of nodes y ∈ dom(t) such that ψm(x, y)

holds. Observe that if x � y1 � y2 ∈ t and y2 ∈ S then y1 ∈ S. Since there are
infinitely many nodes y satisfying ψm(x, y) so S is infinite. Observe that for every
node z that is off S we have rankCB(t�z) ≤ m − 1. Every node y ∈ S satisfies
rankCB(t�y) = m. So S is the set of nodes of CB-rank m in t below x.

Assume that there is a node x′ ∈ S such that two distinct children y1, y2 of
x belong to S. Then ψm(x, y1) holds, but y2 is off the path from x to y1. So
rankCB(y2, t) ≤ m − 1 by the definition of ψm. But y2 ∈ S so rankCB(y2) = m. A
contradiction.

Therefore, S is contained in a single infinite branch of t .

The above lemma states that the formula ψm(x, y) enables us to fix in a weak
MSO-definable way a particular branch π in our forest such that almost all nodes
that are off this branch have CB-ranks smaller than m. What remains is to compute
the type of the subtree rooted in the node x basing on the types of subtrees that are
off π . The following formula is an intermediate step in this construction.

Fact 53 For a type v ∈ V there exists a weak MSO formula γ v
m(x, y1, y2) that for all

nodes x, y1, y2 expresses the following facts:

– x � y1 � y2,
– ψm(x, y2) holds,1

– α(p) = v, where p is the context rooted in y1 with the hole in y2.



Theory Comput Syst

Proof To achieve the last item on the list, the formula computes the types of subtrees
rooted in nodes off the path from y1 to y2 using inductive formulas ϕm′(h) for m′ < m

and h ∈ H . Then it uses the inl, inr operations of the finite algebra (H, V ) to verify
the type of p.

Now we show how to compute a type of a tree with one main branch.

Definition 54 Let x be a node and h ∈ H be a type. Let the formula δh
m(x) express

the following facts:

– there are infinitely many nodes y such that ψm(x, y),
– there exists a pair of context types u, v ∈ V such that uv∞ = h,
– there exists a node y0 such that γ u

m(x, x, y0) holds (the type of the context
between x and y0 is u) and

– for every node y1 such that ψm(x, y1) there exists a pair of nodes y2, y3 such that
y1 ≺ y2 ≺ y3, and ψm(x, y3) hold and

– the formulas γ v
m(x, y0, y2), γ v

m(x, y0, y3), and γ v
m(x, y2, y3) hold (the types of

the three contexts equal v).

The last two items of this formula are based on a construction from [23] that
enables us to verify a type of a given infinite word in first-order logic using predicates
of the form “the type of the infix between the positions y1 and y2 is v”.

Lemma 55 Let t be a forest and x be a node such that there are infinitely many
nodes y satisfying ψm(x, y). Then α(t�x) = h if and only if δh

m(x) holds on t .

Proof First assume that t |= δh
m(x) for some x ∈ dom(t) and h ∈ H . Let π be the

branch defined by the predicate ψm(x, y) as in Lemma 52.
Let y1 � y2 be two nodes of the given forest t . In this proof, by [y1, y2) we denote

the context rooted in y1 with the hole instead of t�y2 .
We show that the formula δh

m(x) gives rise to a sequence of nodes z0 ≺ z1 ≺ z2 . . .

on π such that for some types u, v satisfying uv∞ = h we have:

α ([x, z0)) = u, α ([zi, zi+1)) = v. (16)

Having done so, we conclude that the type of t�x is h.
Let us fix y0 as in the definition of δ. We will set y1 to various nodes along π

obtaining appropriate nodes y2, y3.
Let us start with y1 equal y0 and consider y2, y3 given by δh

m(x). Let z1 = y2
and u1 = y3. Our inductive invariant is that the types of all three contexts [y0, zi),
[y0, ui), and [zi, ui) equal v. For i = 1 we get it by the definition of δh

m(x). Assume
that zi ≺ ui are defined and put y1 = ui . Consider y2, y3 as in the definition of

1It implies ψm(x, y1).



Theory Comput Syst

δh
m(x). Let us put zi+1 = y2 and ui+1 = y3. Similarly as in the base step we get the

invariant by the definition. Now consider the type of the context [zi, zi+1):

α ([zi, zi+1)) = α ([zi, ui)) · α ([ui, zi+1))

= v · α ([ui, zi+1))

= α ([y0, ui)) · α ([ui, zi+1))

= α ([y0, zi+1))

= v.

Therefore, the constructed sequence z1 ≺ z2 ≺ . . . satisfies (16).
For the other direction take a forest t with a node x and a branch π as in Lemma 52.

Using a Ramsey argument along π we find a pair of types u, v and an infinite
sequence of nodes zi along π satisfying (16). Since α(t�x) = h, uv∞ = h. Therefore,
we can satisfy the formula δh

m(x) using successive nodes zi .

Now we can rewrite the formula ϕm defined in the proof of Lemma 50 so that it
additionally verifies the type of the given forest. Take m > 0 and define ϕm(h) that
says:

1. there exists a finite prefix r ⊆ t ,

2. and a number of leafs x1, . . . , xn of r ,

3. and a sequence of types h1, . . . , hn such that
4. the type of r(h1, h2, . . . , hn) is h and

5. for every leaf xi ,

6. there are infinitely many nodes y such that ψm(xi, y),

7. and δ
hi
m (xi) holds for all i = 1, . . . , n.

What remains is to observe that the forest r and leafs xi correspond to the final
prefix of a given forest, formulas ψm(xi, y) fix infinite branches passing through xi

and δ
hi
m (xi) verifies the type of the subtree t�xi

. Therefore, ϕm(h) holds on t if and
only if rankCB(t) = m and α(t) = h.

7.2 (3)⇒(4)

Assume contrary that there are types h, v, w, u in the syntactic algebra of a regular
language L such that (by symmetry) h = v(w + h)∞ and α−1(u · h) ⊆ L. We show
that L is �1

1(A
For)-hard.

Definition 56 An ω-tree is a subset α ⊆ N
∗ that is closed under prefixes. The space

of ω-trees is denoted as ωTr. The set of all ω-trees that does not contain any infinite
branch is denoted as WF ⊆ ωTr.

Fact 57 (See [12, Chapter IV Section 33.A]) The space of ω-trees is a Polish
topological space. The set WF is �1

1-complete.



Theory Comput Syst

First we define a continuous function mapping ω-trees T ∈ ωTr to forests t (T )∈
AFor. Let us fix a forest th of type h and contexts cv , cw, cu of types v, w, u

respectively. If T = ∅ then let t (T ) = th. If T is non-empty let T0, T1, . . . be
the sequence of consecutive subtrees under the root of T . First let us put
ci = cv(cw + t (Ti)) and define

t (T ) = cv(cw + th) · c0 · c0 · c1 · c1 · c2 · . . . . (17)

Note that in this definition, for every i ∈ N we put the context ci twice.
Observe that since every context ci is guarded (because w ∈ V+), the function t :

ωTr → AFor defined above is continuous — given information about a consecutive
child of the root of T it produces further parts of the result t (T ).

Now we define f (T ) = cu · t (T ).

Lemma 58 An ω-tree T ∈ ωTr does not contain an infinite branch (belongs to WF)
if and only if f (T ) ∈ L.

Proof First assume that T∈WF. We inductively on the structure of T show that t (T )

is a thin forest and α(t (T )) = h. Having done so we will conclude that α(f (T )) =
u · h, therefore f (T ) ∈ L. Formally speaking the induction on the structure of T is
based on the standard rank on well-founded ω-trees, see [12, Chapter I Section 2.E].

If T = ∅ then it is trivial. Otherwise, without loss of generality we can assume
that T contains infinitely many subtrees (Ti)i∈N of the root and by the inductive
assumption we know that t (Ti) is thin and has type h. Therefore, by the definition
t (T ) is thin and by condition (15) and definition (17) we have

α (t (T )) = v(w + h)∞ = h.

Now take T /∈ WF. Assume that d ∈ N
ω is an infinite branch of T . We show

how to embed a full binary tree into f (T ) thus showing that f (T ) is not thin. Since
L ⊆ AThinFor so f (T ) /∈ L.

For a node w ∈ T by T �w we denote the subtree of T rooted in w. For a number
n we denote by d�n the prefix of d of length n. Thus, T �d�n

is the n-th subtree of T

along d . For n = 0 we have T �d�n
= T .

We take a sequence e ∈ {0, 1}ω and define an infinite branch be of f (T ). Intu-
itively we want to find a sequence t0, t1, . . . of subforests of f (T ). During each step
tn is a copy of the t (T �d�n

) forest. We start by putting t0 as the subforest put in the
hole of cu. From that moment on we will traverse infinitely many copies of cv . In the
n-th step we go to one of the two copies of the forest t (T �d�n

) in the current subforest
tn — either the first or the second one, depending on the value of e(n) ∈ {0, 1}.

To be more precise, we additionally define a sequence of contexts pn. Our aim is
that for every n:

tn = t
(
T �d�n

)
,

f (T ) = pn · tn,

pn+1 = pn · sn for a guarded context sn. (18)



Theory Comput Syst

Note that if a sequence pn satisfies these properties then the holes of contexts pn do
indicate an infinite branch be of f (T ).

We start with p0 = cu and note that by the definition of f the invariants (18) are
satisfied. Assume that pn is defined. Let d(n) = k — the branch d goes through
k-th child of the current subtree T�d�n

. Let us recall the definition (17) for the subtree
T�d�n

and let
rP = cv(cw + th) · c0 · c0 · . . . · ck−1 · ck−1,

r0 = �,

r1 = ck,

tF = ck+1 · ck+1 · ck+2 · ck+2 · . . . ,

sn = rP · re(n) · cv · (
cw · r1−e(n) · tF + �

)
.

Note that by the definition f (T ) = pn · sn · tn+1, and sn is guarded, so the context
pn+1 defined as pn · sn satisfies the invariant (18).

Observe that the possible two values of e(n) ∈ {0, 1} induce two different contexts
pn+1 with two incomparable holes (we use either r0 or r1 on the path to the hole of
sn). Therefore, for any e′ �= e we have be′ �= be. So indeed the forest f (T ) is not thin
— it contains a full binary subtree.

7.3 (4)⇒(1)

First we extend the definition of the CB-rank to thin contexts:

rankCB(p) = max{rankCB(p�x) : x is off the path to the hole of p}.
It is easy to see that the rank can be calculated inductively on the structure of a term
describing a given thin forest:

rankCB(s + t) = max(rankCB(s), rankCB(t)),

rankCB(p · q) = max(rankCB(p), rankCB(q)),

rankCB(p · t) =
{

max(rankCB(p), rankCB(t)) if p is non-guarded,

max(rankCB(p), rankCB(t), 1) if p is guarded,

rankCB(p∞) = 1 + rankCB(p),

rankCB(inl(t)) = rankCB(inr(t)) = rankCB(t),

rankCB(a) = 1

rankCB(0) = rankCB(�) = 0,

for thin contexts p, q, thin forests s, t , and a letter a ∈ A.
In fact, for regular thin forests and contexts, CB-rank is closely related to the

maximal nesting depth of the loop operation. It is stated more formally in the two
following lemmas.

Lemma 59 Every regular thin context p of CB-rank n can be written as either

p1(p2 + t) or p1(t + p2)

where t is a thin forest of CB-rank n.



Theory Comput Syst

Proof We do a proof by induction on the structure of a term which generates p.
If p = � or p = a we put t = 0.
If p = inl(t) for some forest t then we put p1 = p2 = �.
Otherwise p = qr for some contexts q, r . If r has CB-rank n then by the inductive

assumption w.l.o.g. r = r1(r2 + s) and p = qr1(r2 + s). If q has CB-rank n then
q = q1(q2 + s) and p = q1(q2 + s)r = q1(q2r + s).

Lemma 60 Every regular thin forest t of CB-rank n > 0 can be written as either

p(q + t ′)∞ or p(t ′ + q)∞

where t ′ is a thin forest of CB-rank n−1.

Proof We do a proof by induction on the structure of a term which generates t .
Assume that t = s1 + s2 and w.l.o.g. let s1 be of CB-rank n. Then by the inductive

assumption w.l.o.g. s1 = p(q + t ′)∞ and t ′ is of CB-rank n−1. Thus

t = p(q + t ′)∞ + s2 = (p + s2)(q + t ′)∞.

Assume then t = ps. If s is of CB-rank n we do similarly. If p is of CB-rank n

then from Lemma 59 p = p1(p2 + s′) and s′ is of CB-rank n. Thus

t = p1(p2 + s′)s = p1(p2s + �)s′,

and again we use the inductive assumption.
Finally if t = p∞ then p is of CB-rank n−1 and from Lemma 59 p = p1(p2 +s′)

and s′ is of CB-rank n−1. Therefore

t = (p1(p2 + s′))∞ = p1((p2 + s′)p1)
∞ = p1(p2p1 + s′)∞.

Lemma 61 If a regular language L contains a forest of CB-rank n, it contains also
a regular forest of CB-rank n.

Proof From Lemma 50 we get that the language

L ∩ (AThinFor≤n − AThinFor≤n−1)

of all thin forests from L of CB-rank n is regular. The lemma follows from the fact
that every regular language of thin forests contains a regular thin forest.

We introduce a directed graph G, whose set of vertices is a horizontal monoid H

of the syntactic thin-forest algebra of L. For h, g ∈ H a directed edge h → g belongs
to G if there exist elements v, w ∈ V such that g = v(w + h)∞ or g = v(h + w)∞.
The graph G is closed under transitivity:

Lemma 62 If for h, g, f ∈ H edges h → g and g → f belong to G then the edge
h → f also belongs to G.



Theory Comput Syst

Proof Let g = v(w + h)∞ and f = v′(w′ + g)∞ for some v, w, v′, w′ ∈ V .
Symmetric cases are done analogously. We have

f = v′(w′ + g)∞ =
= v′(w′ + g)(w′ + g)∞ =
= v′(w′(w′ + g)∞ + g) =
= v′(w′(w′ + g)∞ + v(w + h)∞) =
= v′(w′(w′ + g)∞ + v)(w + h)∞.

Thus f = v′′(w + h)∞ for v′′ = v′(w′(w′ + g)∞ + v).

Now we show that if a language L satisfies (15) then there is a bound on CB-ranks
of forests in L. We do a proof by contradiction — we assume that the language L

satisfies (15) but it has unbounded CB-rank.
From Lemmas 60 and 61 for any sufficiently large n we have a family of forests

t0, t1, . . . , tn such that:

(a) rankCB(ti) = i,
(b) there is an edge α(ti−1) → α(ti) in G,
(c) tn ∈ L.

Therefore for n ≥ |H | there exist two indices i, j such that j < i ≤ n and
α(tj ) = α(ti) = h. Condition (b) ensures that there is a path from h to itself in
G, thus from Lemma 62 there is a loop-edge h in G, hence h = v(w + h)

∞ or
h = v(h + w)∞ for some v, w ∈ V . Therefore from (15) h is the bottom element
for L.

Since there is a path from h to α(tn) in G, we get that α(tn) is equal to either
v(w + h)

∞ or v(h + w)∞ for some v, w ∈ V . Observe that

v(w + h)
∞ = v(w + h)(w + h)

∞ = v(w(w + h)
∞ + �)h = h,

where the last equality comes from the definition of the bottom element. Therefore
we get that α(tn) = h. This contradicts condition 4.

8 Descriptive Properties

In this section we show a number of descriptive properties of regular languages of
thin forests.

8.1 Automata

The following theorem expresses that the collapse from Theorem 26 is the best we
can get from the point of view of the alternating index hierarchy (also known as the
Rabin-Mostowski hierarchy).



Theory Comput Syst

Theorem 63 There exists a regular language of thin forests L that is not recog-
nizable among all forests by any alternating (1, 2)-automaton nor any alternating
(0, 1)-automaton.

Proof We define the language L ⊆ {a, b}ThinFor as containing those thin forests that
have a branch with infinitely many letters a. First we observe that this language is
�1

1-hard (see Theorem 46). If it were recognised by an alternating (1, 2)-automaton
then by Proposition 48 we get a contradiction.

What remains is to show that L cannot be recognized by any alternating (0, 1)-
automaton. In that case the complement Lc = {a, b}For \L would be recognizable by
a non-deterministic (1, 2)-automaton A.

Let n be the number of states Q of A. Consider thin forests defined inductively:

t0 = 0, ti+1 = (b(� + ati))
∞ .

Let t = tn+1. Note that t is thin and t ∈ Lc. Let ρ be an accepting run of A on
t . Observe that ρ is accepting on every b-labelled branch. Therefore, one can find a
node with a state of priority 2 on such a branch. Therefore, we can inductively find a
sequence of nodes u0 ≺ u1 ≺ . . . ≺ un of t such that for every i = 0, 1, . . . , n − 1:

– the run ρ has a state of priority 2 on the path between ui and ui+1,
– there is a node with label a on the path between ui and ui+1.

Since n is the number of the states of A, so ρ(ui) = ρ(uj ) for some i < j .
Therefore, we can decompose (t, ρ) as the context c1 with a hole in ui , the context
c2 between ui and uj , and the tree t3 rooted in uj , in such a way that

(t, ρ) = c1 · c2 · t3.

Let (t ′, ρ′) be the forest over the alphabet {a, b} × Q equal c1 · c∞
2 . Note that t ′

has a branch with infinitely many letters a, so t ′ ∈ L but ρ′ is an accepting run of A
on t ′ — a contradiction.

8.2 Embeddings and Quasi Skeletons

The definition of a skeleton σ of a forest t is a co-analytic definition — σ has to
contain almost all nodes on every branch of t . Our aim in this section is to define
objects less rigid than skeletons but definable in an analytic way. For this purpose,
we introduce two relations RE and RQ.

Observe that the CB-rank of a forest depends only on the domain of this forest.
Therefore, to simplify the notation we will restrict our attention to the case when the
alphabet A contains a single letter A = {a}. In that case we can identify a forest
t ∈ AFor with its domain dom(t) ⊆ ω+.

Proposition 64 There exists an analytic (�1
1) relation RE ⊆ {a}For × {a}For such

that for every forest t1 and every thin forest t2:

(t1 is thin and rankCB(t1) ≤ rankCB(t2)) if and only if (t1, t2) ∈ RE.



Theory Comput Syst

Intuitively, the relation RE is defined by the expression of the form: (t1, t2) ∈
RE if there exists an embedding of dom(t1) to dom(t2). However, to avoid technical
difficulties, we do not introduce exact definition of an embedding. Instead, we recall
some standard methods from descriptive set theory, see [12, Section 34.D], namely
the Borel derivatives. It will be shown that the derivative DvCB from Section 3 is
(modulo some technical extension) a Borel derivative. We follow here the notions
used in [12].

Definition 65 Let X be a countable set and D = P(X). A derivative on D is a map
D : D → D such that D(A) ⊆ A and D(A) ⊆ D(B) for A ⊆ B, A, B ∈ D. For
A ∈ D we define D0(A) = A, Dη+1(A) = D(Dη(A)) and for a limit ordinal η

Dη(A) =
⋂

η′<η

Dη′
(A).

Now, let |A|D for A ∈ D be the least ordinal η such that Dη(A) = Dη+1(A).
Such an ordinal exists by monotonicity of D and since X is countable, η < ω1. We
additionally put

D∞(A) = D|A|D(A).

Now let us state [12, Theorem 34.10] in the case of countable X.

Theorem 66 (Theorem 34.10 from [12, Section 34.E]) Let X be a countable set
and D = P(X). Let D : D → D be a derivative that is Borel. Put

�D = {F ∈ D : D∞(F ) = ∅}.
Then �D is �1

1 and the map F �→ |F |D is a �1
1-rank on �D .

Our aim is to present DvCB as a Borel derivative in such a way that �D =
{a}ThinFor and the map F �→ |F |D is the CB-rank. The above theorem will then
imply that the CB-rank of thin forests is a �1

1-rank. Then, by the definition of �∗
rankCB

(see [12, Section 34.B]) we obtain that

RE(t, t ′) def⇔ t �∗
rankCB t ′

⇔ t ′ /∈ {a}ThinFor ∨ (t, t ′ ∈ {a}ThinFor ∧ rankCB(t) ≤ rankCB(t ′))

is a �1
1-relation. This will conclude the proof of Proposition 64.

Fact 67 The CB-rank of thin forests comes from a Borel derivative, as in the
assumptions of Theorem 66.

Proof Let X = ω+ and D = P(X). Note that in this case {a}For ⊆ D. Let us extend
the derivative DvCB to a function D : D → D by defining it also on sets F ⊆ X such
that F /∈ {a}For. Let F ⊆ X and let F̄ be the prefix-closure of F :

F̄ = {u : ∃w∈F u � w}.



Theory Comput Syst

Now let D(F) = DvCB(F̄ ). The function D defined this way is monotone and Borel:
the set of forests is Borel in D and the property that u ∈ DvCB(t) is a Borel property
of a forest t : u ∈ dom(t) and t�u does not have a finite number of branches (this
property is Borel because our forests are finitely branching). Also, D∞(F ) = ∅ if and
only if F ∈ {a}ThinFor. By applying Theorem 34.10 we obtain that the rank induced
by D (that is the CB-rank) is a �1

1-rank.

Our second relation RQ is intended to witness the existence of a particular skeleton
σ̃ of a given thin forest t . The trick is that σ̃ witnesses a skeleton of t given that
t is thin. Otherwise, σ̃ does not witness anything interesting. Such a (conditional)
skeleton is denoted as a quasi-skeleton.

We will encode a subset σ̃ ⊆ dom(t) of nodes of a forest t as its characteristic
function — a forest (denoted also σ̃ ) over the alphabet {0, 1} such that dom(t) =
dom(σ̃ ). To simplify the notions we will say that u ∈ dom(t) belongs to σ̃ if u

belongs to the set encoded by it (i.e. if σ̃ (u) = 1).

Proposition 68 There exists a �1
1 relation RQ on {a}For × {0, 1}For such that:

1. for every pair (t, σ̃ ) ∈ RQ we have dom(t) = dom(σ̃ ), and σ̃ contains (treated
as a set of nodes of t) exactly one node from each set of siblings in t ,

2. for every thin forest t there exists a forest σ̃ such that (t, σ̃ ) ∈ RQ,
3. if t is a thin forest and (t, σ̃ ) ∈ RQ then σ̃ encodes a skeleton of t .

A forest σ̃ such that (t, σ̃ ) ∈ RQ is called a quasi-skeleton of t .
Note that RQ may contain some pairs (t, σ̃ ) with a non-thin forest t . In that case

σ̃ encodes some set of nodes of t but not a skeleton.
We define RQ ⊆ {a}For × {0, 1}For as the set of pairs (t, σ̃ ) such that:

– dom(σ̃ ) = dom(t),
– for every set of siblings in t exactly one of them is in σ̃ ,
– for every node u of t such that u ∈ σ̃ and every sibling u′ of u we have

(t�u′ , t�u) ∈ RE, (19)

i.e. the subtree under any sibling of u embeds into the subtree under u.

Fact 69 Since RE is analytic and analytic sets are closed under countable intersec-
tions, the relation RQ is also analytic.

The following two lemmas prove Items 2 and 3 of Proposition 68.

Lemma 70 Let t be a thin forest. There exists a quasi-skeleton σ̃ for t .

Proof Let t be a thin forest. Let σ̃ contain, from every set of siblings u1, . . . , un in
t , exactly one of them that has maximal CB-rank: if ui ∈ σ̃ then for every j �= i we
have rankCB(t�ui

) ≥ rankCB(t�uj
). Clearly σ̃ defined this way satisfies (19).

Lemma 71 If t is a thin forest and σ̃ is a quasi-skeleton of t then σ̃ (treated as a set
of nodes of t) is a skeleton of t .



Theory Comput Syst

Proof Take any infinite branch π of t . We need to show that almost all nodes on π

belong to σ̃ . Assume contrary. Let u0 ≺ u1 ≺ . . . ≺ u be the sequence of nodes on u

that do not belong to σ̃ . By the definition of σ̃ for every node ui there is a sibling u′
i

of ui such that u′
i ∈ σ̃ and (t�ui

, t�u′
i
) ∈ RE . Since t is thin this property implies that

rankCB(t�ui
) ≤ rankCB(t�u′

i
).

Since ordinal numbers are well-founded, we can assume without loss of generality
that all the ranks rankCB(t �ui

) are equal some ordinal η < ω1. Since ui ≺ u′
i+1 so

we can also assume that for every i we have rankCB(u′
i ) = η. Let t0 = t�u0 and let

t ′0 be the spine of t0. Note that rankCB(t0) = η so by the definition t ′0 contains all the
nodes of CB-rank η in t . In particular t ′0 contains all nodes ui and u′

i . But this is a
contradiction, since u ∈ BCB , it cannot contain infinitely many branching nodes.

Remark 1 Assume that t is a thin forest, σ̃ is a quasi-skeleton of t , and u ∈ dom(t)

is a node of t . The main branch of σ̃ from u can be defined in the same way as in the
case of skeletons (see Definition 13). The only difference is that if σ̃ is not a skeleton
then not every infinite branch of t is main.

8.3 Topological Properties

In this section we give several results showing that regular languages of thin forests
are topologically simpler than generic regular languages of forests.

Theorem 72 Every regular language of thin forests L is co-analytic as a set of
forests.

Note that despite the fact that the space of thin forests AThinFor is co-analytic
among all forests, it contains arbitrarily complicated subsets. In fact, already the
family of forests of CB-rank equal 1 is an uncountable Polish topological space, so
the whole boldface hierarchy (see Section 2.3) can be constructed using only such
forests.

Proof of Theorem 72 Assume that L is a regular language of thin forests. Let Lc =
AFor \L be its complement relatively to all forests. Lc is a regular language of forests.
Let A be a forest automaton recognizing Lc. We will write Lc as a sum

Lc = (
AFor \ AThinFor) ∪ K.

The language K will be defined this way to be analytic and to satisfy the following
condition:

K ∩ AThinFor = Lc ∩ AThinFor.

Let K contain those forests t such that there exists a quasi skeleton σ̃ and a run
ρ of the automaton A such that for every node x ∈ dom(t) the limes superior of
priorities of ρ is even along the main branch of σ̃ from x.

Observe that K is defined by an existential quantification over forests σ̃ ∈ {0, 1}For

and runs ρ. The inner properties:

– σ̃ is a quasi skeleton for t ,



Theory Comput Syst

– ρ is a run of A,
– for every node x ∈ dom(t) the main branch from x along σ̃ is accepting,

are analytic (the later two are in fact Borel). Therefore, K is analytic. Note that we
do not express explicitly that ρ is an accepting run.

Observe that if t ∈ Lc ∩ AThinFor then t ∈ K: there is some quasi skeleton σ̃ for
t and there is an accepting run ρ of A. Since ρ is accepting so it is accepting on all
main branches of σ̃ .

What remains is to show that if t ∈ K ∩ AThinFor then t ∈ Lc. Take a thin forest
t ∈ K . Assume that σ̃ , ρ are a quasi skeleton and a run given by the definition of
K . Since t is a thin forest, σ̃ actually encodes a skeleton σ ⊆ dom(t). We take any
infinite branch π of t and show that ρ is accepting along π . By Lemma 14 we know
that there is a node x ∈ dom(t) such that π is the main branch of σ from x. Therefore,
by the definition of K , the run ρ is accepting on π . We use here the fact that the
acceptance condition is prefix independent: it is enough to satisfy it from some point
on.

Theorems 46 and 72 imply the following dichotomy or gap property in the spirit
of [16].

Remark 2 For every regular language of thin forests L exactly one of the following
possibilities holds, it can be effectively decided which one:

– L is weak MSO-definable among all forests and lies on a finite level of the Borel
hierarchy of AFor,

– L is �1
1(A

For)-complete.

The following theorem shows that, when treating thin forests as our universe, there
are no topologically hard regular languages.

Theorem 73 Let X be a Polish topological space, f : X → AThinFor be continuous,
and L be a regular language of thin forests. Then f −1(L) is Borel in X.

Proof Assume that X, f , and L are given as in the statement of the theorem. Observe
that f (X) is an analytic subset of AFor and is contained in AThinFor.

The following lemma can be seen as an instance of Boundedness Principle,
see [12, Theorem 35.23].

Lemma 74 There exists η < ω1 such that f (X) ⊆ AThinFor≤η.

Proof Assume contrary. In that case we give an analytic definition of AThinFor among
all forests. It contradicts the fact that AThinFor is co-analytic-complete. The key tool
is the relation RE defined in Section 8.2.

Let us define a set T of forests by the following property: a forest t1 belongs to
T if there exists a forest t2 in f (X) such that (t1, t2) ∈ RE . The above definition is
obviously analytic. We claim that T = AThinFor.

Take a thin forest t1 ∈ AThinFor. If there were no forest t2 in f (X) of CB-rank
greater than rankCB(t1) then η = rankCB(t1) would be a bound on CB-ranks of forests



Theory Comput Syst

in f (X). But we assumed that there is no such bound, so there must exist such t2 ∈
f (X). Since rankCB(t1) ≤ rankCB(t2), (t1, t2) ∈ RE and t1 ∈ T .

Now consider any forest t1 ∈ T . Let t2 be the witness from the definition of T .
Since t2 ∈ f (X), t2 is a thin forest, by applying Proposition 64 we obtain that t1 is
also a thin forest.

What remains is to show the following lemma.

Lemma 75 For every η < ω1 the language L ∩ AThinFor≤η is Borel.

Proof The construction mimics the formulae defined in Section 7. The difference is
that instead of writing weak MSO formulae, we inductively prove that corresponding
languages are Borel. First let us note the following fact. It can be derived from Fact 67
but it can also be proved directly, without referring to Borel derivatives.

Fact 76 For every η < ω1 the set AThinFor≤η is Borel.

Proof The induction goes by ordinal numbers η. The limit step is obtained via a
countable union of languages of CB-rank smaller than η. The successor step is done
as follows. Assume that AThinFor≤η is Borel. Consider d ∈ N, t ∈ AFor and define the
d-layer of t as the (finite) set of nodes v ∈ dom(t) such that |v| = d . Now X be the
set of forests t such that

there exists n ∈ N such that

for every d ≥ 0

all except at most n nodes v in the d − layer of t satisfy

t�v∈ AThinFor≤η

By the definition X is a Borel set. Assume that t ∈ X what is witnessed by n ∈ N. In
that case the forest Dvη

CB(t) has at most n infinite branches, so rankCB(t) ≤ η + 1. It
means that X ⊆ AThinFor≤η+1.

Now assume that t ∈ AThinFor≤η+1. Let t ′ be the final prefix of t . By Fact 12 we
know that there is a global bound on the cardinality of the d-layers of t ′. Let n be
such a bound. Then t ∈ X as witnessed by n. It means that AThinFor≤η+1 ⊆ X and
therefore X = AThinFor≤η+1.

It means that for every fixed η < ω1 the condition that a given forest has CB-rank
η is Borel. Now we can repeat the construction of formulae ψm and ϕM(h) with ϕm

replaced by {t : rankCB(t) = η}. In this way we obtain a Borel definition of the set
{t : rankCB(t) = η ∧ α(t) = h} for η < ω1 and h ∈ H , as in Proposition 51.

By the above observations

f −1(L) = f −1 (f (X) ∩ L) = f −1 (
AThinFor≤η ∩ L

)
,

and the set AThinFor≤η ∩ L is Borel, so is its preimage.
The following theorem can be seen as complementing Theorem 73.



Theory Comput Syst

Theorem 77 There exists a regular language of thin forests LW over some alphabet
AW that is Borel-hard: for every Polish topological space X and every Borel set B ⊆
X there exists a continuous function f : X → AW

ThinFor such that f −1(LW) = B.

The principal concept of the above language is based on a construction proposed
in [10].

Proof Let AW = {∨, ∧, ⊥, �}. A forest t ∈ AW
For induces a parity game: a position

of the game is a node x ∈ dom(t). Nodes labelled by � (resp. ⊥) are final positions
of the game, winning for Eve (resp. Adam). Nodes labelled by ∨ (resp. ∧) belong to
Eve (resp. Adam). In each round the player possessing the current node selects one
of its children and the token is moved to the selected node. If a player cannot perform
a move (the current node is a leaf) then she looses. The priority of nodes labelled ∨
(resp. ∧) is 1 (resp. 2).

For technical reasons we restrict ourselves to trees — if t is a nonempty tree then
the initial position of the game is the unique root of t .

Definition 78 Let LW be the language of thin trees over the alphabet AW such that
Eve has a strategy in the induced parity game.

Observe that, since the arena is a tree, every strategy is a positional one. A posi-
tional strategy can be encoded as a set of nodes of a given forest, so the language LW

is regular.

Lemma 79 If X is a Polish topological space and B ⊆ X is Borel then there exists
a continuous function f : X → AW

ThinFor such that f −1(LW) = B.

Proof The proof is inductive on the level of the Borel hierarchy the given set B

occupies. Without loss of generality we can assume that X is Cantor space {0, 1}ω. If
B is a basic clopen subset of X then the function mapping elements of B to � · 0 and
elements of X \ B to ⊥ · 0 is continuous.

Let B be a countable union (resp. intersection) of simpler sets B1, B2, . . .. Let fi

be a reduction of Bi to LW . Let a = ∨ (resp. a = ∧). Take any element x ∈ X and
define

pi = a(� + fi(x)), and f (x) = p1 · p2 · . . .

Consider the possible two cases:

(a = ∨) A strategy for Eve in the game on f (x) boils down to selecting one of the
subtrees fi(x) and proceeding in this subtree.

(a = ∧) A strategy for Eve in the game on f (x) consists of a sequence of strategies
for each subtree fi(x) selected by Adam.

Therefore, Eve can win the game on f (x) if and only if she can win on some fi(x)

(resp. on every fi(x)). Therefore, f (x) ∈ LW if and only if ∃i fi(x) ∈ LW (resp.
∀i fi(x) ∈ LW ). So f (x) ∈ LW if and only if x ∈ B.



Theory Comput Syst

Using the structure of the language LW one can deduce the following corollary.

Corollary 80 The language LW cannot be defined in weak MSO among thin forests.
This statement holds true even if we provide with every forest t ∈ AW

ThinFor its
canonical skeleton σ(t): there is no weak MSO formula ϕ over the alphabet AW ×
{0, 1} such that

LW = {
t ∈ AW

ThinFor : (t, σ (t)) |= ϕ
}
.

Proof Assume that LW would be weak MSO-definable among thin forests. In that
case LW would be of the form L ∩ AW

ThinFor for a weak MSO-definable language of
forests L. By a standard estimation L ∈ �0

n(AW
For) for some n. But, by Lemma 79

we can reduce some �0
n-complete language to L — a contradiction.

Now observe that the trees constructed by reductions f from the proof of
Lemma 79 have simple canonical skeletons: σ(f (x)) contains the leftmost node
from each set (pair) of siblings. Therefore, the canonical skeletons are weak MSO-
definable on trees generated by f , so it does not change anything if we supply them
with the given forests.

Acknowledgments The authors would like to thank Henryk Michalewski for posing a number of
motivating problems and questions on the subject.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Bojańczyk, M., Idziaszek, T.: Algebra for infinite forests with an application to the temporal logic EF.
In: CONCUR, pp. 131–145 (2009)

2. Blumensath, A.: Recognisability for algebras of infinite trees. Theor. Comput. Sci. 412(29), 3463–
3486 (2011)

3. Bojańczyk, M.: Effective characterizations of tree logics. In: PODS, pp. 53–66 (2008)
4. Bojańczyk, M., Place, T.: Regular languages of infinite trees that are Boolean combinations of open

sets. In: ICALP, pp. 104–115 (2012)
5. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Number 78 in Graduate Texts in

Mathematics. Springer-Verlag (1981)
6. Bilkowski, M., Skrzypczak, M.: Unambiguity and uniformization problems on infinite trees. In:

Della Rocca, S.R. (ed.) Computer Science Logic 2013 (CSL 2013) volume 23 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pp. 81–100. Dagstuhl, Germany (2013). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik

7. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Proceedings 1960
International Congress for Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)

8. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Logic and Automata, pp. 107–132 (2008)
9. Finkel, O., Simonnet, P.: On recognizable tree languages beyond the Borel hierarchy. Fundam. Inform.

95(2–3), 287–303 (2009)
10. Hummel, S., Michalewski, H., Niwiński, D.: On the Borel inseparability of game tree languages. In:

STACS, pp. 565–575 (2009)
11. Idziaszek, T.: Algebraic Methods in the Theory of Infinite Trees. PhD thesis, University of Warsaw,

2012. unpublished
12. Kechris, A.: Classical Descriptive Set Theory. Springer-Verlag, New York (1995)



Theory Comput Syst

13. Kufleitner, M., Lauser, A.: Languages of dot-depth one over infinite words. In: LICS, pp. 23–32
(2011)

14. Lifsches, S., Shelah, S.: Uniformization and skolem functions in the class of trees. J. Symb. Log.
63(1), 103–127 (1998)

15. Murlak, F.: The Wadge hierarchy of deterministic tree languages. Logic. Methods Comput. Sci. 4(4)
(2008)

16. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theor. Comput. Sci.
1(303), 215–231 (2003)

17. Perrin, D., Pin, J.-É.: Infinite Words: Automata, Semigroups, Logic and Games. Elsevier (2004)
18. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. American

Math. Soc. 141, 1–35 (1969)
19. Rabinovich, A., Rubin, S.: Interpretations in trees with countably many branches. In: LICS, pp. 551–

560. IEEE (2012)
20. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control. 8(2), 190–194

(1965)
21. Simon, I.: Piecewise testable events. In: Automata Theory and Formal Languages, pp. 214–222 (1975)
22. Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees. Theor. Comput.

Sci. 112(2), 413–418 (1993)
23. Thomas, W.: Relationen endlicher valenz über der ordnung der natürlichen zahlen. Habilitationss-

chrift, Universitat Freiburg, apr. 1980
24. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier alternation. In:

STOC, pp. 234–240 (1998)
25. Wilke, T.: An algebraic theory for regular languages of finite and infinite words. Int. J. Alg. Comput.

3, 447–489 (1993)
26. Wilke, T.: Classifying discrete temporal properties. Habilitationsschrift, Universitat Kiel, apr. 1998


	Regular Languages of Thin Trees
	Abstract
	Introduction
	Effective characterizations.
	Upper bounds.


	Preliminaries
	Forests
	Automata and Regular Languages
	Topology

	Ranks
	Skeletons

	Algebra
	Axioms
	The Free Objects
	Correspondence Between Two Algebras

	Recognizability by Thin-Forest Algebras
	Automaton to Algebra
	Algebra to (1,3)-Automaton

	Applications of Thin-Forest Algebras
	Components in a Forest
	Commutative Languages
	Open Languages
	The Temporal Logic EF

	Languages Weak MSO-Definable Among All Forests
	(1)(2)
	(3)(4)
	(4)(1)

	Descriptive Properties
	Automata
	Embeddings and Quasi Skeletons
	Topological Properties

	Acknowledgments
	Open Access
	References


