Definability of choice over scattered trees in MSO

Michał Skrzypczak

Highlights 2015 Prague

Logic:

- \exists_x , $\forall_x \quad (x - \mathsf{node})$

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$\exists_x$$
, $\forall_x \quad (x - \mathsf{node})$ - \exists_X , $\forall_X \quad (X - \mathsf{set} \ \mathsf{of} \ \mathsf{nodes})$

- $x \in X$, x = y, predicates

-
$$\exists_x$$
, $\forall_x \quad (x - \mathsf{node})$ - \exists_X , $\forall_X \quad (X - \mathsf{set} \ \mathsf{of} \ \mathsf{nodes})$

- $x \in X$, x = y, predicates

Structures:

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

- $x \in X$, x = y, predicates

Structures:

words

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

Structures:

words

trees

and

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

Structures:

words

and

trees

Scattered trees:

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

and

Scattered trees:

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X \longrightarrow \mathsf{set} \mathsf{ of} \mathsf{ nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

Scattered trees:

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

and

Scattered trees:

Partial trees with only countably many branches

• uniformisation with parameters (Lifsches, Shelah)

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

and

Scattered trees:

- uniformisation with parameters (Lifsches, Shelah)
- algebraic characterisations (Bojańczyk et al.)

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

and

Scattered trees:

- uniformisation with parameters (Lifsches, Shelah)
- algebraic characterisations (Bojańczyk et al.)
- logical interpretations (Rabinovich et al.)

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

and

Scattered trees:

- uniformisation with parameters (Lifsches, Shelah)
- algebraic characterisations (Bojańczyk et al.)
- logical interpretations (Rabinovich et al.)
- descriptive properties (S.)

$$\exists x, \forall x \quad (x - \mathsf{node})$$

-
$$\exists_X$$
, $\forall_X \quad (X - \text{set of nodes})$

-
$$x \in X$$
, $x = y$, predicates

trees

Structures:

words

and

Scattered trees:

- uniformisation with parameters (Lifsches, Shelah)
- algebraic characterisations (Bojańczyk et al.)
- logical interpretations (Rabinovich et al.)
- descriptive properties (S.)
- boundedness and determinacy (Fijalkow et al.)

Michał Skrzypczak

 $\varphi(x,X)$ defines choice if

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

 $\varphi(x,X)$ chooses a unique element $x \in X$

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x, X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x, X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \emptyset. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words: $\varphi(x,X) \equiv "x \text{ is the } <\text{-minimal element of } X"$

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is **no** MSO-definable choice over infinite trees.

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x,X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is **no** MSO-definable choice over infinite trees.

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x, X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

X

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x, X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

???

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x, X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

???

Theorem (Bilkowski, S. [2013])

The above conjecture implies

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x, X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

???

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation

$$\varphi(x,X)$$
 defines choice if

$$\forall X \neq \varnothing. \ \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes X

$$\varphi(x,X)$$
 chooses a unique element $x \in X$

Words:
$$\varphi(x,X) \equiv "x \text{ is the } <\text{-minimal element of } X"$$

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

???

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation of bi-unambiguous languages of complete trees.

An algebra H

i.e. monoid, forest algebra, thin algebra,...

An algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ \sim type of structures

An algebra ${\cal H}$

i.e. monoid, forest algebra, thin algebra, \ldots

element $h \in H$ \sim type of structures operation \cdot in H \sim composition of structures

An algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ \sim type of structures

operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \mathrm{Struct} \to H$ \sim assignment of actual types

An algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ \sim type of structures operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \mathrm{Struct} \to H$ \sim assignment of actual types

Marking: a labelling τ of a tree t by H

An algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ \sim type of structures operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \operatorname{Struct} \to H$ \sim assignment of actual types

Marking: a labelling τ of a tree t by H

 $au(v) \, \equiv \operatorname{declared} \, \operatorname{type} \, \operatorname{of} \, t \! \upharpoonright_v$

An algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ \sim type of structures operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \operatorname{Struct} \to H$ \sim assignment of actual types

Marking: a labelling τ of a tree t by H

 $\tau(v) \; \equiv {\rm declared} \; {\rm type} \; {\rm of} \; t \! \upharpoonright_v$

Actual marking : $\tau(v) = \alpha(t \upharpoonright_v)$

An algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ \sim type of structures operation \cdot in H \sim composition of structures

homomorphism $\alpha \colon \operatorname{Struct} \to H$ \sim assignment of actual types

Marking: a labelling τ of a tree t by H

 $\tau(v) \; \equiv {\rm declared} \; {\rm type} \; {\rm of} \; t \! \upharpoonright_v$

[if there exists $\alpha \colon \mathrm{Trees} \to H \dots$]

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

au is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_v=h_v^\prime$]

 $\boldsymbol{\tau}$ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_v=h_v^\prime$]

$$H = \{h_a, h_b\}, \quad h_a \equiv \text{"exists letter } a\text{"}, \quad h_b \equiv \text{"no letter } a\text{"}$$

 $\boldsymbol{\tau}$ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_v=h_v^\prime$]

Example

$$H = \{h_a, h_b\}, \quad h_a \equiv \text{"exists letter } a\text{"}, \quad h_b \equiv \text{"no letter } a\text{"}$$

For all v let:

au is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_v=h_v^\prime$]

Example

$$H = \{h_a, \frac{h_b}{h_b}\}, \quad h_a \equiv \text{"exists letter } a\text{"}, \quad \frac{h_b}{h_b} \equiv \text{"no letter } a\text{"}$$

For all v let: t(v) = b

au is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_v=h_v^\prime]$

$$H = \{h_a, h_b\}, \quad h_a \equiv \text{"exists letter } a\text{"}, \quad h_b \equiv \text{"no letter } a\text{"}$$

For all
$$v$$
 let: $t(v) = b$ and $\tau(v) = h_a$ ("exists a ")

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

$$H=\{h_a,h_b\}, \quad h_a\equiv \text{``exists letter }a\text{''}, \quad h_b\equiv \text{``no letter }a\text{''}$$
 For all v let: $t(v)=b$ and $\tau(v)=h_a$ (``exists a '') au is consistent!

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

$$H=\{h_a,h_b\}, \quad h_a\equiv \text{``exists letter }a\text{''}, \quad h_b\equiv \text{``no letter }a\text{''}$$
 For all v let: $t(v)=b$ and $\tau(v)=h_a$ (``exists a '') τ is consistent!

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

Example

$$H=\{h_a,h_b\}, \quad h_a\equiv$$
 "exists letter a ", $h_b\equiv$ "no letter a " For all v let: $t(v)=b$ and $\tau(v)=h_a$ ("exists a ")

τ is consistent!

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

Example

$$H = \{h_a, h_b\}, \quad h_a \equiv \text{"exists letter } a\text{"}, \quad h_b \equiv \text{"no letter } a\text{"}$$

For all
$$v$$
 let: $t(v) = b$ and $\tau(v) = h_a$ ("exists a ")

au is consistent!

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

$$H=\{h_a,h_b\}, \quad h_a\equiv \text{``exists letter }a\text{''}, \quad h_b\equiv \text{``no letter }a\text{''}$$
 For all v let: $t(v)=b$ and $\tau(v)=h_a$ (``exists a '') au is consistent!

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

Example

$$H=\{h_a,h_b\}, \quad h_a\equiv$$
 "exists letter a ", $\quad h_b\equiv$ "no letter a " For all v let: $t(v)=b$ and $\tau(v)=h_a$ ("exists a ") τ is consistent!

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

Example

$$H=\{h_a,h_b\}, \quad h_a\equiv$$
 "exists letter a ", $h_b\equiv$ "no letter a " For all v let: $t(v)=b$ and $\tau(v)=h_a$ ("exists a ") au is consistent!

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

For every finite thin algebra H and every complete tree t

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

Example

$$H=\{h_a,h_b\}, \quad h_a\equiv$$
 "exists letter a ", $h_b\equiv$ "no letter a " For all v let: $t(v)=b$ and $\tau(v)=h_a$ ("exists a ") au is consistent!

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

For every finite thin algebra H and every complete tree t there exists a consistent marking of t by H.

au is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_v=h_v'$]

Example

$$H=\{h_a,h_b\}, \quad h_a\equiv$$
 "exists letter a ", $\quad h_b\equiv$ "no letter a " For all v let: $t(v)=b$ and $\tau(v)=h_a$ ("exists a ") τ is consistent!

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

For every finite thin algebra H and every complete tree t there exists a consistent marking of t by H.

[no actual marking because $\alpha \colon \mathbf{Scattered} \to H \pmod{\alpha \colon \mathbf{Trees} \to H}$]

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation of bi-unambiguous languages of complete trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation of bi-unambiguous languages of complete trees.

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation of bi-unambiguous languages of complete trees.

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

For every finite thin algebra H and every tree t (scattered or not)

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation of bi-unambiguous languages of complete trees.

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

Theorem (Bilkowski, S. [2013])

The above conjecture implies an effective characterisation of bi-unambiguous languages of complete trees.

Theorem (S. [2013])

There is **no** MSO-definable choice over **scattered** trees iff

For every finite thin algebra H and every tree t (scattered or not) there exists a consistent marking of t by H.

connections with path continuous hyper-clones of Blumensath