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Decidable theories

Theorem (Presburger [1929])
The fo theory of addition pN,`q is decidable.

Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943])
The fo theory of arithmetic pN,`, ¨q is undecidable.

Theorem (Tarski [1951])
The fo theory of reals pR,`, ¨q is decidable.

Theorem (Büchi [1960])
The mso theory of one successor pN,`1q is decidable.

Theorem (Rabin [1969])
The mso theory of two successors

`

t0, 1uăω, ˆ0, ˆ1
˘

is decidable.
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Rabin’s decidability of S2S

Structures:
A-labelled binary trees t : t0, 1uăω Ñ A (the universe is t0, 1uăω)

Logic:
Monadic Second-Order (mso) logic: DX, Dx, _,  

Vocabulary:
Two successors: s0pu, uˆ0q, s1pu, uˆ1q; Predicates apuq for a P A

(also definable: prefix order ĺ, lexicographic order ďlex, root ε, . . . )

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

“Mother of all decidability results”

ù applications in verification, model-checking, synthesis, . . .
mso subsumes ltl, ctl*, µ-calculus, . . .
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Rabin’s decidability of S2S — consequences

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Corollary
The mso theory of pQ,ďq is decidable.

Corollary
The fo theory of

`

Σ0
2p2ωq,Ď, A ÞÑ A

˘

is decidable.
Corollary

The fo theory of
`

PpA˚q,Ď, . . .
˘

is decidable.
Corollary

The fo theory of
`

N, ¨
˘

is decidable.
...
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Monadic Second-Order logic over trees

Example:
A “ ta, bu

L “
 

t | t has a branch with infinitely many a
(

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in mso.

Proof
1. ϕ :“ DX. Dx P X ^ — X is non-empty

@x, y P X. px ĺ y _ y ĺ xq ^ — X is a ĺ-chain
@x P X Dy P X. x ă y ^ — X is infinite
@x P X. apxq — X is a-labelled

2. L “ tt | t |ù ϕu

3. L is Σ1
1-complete
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Rabin’s theorem proof — automata

Acceptance / winning conditions:
— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi

— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin

— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett

— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller

— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity

— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events

— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad

— even event is good
Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Rabin’s theorem proof — automata
Acceptance / winning conditions:

— Büchi
— Rabin
— Streett
— Muller
— parity
— . . .

Parity index: pair pi, kq with i ď k

Li,k “
 

α P ti, . . . , kuω | lim sup
nÑ8

αpnq ” 0 pmod 2q
(

Intuition: numbers j P ti, . . . , ku are ordered events
— odd event is bad
— even event is good

Büchi condition ” L1,2

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 5 / 26



Modern proof — parity tree automata

Task: given ϕ check if there is t such that t |ù ϕ

1. Transform ϕ into a finite automaton A
2. A is a parity automaton of index pi, kq
3. For every tree t the automaton A induces a game GAptq

4. t |ù ϕ iff Player I wins GAptq

5. it is decidable if such t exists

Game GAptq:
— positions u P t0, 1uăω

— labelled by pP, jq
P P tI, IIu is a player
j P ti, . . . , ku is a priority

pI, 2q

pII, 3q pI, 1q

pI, 3q pI, 1q pII, 4q pI, 2q
...

...
...

...
...

...
...

...

— Player I wins a play crossing pP0, j0q, pP1, j1q, pP2, j2q, . . . if
pj0, j1, . . .q P Li,k i.e. lim supnÑ8 jn ” 0 pmod 2q
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Index hierarchy

From the proof:
for every ϕ there effectively exists a parity automaton A s.t.

t |ù ϕ ðñ Player I wins GAptq

(also the opposite — for every A there effectively exists ϕ as above)
Definition

A set of trees L is regular if L “ tt | t |ù ϕu for some ϕ.

(equivalently if L “ tt | Player I wins GAptqu for some A)
Definition

A regular set L has index pi, kq if for some alternating pi, kq-parity
automaton

L “ tt | Player I wins GAptqu

Theorem (Bradfield [1998], Arnold [1999])
For every index pi, kq there is a regular set L that is not of index pi, kq.
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Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index pi, kq there is a regular set L that is not of index pi, kq.

Fact L has index pi, kq iff Lc has index pi` 1, k ` 1q
L has index pi, kq iff L has index pi` 2, k ` 2q

Index hierarchy

p0, 1q p1, 2q

p1, 3q p0, 2q

p0, 3q p1, 4q

...
...

universal fragment ø ù existential fragment

Index hierarchy is the alternation-depth hierarchy for µ-calculus
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Game trees

GAptqpI, 2q

pII, 3q pI, 1q

pI, 3q pI, 1q pII, 4q pI, 2q
...

...
...

...
...

...
...

...

Let Ai,k “ tI, IIu ˆ ti, . . . , ku
GAptq is just an Ai,k-labelled tree
Let Wi,k “ tt | Player I wins over tu

(Arnold [1999], Walukiewicz)

‚ Wi,k is regular

‚ Wi,k has index pi, kq ‚ t ÞÑ GAptq is continuous

t |ù ϕ iff GAptq PWi,k

‚ Wi,k is Wadge-complete for all regular sets of index pi, kq

Theorem (Arnold, Niwiński [2006])
Wi,k does not Wadge-reduce to Wi`1,k`1.

Proof: Banach’s fix-point theorem. ù strictness of the index hierarchy
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Descriptive complexity of regular sets

Theorem (Niwiński [1985])
There are non-Borel regular sets.

Fact
By Rabin’s theorem, every regular set is ∆1

2.

Fact
The sets Wi,k form a Wadge hierarchy of length ω.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier

G

applied to the
difference hierarchy over Π0

2.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on Wi,k continuous w.r.t. every Borel measure?

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 10 / 26



Descriptive complexity of regular sets

Theorem (Niwiński [1985])
There are non-Borel regular sets.

Fact
By Rabin’s theorem, every regular set is ∆1

2.

Fact
The sets Wi,k form a Wadge hierarchy of length ω.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier

G

applied to the
difference hierarchy over Π0

2.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on Wi,k continuous w.r.t. every Borel measure?

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 10 / 26



Descriptive complexity of regular sets

Theorem (Niwiński [1985])
There are non-Borel regular sets.

Fact
By Rabin’s theorem, every regular set is ∆1

2.

Fact
The sets Wi,k form a Wadge hierarchy of length ω.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier

G

applied to the
difference hierarchy over Π0

2.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on Wi,k continuous w.r.t. every Borel measure?

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 10 / 26



Descriptive complexity of regular sets

Theorem (Niwiński [1985])
There are non-Borel regular sets.

Fact
By Rabin’s theorem, every regular set is ∆1

2.

Fact
The sets Wi,k form a Wadge hierarchy of length ω.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier

G

applied to the
difference hierarchy over Π0

2.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on Wi,k continuous w.r.t. every Borel measure?

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 10 / 26



Descriptive complexity of regular sets

Theorem (Niwiński [1985])
There are non-Borel regular sets.

Fact
By Rabin’s theorem, every regular set is ∆1

2.

Fact
The sets Wi,k form a Wadge hierarchy of length ω.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier

G

applied to the
difference hierarchy over Π0

2.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on Wi,k continuous w.r.t. every Borel measure?

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 10 / 26



Descriptive complexity of regular sets

Theorem (Niwiński [1985])
There are non-Borel regular sets.

Fact
By Rabin’s theorem, every regular set is ∆1

2.

Fact
The sets Wi,k form a Wadge hierarchy of length ω.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier

G

applied to the
difference hierarchy over Π0

2.

Question (Mio [2012])
Is every regular set universally measurable?
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Souslin operation A

Idea: generate Σ1
1 sets from Π0

1 sets using an operation A

A
`

pAsqsPωăω

˘

“
 

x | Dπ P ωω @n P ω. x P Aπæn

(

“
ď

πPωω

č

nPω

Aπæn Aπæn

Theorem (Souslin [1916])
A is Σ1

1 iff A “ A
`

pAsqsPωăω

˘

for some pAsqsPωăω Ď Π0
1

´

i.e. Σ1
1 “ A

`

Π0
1
˘

¯

Theorem (Souslin [1917])
Every Σ1

1 set has perfect set property.

Theorem (Luzin, Sierpiński [1918])
Every Σ1

1 set is universally measurable.
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Beyond Σ1
1

‚ Σ1
1-inductive sets (Moschovakis 1974)

‚ C-operation (Selivanovski [1928])

‚ Borel programmable sets (Blackwell [1978])

‚ R-transform (Kolmogorov [1928])

‚ game quantifier

G

(Moschovakis [1971])

‚ . . .
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Positive analytic operations

Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:

‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A

‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq

(elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:

1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B

2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)

3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:

‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen)

‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations
Ω “ pA,Bq with:
‚ a countable arena A
‚ a basis B Ď PpAq (elements N P B are called strategies)

Ω: PpXqA Ñ PpXq

Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

To prove that x P Ω
`

pAnqnPA
˘

:
1. Player I chooses a strategy N P B
2. Player II chooses n P N (a play consistent with N)
3. we verify that x P An

Typically:
‚ sets An are simple (e.g. clopen) ‚ the complexity lies in B

Caution: @A Ď X DΩ DpAsqsPA. pAsqs Ď Π0
1 ^ Ω

`

pAsqsPA
˘

“ A

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 14 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An

Ť
`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An

Ť
`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An

Ş
`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An

Ş
`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As

AsA
`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
As

A
`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Positive analytic operations

for Ω “
`

A,B
˘

define Ω
`

pAnqnPA
˘

“
ď

NPB

č

nPN

An

Ť

“

´

ω,
 

tnu | n P ω
(

¯

ď

`

pAnqnPω
˘

“
ď

tnu

č

nPtnu

An
Ť

`

Π0
η

˘

“ Σ0
η`1

Ş

“

´

ω, tωu
¯

č

`

pAnqnPω
˘

“
ď

tωu

č

nPω

An
Ş

`

Σ0
η

˘

“ Π0
η`1

A “

´

ωăω, tπ | π is an infinite branchu
¯

A
`

pAsqsPωăω

˘

“
ď

π

č

sPπ

As
AsA

`

Π0
1
˘

“ Σ1
1

Michał Skrzypczak An automata-theoretic hierarchy inside ∆1
2 15 / 26



Transforms

Idea: generate more complicated operations from easier ones

co: Ω ÞÑ co-Ω co-
`

A,B
˘

“

´

A,
 

M | @N P B. N XM ‰ H
(

¯

counter-strategies

co-
Ť

“
Ş

co-
Ş

“
Ť

X ´ co-Ω
`

pX ´AnqnPA
˘

“ Ω
`

pAnqnPA
˘

Definition (Kolmogorov [1928]) R : Ω ÞÑ RΩ

R
`

A,B
˘

“

´

Aăω,
 

M | ε PM ^ @s PM. tn | sˆn PMu P B
(

¯

Intuition:
‚ play ω-iterated game for

`

A,B
˘

‚ M combines original strategies
P B
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R-sets (finite levels)

Ť Şco-

co-R
`
Ť

˘

R
`
Ť

˘

R

co-co-A “ “ A

`

co-R
˘2`Ť˘

R
`

co-R
˘`

Ť
˘

R

co-

...
...

Π1
1 ø ù Σ1

1

Σ1
1-IND ø ù co-Σ1

1-IND

Theorem (Kolmogorov [1928], Luzin, Sierpiński [1918])
If Ω preserves measurability then co-Ω and RΩ preserve measurability.

Corollary
All R-sets are universally measurable.
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Few examples. . .

Theorem (Saint Raymond [2006])
The set of cofinal trees is complete for

`

co-R
˘2`Ť˘

pΠ0
1q (=Σ1

1-IND)

cofinal “
 

t Ď ωăω | @α P ωω Dβ P ωω @n. αpnq ď βpnq ^ βæn P tu

βα
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Correspondence between R-sets and Wi,k

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set Wk´1,2k´1 is Wadge-complete for pco-Rqkp
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Corollary
Every regular set of trees is universally measurable.

Corollary
Every regular set of trees has Baire property.

(both can be proved using forcing and absolutely ∆1
2 sets)

(Fenstand, Normann [1974])
Corollary

For every Borel measure µ, the rank on Wi,k is continuous w.r.t. µ.

...

Also: correspondence between parity games and R-transform
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Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given ϕ and pi, kq, decide if tt | t |ù ϕu has index pi, kq?

ù open Partial results by (Facchini, Murlak, S. [2013]),
(Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Conjecture
Every disjoint pair of regular sets of index pi, kq

can be separated by a set of index both pi, kq and pi` 1, k ` 1q
iff

k is even.
Proved for pi, kq “ p1, 2q (Rabin [1970])
Proved for pi, kq “ p0, 1q (Michalewski, Hummel, Niwiński [2009])
Proved for all odd k (Arnold, Michalewski, Niwiński [2012])
ù open for even k (except p1, 2))
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Wadge hierarchy of regular sets

Conjecture
The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.
Theorem (Murlak [2006])

The Wadge hierarchy of deterministic regular sets has length ωω¨3`3.
The level of a given deterministic regular set can be computed.

Theorem (Duparc, Murlak [2007])
The Wadge hierarchy of weakly definable sets has length at least ε0.

Conjecture
If a regular set is Σ1

1 and not Borel then it is Σ1
1-complete.
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Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index p0, 1q and p1, 2q then it is Borel.

Conjecture
If a regular set if Borel then it has index p0, 1q and p1, 2q.

ù open Partial results by (Niwiński, Walukiewicz [2003]), . . .

Example
Let LUB “ tt | there is a unique branch of t with infinitely many au

LUB is Π1
1-complete and regular but LUB does not have index p0, 1q.

Question
Does Borel rank match weak quantifier alternation

for weakly definable sets?
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Uniformisation and choice over trees

Question (Rabin)
Does every mso-def. relation admit an mso-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is no mso-def. choice function over trees.

(no mso-def. uniformisation for the formula ϕpx,Xq :“ x P X)

Conjecture
There is no mso-def. choice function for scattered sets X.

X can be covered by
countably many branches

ù applications to unambiguous automata
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Summary

‚ Regular sets of trees — effectively representable sets in ∆1
2

‚ Index hierarchy — complexity measure à la quantifier-alternation

‚ Game tree sets Wi,k — complete sets for the hierarchy of R-sets

‚ Connection between parity games and R-transform of Kolmogorov

‚ Many hierarchy-type questions for regular sets

‚ Decidability questions

‚ Synergy between descriptive set theory and automata theory
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