An automata-theoretic hierarchy inside $\boldsymbol{\Delta}_{2}^{1}$

Michał Skrzypczak

replacing Damian Niwiński

SSLPS annual meeting 2015
Lausanne

Decidable theories

Decidable theories

Theorem (Presburger [1929])
The Fo theory of addition $(\mathbb{N},+)$ is decidable.

Decidable theories

Theorem (Presburger [1929])
The FO theory of addition $(\mathbb{N},+)$ is decidable.
Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943])
The FO theory of arithmetic $(\mathbb{N},+, \cdot)$ is undecidable.

Decidable theories

Theorem (Presburger [1929])
The FO theory of addition $(\mathbb{N},+)$ is decidable.
Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943])
The FO theory of arithmetic $(\mathbb{N},+, \cdot)$ is undecidable.

Theorem (Tarski [1951])
The FO theory of reals $(\mathbb{R},+, \cdot)$ is decidable.

Decidable theories

Theorem (Presburger [1929])
The FO theory of addition $(\mathbb{N},+)$ is decidable.
Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943])
The FO theory of arithmetic $(\mathbb{N},+, \cdot)$ is undecidable.

Theorem (Tarski [1951])
The FO theory of reals $(\mathbb{R},+, \cdot)$ is decidable.

Theorem (Büchi [1960])
The MSO theory of one successor $(\mathbb{N},+1)$ is decidable.

Decidable theories

Theorem (Presburger [1929])
The Fo theory of addition $(\mathbb{N},+)$ is decidable.
Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943])
The FO theory of arithmetic $(\mathbb{N},+, \cdot)$ is undecidable.

Theorem (Tarski [1951])
The FO theory of reals $(\mathbb{R},+, \cdot)$ is decidable.

Theorem (Büchi [1960])
The MSO theory of one successor $(\mathbb{N},+1)$ is decidable.

Theorem (Rabin [1969])
The mSo theory of two successors $\left(\{0,1\}^{<\omega},{ }^{\wedge} 0,{ }^{\wedge} 1\right)$ is decidable.

Rabin's decidability of S2S

Rabin's decidability of S2S

Structures:

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$)

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:
Two successors: $s_{0}\left(u, u^{\wedge} 0\right), s_{1}\left(u, u^{\wedge} 1\right)$; Predicates $a(u)$ for $a \in A$

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:
Two successors: $s_{0}\left(u, u^{\wedge} 0\right), s_{1}\left(u, u^{\wedge} 1\right)$; Predicates $a(u)$ for $a \in A$ (also definable: prefix order \leq, lexicographic order $\leqslant_{\text {lex }}$, root ϵ, \ldots)

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$)
Logic:
Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:
Two successors: $s_{0}\left(u, u^{\wedge} 0\right), s_{1}\left(u, u^{\wedge} 1\right)$; Predicates $a(u)$ for $a \in A$ (also definable: prefix order \leq, lexicographic order $\leqslant_{\text {lex }}$, root ϵ, \ldots)

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$)
Logic:
Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:
Two successors: $s_{0}\left(u, u^{\wedge} 0\right), s_{1}\left(u, u^{\wedge} 1\right)$; Predicates $a(u)$ for $a \in A$ (also definable: prefix order \leq, lexicographic order $\leqslant_{\text {lex }}$, root ϵ, \ldots)

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.
"Mother of all decidability results"

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$)
Logic:
Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:
Two successors: $s_{0}\left(u, u^{\wedge} 0\right), s_{1}\left(u, u^{\wedge} 1\right)$; Predicates $a(u)$ for $a \in A$ (also definable: prefix order \leq, lexicographic order $\leqslant_{\text {lex }}$, root ϵ, \ldots)

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.
"Mother of all decidability results"
\leadsto applications in verification, model-checking, synthesis, ...

Rabin's decidability of S2S

Structures:
A-labelled binary trees $t:\{0,1\}^{<\omega} \rightarrow A \quad$ (the universe is $\{0,1\}^{<\omega}$)
Logic:
Monadic Second-Order (MSO) logic: $\exists X, \exists x, \vee, \neg$
Vocabulary:
Two successors: $s_{0}\left(u, u^{\wedge} 0\right), s_{1}\left(u, u^{\wedge} 1\right)$; Predicates $a(u)$ for $a \in A$ (also definable: prefix order \leq, lexicographic order $\leqslant_{\text {lex }}$, root ϵ, \ldots)

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.
"Mother of all decidability results"
\leadsto applications in verification, model-checking, synthesis, ...
MSO subsumes LTL, CTL*, μ-calculus, ...

Rabin's decidability of S2S - consequences

Rabin's decidability of S2S - consequences

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Rabin's decidability of S2S - consequences

Theorem (Rabin [1969])
The MSO theory of the A-labelled trees is decidable.
Corollary
The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Rabin's decidability of S2S - consequences

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma_{2}^{0}\left(2^{\omega}\right), \subseteq, A \mapsto \bar{A}\right)$ is decidable.

Rabin's decidability of S2S - consequences

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma_{2}^{0}\left(2^{\omega}\right), \subseteq, A \mapsto \bar{A}\right)$ is decidable.

Corollary

The fo theory of $\left(\mathrm{P}\left(A^{*}\right), \subseteq, \ldots\right)$ is decidable.

Rabin's decidability of S2S - consequences

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma_{2}^{0}\left(2^{\omega}\right), \subseteq, A \mapsto \bar{A}\right)$ is decidable.

Corollary

The fo theory of $\left(\mathrm{P}\left(A^{*}\right), \subseteq, \ldots\right)$ is decidable.

Corollary

The FO theory of (\mathbb{N}, \cdot) is decidable.

Rabin's decidability of S2S - consequences

Theorem (Rabin [1969])
The mso theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma_{2}^{0}\left(2^{\omega}\right), \subseteq, A \mapsto \bar{A}\right)$ is decidable.

Corollary

The fo theory of $\left(\mathrm{P}\left(A^{*}\right), \subseteq, \ldots\right)$ is decidable.

Corollary

The FO theory of (\mathbb{N}, \cdot) is decidable.

Monadic Second-Order logic over trees

Monadic Second-Order logic over trees

Example:

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.
Proof

1. $\varphi:=\exists X . \exists x \in X \wedge$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

1. $\varphi:=\exists X . \exists x \in X \wedge$
$-X$ is non-empty

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

1. $\varphi:=\exists X . \exists x \in X \wedge$
$-X$ is non-empty

$$
\forall x, y \in X .(x \leq y \vee y \leq x) \wedge
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

$$
\text { 1. } \begin{array}{rll}
\varphi:=\exists X . & \exists x \in X \wedge & -X \text { is non-empty } \\
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge & -X \text { is a } \leq \text {-chain }
\end{array}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

$$
\text { 1. } \begin{array}{lll}
\varphi:=\exists X . & \exists x \in X \wedge & -X \text { is non-empty } \\
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge & -X \text { is a } \leq \text {-chain } \\
& \forall x \in X \exists y \in X . x<y \wedge &
\end{array}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

$$
\text { 1. } \begin{array}{rll}
\varphi:=\exists X . & \exists x \in X \wedge & -X \text { is non-em } \\
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge & -X \text { is a } \leq \text {-cha } \\
& \forall x \in X \exists y \in X . x<y \wedge &
\end{array}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

$$
\text { 1. } \begin{array}{rll}
\varphi:=\exists X . & \exists x \in X \wedge & -X \text { is non-em } \\
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge & -X \text { is a } \leq \text {-cha } \\
& \forall x \in X \exists y \in X . x<y \wedge & -X \text { is infinite } \\
& \forall x \in X . a(x) &
\end{array}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

$$
\text { 1. } \begin{array}{rlr}
\varphi:=\exists X . & \exists x \in X \wedge & \\
& \forall X \text { is non-empty } \\
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge & -X \text { is a } \leq \text {-chain } \\
& \forall x \in X \exists y \in X . x<y \wedge & \\
& \forall x \in X . a(x) &
\end{array}
$$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

1. $\varphi:=\exists X . \exists x \in X \wedge$

$$
\begin{aligned}
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge \\
& \forall x \in X \exists y \in X . x<y \wedge \\
& \forall x \in X . a(x)
\end{aligned}
$$

- X is non-empty
- X is a \leq-chain
- X is infinite
- X is a-labelled

2. $L=\{t \mid t \models \varphi\}$

Monadic Second-Order logic over trees

Example:

$$
A=\{a, b\}
$$

$$
L=\{t \mid t \text { has a branch with infinitely many } a\}
$$

Theorem (Niwiński [1985])
L is a non-Borel set of trees definable in MSO.

Proof

1. $\varphi:=\exists X . \exists x \in X \wedge$

$$
\begin{aligned}
& \forall x, y \in X .(x \leq y \vee y \leq x) \wedge \\
& \forall x \in X \exists y \in X . x<y \wedge \\
& \forall x \in X . a(x)
\end{aligned}
$$

$-X$ is non-empty

- X is a \leq-chain
- X is infinite
- X is a-labelled

2. $L=\{t \mid t \models \varphi\}$
3. L is Σ_{1}^{1}-complete

Rabin's theorem proof - automata

Rabin's theorem proof - automata

Acceptance / winning conditions:

Rabin's theorem proof - automata

Acceptance / winning conditions:
—Büchi

Rabin's theorem proof - automata

Acceptance / winning conditions:
—Büchi

- Rabin

Rabin's theorem proof - automata

Acceptance / winning conditions:
— Büchi

- Rabin
- Streett

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

Rabin's theorem proof - automata

Acceptance / winning conditions:
——Büchi

- Rabin
- Streett
- Muller
- parity

Parity index: pair (i, k) with $i \leqslant k$

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

Parity index: pair (i, k) with $i \leqslant k$

$$
L_{i, k}=\left\{\alpha \in\{i, \ldots, k\}^{\omega} \mid \limsup _{n \rightarrow \infty} \alpha(n) \equiv 0(\bmod 2)\right\}
$$

Rabin's theorem proof - automata

Acceptance / winning conditions:
——Büchi

- Rabin
- Streett
- Muller
- parity

Parity index: pair (i, k) with $i \leqslant k$

$$
L_{i, k}=\left\{\alpha \in\{i, \ldots, k\}^{\omega} \mid \limsup _{n \rightarrow \infty} \alpha(n) \equiv 0(\bmod 2)\right\}
$$

Intuition: numbers $j \in\{i, \ldots, k\}$ are ordered events

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

Parity index: pair (i, k) with $i \leqslant k$

$$
L_{i, k}=\left\{\alpha \in\{i, \ldots, k\}^{\omega} \mid \limsup _{n \rightarrow \infty} \alpha(n) \equiv 0(\bmod 2)\right\}
$$

Intuition: numbers $j \in\{i, \ldots, k\}$ are ordered events

- odd event is bad

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

Parity index: pair (i, k) with $i \leqslant k$

$$
L_{i, k}=\left\{\alpha \in\{i, \ldots, k\}^{\omega} \mid \limsup _{n \rightarrow \infty} \alpha(n) \equiv 0(\bmod 2)\right\}
$$

Intuition: numbers $j \in\{i, \ldots, k\}$ are ordered events

- odd event is bad
- even event is good

Rabin's theorem proof - automata

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

Parity index: pair (i, k) with $i \leqslant k$

$$
L_{i, k}=\left\{\alpha \in\{i, \ldots, k\}^{\omega} \mid \limsup _{n \rightarrow \infty} \alpha(n) \equiv 0(\bmod 2)\right\}
$$

Intuition: numbers $j \in\{i, \ldots, k\}$ are ordered events

- odd event is bad
- even event is good

Modern proof - parity tree automata

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$
— labelled by (P, j)

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$
— labelled by (P, j)
$P \in\{\mathrm{I}, \mathrm{II}\}$ is a player

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$
— labelled by (P, j)
$P \in\{\mathrm{I}, \mathrm{II}\}$ is a player
$j \in\{i, \ldots, k\}$ is a priority

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$
- labelled by (P, j)
$P \in\{\mathrm{I}, \mathrm{II}\}$ is a player
$j \in\{i, \ldots, k\}$ is a priority

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$
- labelled by (P, j)
$P \in\{\mathrm{I}, \mathrm{II}\}$ is a player
$j \in\{i, \ldots, k\}$ is a priority
- Player I wins a play crossing $\left(P_{0}, j_{0}\right),\left(P_{1}, j_{1}\right),\left(P_{2}, j_{2}\right), \ldots$ if

Modern proof - parity tree automata

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}
2. \mathcal{A} is a parity automaton of index (i, k)
3. For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
4. $t=\varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
5. it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

- positions $u \in\{0,1\}^{<\omega}$
- labelled by (P, j)
$P \in\{\mathrm{I}, \mathrm{II}\}$ is a player
$j \in\{i, \ldots, k\}$ is a priority
- Player I wins a play crossing $\left(P_{0}, j_{0}\right),\left(P_{1}, j_{1}\right),\left(P_{2}, j_{2}\right), \ldots$ if

$$
\left(j_{0}, j_{1}, \ldots\right) \in L_{i, k} \quad \text { i.e. } \quad \lim \sup _{n \rightarrow \infty} j_{n} \equiv 0(\bmod 2)
$$

Index hierarchy

Index hierarchy

From the proof:

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

$$
t \models \varphi \quad \Longleftrightarrow \quad \text { Player I wins } G_{\mathcal{A}}(t)
$$

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

$$
t \models \varphi \quad \Longleftrightarrow \quad \text { Player I wins } G_{\mathcal{A}}(t)
$$

(also the opposite - for every \mathcal{A} there effectively exists φ as above)

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

$$
t \models \varphi \quad \Longleftrightarrow \quad \text { Player I wins } G_{\mathcal{A}}(t)
$$

(also the opposite - for every \mathcal{A} there effectively exists φ as above) Definition

A set of trees L is regular if $L=\{t \mid t \models \varphi\}$ for some φ.

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

$$
t \models \varphi \quad \Longleftrightarrow \quad \text { Player I wins } G_{\mathcal{A}}(t)
$$

(also the opposite - for every \mathcal{A} there effectively exists φ as above) Definition

A set of trees L is regular if $L=\{t \mid t \models \varphi\}$ for some φ.
(equivalently if $L=\left\{t \mid\right.$ Player I wins $\left.G_{\mathcal{A}}(t)\right\}$ for some \mathcal{A})

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

$$
t \models \varphi \quad \Longleftrightarrow \quad \text { Player I wins } G_{\mathcal{A}}(t)
$$

(also the opposite - for every \mathcal{A} there effectively exists φ as above)
Definition
A set of trees L is regular if $L=\{t \mid t \models \varphi\}$ for some φ.

$$
\text { (equivalently if } L=\left\{t \mid \text { Player I wins } G_{\mathcal{A}}(t)\right\} \text { for some } \mathcal{A} \text {) }
$$

Definition

A regular set L has index (i, k) if for some alternating (i, k)-parity automaton

$$
L=\left\{t \mid \text { Player I wins } G_{\mathcal{A}}(t)\right\}
$$

Index hierarchy

From the proof:
for every φ there effectively exists a parity automaton \mathcal{A} s.t.

$$
t \models \varphi \quad \Longleftrightarrow \quad \text { Player I wins } G_{\mathcal{A}}(t)
$$

(also the opposite - for every \mathcal{A} there effectively exists φ as above)
Definition
A set of trees L is regular if $L=\{t \mid t \models \varphi\}$ for some φ.

$$
\text { (equivalently if } L=\left\{t \mid \text { Player I wins } G_{\mathcal{A}}(t)\right\} \text { for some } \mathcal{A} \text {) }
$$

Definition

A regular set L has index (i, k) if for some alternating (i, k)-parity automaton

$$
L=\left\{t \mid \text { Player I wins } G_{\mathcal{A}}(t)\right\}
$$

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).

Index hierarchy

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact $\quad L$ has index $(i, k) \quad$ iff $\quad L^{\mathrm{c}}$ has index $(i+1, k+1)$

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact
L has index $(i, k) \quad$ iff $\quad L^{\mathrm{c}}$ has index $(i+1, k+1)$
L has index $(i, k) \quad$ iff $\quad L$ has index $(i+2, k+2)$

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact
L has index $(i, k) \quad$ iff $\quad L^{\mathrm{c}}$ has index $(i+1, k+1)$
L has index $(i, k) \quad$ iff $\quad L$ has index $(i+2, k+2)$ Index hierarchy

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact
L has index $(i, k) \quad$ iff $\quad L^{\mathrm{c}}$ has index $(i+1, k+1)$
L has index $(i, k) \quad$ iff $\quad L$ has index $(i+2, k+2)$ Index hierarchy

$$
\begin{equation*}
(0,3) \tag{1,4}
\end{equation*}
$$

$(1,3)$
$(0,1)$

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact
L has index $(i, k) \quad$ iff $\quad L^{\mathrm{c}}$ has index $(i+1, k+1)$
L has index $(i, k) \quad$ iff $\quad L$ has index $(i+2, k+2)$ Index hierarchy
$(0,3)$
$(1,3)$
$(0,2)$
universal fragment $\leadsto \sim(0,1)$
$(1,2) \quad \leadsto$ existential fragment

Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact
L has index $(i, k) \quad$ iff $\quad L^{\mathrm{c}}$ has index $(i+1, k+1)$
L has index $(i, k) \quad$ iff $\quad L$ has index $(i+2, k+2)$ Index hierarchy

$$
\begin{equation*}
(0,3) \tag{1,4}
\end{equation*}
$$

$(1,3)$
universal fragment $« \sim(0,1)$
$(1,2) \quad \leadsto$ existential fragment
Index hierarchy is the alternation-depth hierarchy for μ-calculus

Game trees

Game trees

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree
Let $W_{i, k}=\{t \mid$ Player I wins over $t\}$

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree
Let $W_{i, k}=\{t \mid$ Player I wins over $t\}$
(Arnold [1999], Walukiewicz)

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree
Let $W_{i, k}=\{t \mid$ Player I wins over $t\}$
(Arnold [1999], Walukiewicz)

- $W_{i, k}$ is regular

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree
Let $W_{i, k}=\{t \mid$ Player I wins over $t\}$
(Arnold [1999], Walukiewicz)

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree
Let $W_{i, k}=\{t \mid$ Player I wins over $t\}$
(Arnold [1999], Walukiewicz)

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)
- $t \mapsto G_{\mathcal{A}}(t)$ is continuous

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
$G_{\mathcal{A}}(t)$ is just an $A_{i, k}$-labelled tree
Let $W_{i, k}=\{t \mid$ Player I wins over $t\}$
(Arnold [1999], Walukiewicz)

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)
- $t \mapsto G_{\mathcal{A}}(t)$ is continuous

$$
t \models \varphi \quad \text { iff } \quad G_{\mathcal{A}}(t) \in W_{i, k}
$$

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)
- $t \mapsto G_{\mathcal{A}}(t)$ is continuous

$$
t \models \varphi \quad \text { iff } \quad G_{\mathcal{A}}(t) \in W_{i, k}
$$

- $W_{i, k}$ is Wadge-complete for all regular sets of index (i, k)

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
(II,

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)
- $t \mapsto G_{\mathcal{A}}(t)$ is continuous

$$
t \models \varphi \quad \text { iff } \quad G_{\mathcal{A}}(t) \in W_{i, k}
$$

- $W_{i, k}$ is Wadge-complete for all regular sets of index (i, k)

Theorem (Arnold, Niwiński [2006])
$W_{i, k}$ does not Wadge-reduce to $W_{i+1, k+1}$.

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
(II,

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)
- $t \mapsto G_{\mathcal{A}}(t)$ is continuous

$$
t \models \varphi \quad \text { iff } \quad G_{\mathcal{A}}(t) \in W_{i, k}
$$

- $W_{i, k}$ is Wadge-complete for all regular sets of index (i, k)

Theorem (Arnold, Niwiński [2006])
$W_{i, k}$ does not Wadge-reduce to $W_{i+1, k+1}$.
Proof: Banach's fix-point theorem.

Game trees

Let $A_{i, k}=\{\mathrm{I}, \mathrm{II}\} \times\{i, \ldots, k\}$
(II,

- $W_{i, k}$ is regular
- $W_{i, k}$ has index (i, k)
- $t \mapsto G_{\mathcal{A}}(t)$ is continuous

$$
t \models \varphi \quad \text { iff } \quad G_{\mathcal{A}}(t) \in W_{i, k}
$$

- $W_{i, k}$ is Wadge-complete for all regular sets of index (i, k)

Theorem (Arnold, Niwiński [2006])
$W_{i, k}$ does not Wadge-reduce to $W_{i+1, k+1}$.
Proof: Banach's fix-point theorem. $m \leadsto$ strictness of the index hierarchy

Descriptive complexity of regular sets

Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_{2}^{1}.

Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_{2}^{1}.

Fact

The sets $W_{i, k}$ form a Wadge hierarchy of length ω.

Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_{2}^{1}.
Fact
The sets $W_{i, k}$ form a Wadge hierarchy of length ω.
Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015]) Regular sets can be obtained by the game quantifier 5 applied to the difference hierarchy over $\boldsymbol{\Pi}_{2}^{0}$.

Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is $\boldsymbol{\Delta}_{2}^{1}$.

Fact

The sets $W_{i, k}$ form a Wadge hierarchy of length ω.
Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015]) Regular sets can be obtained by the game quantifier 5 applied to the difference hierarchy over $\boldsymbol{\Pi}_{2}^{0}$.

Question (Mio [2012])
Is every regular set universally measurable?

Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_{2}^{1}.

Fact

The sets $W_{i, k}$ form a Wadge hierarchy of length ω.
Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015]) Regular sets can be obtained by the game quantifier 5 applied to the difference hierarchy over $\boldsymbol{\Pi}_{2}^{0}$.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on $W_{i, k}$ continuous w.r.t. every Borel measure?
Δ_{2}^{1} - a frontier of well-behaved sets
Δ_{2}^{1} - a frontier of well-behaved sets

Δ_{2}^{1} - a frontier of well-behaved sets

Δ_{2}^{1} - a frontier of well-behaved sets
perfect set property for $\boldsymbol{\Sigma}_{1}^{1}$

Δ_{2}^{1} - a frontier of well-behaved sets
perfect set property for $\boldsymbol{\Sigma}_{1}^{1}$

determinacy for Δ_{1}^{1}
universal measurability for?
Δ_{2}^{1} - a frontier of well-behaved sets
perfect set property for $\boldsymbol{\Sigma}_{1}^{1}$

\leadsto search for constructive representations of sets in $\boldsymbol{\Delta}_{2}^{1}$

Souslin operation \mathcal{A}

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega<\omega}\right)=\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega \cdot x \in A_{\pi \upharpoonright_{n}}\right\}
$$

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\begin{aligned}
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega}<\omega\right) & =\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega \cdot x \in A_{\pi \upharpoonright_{n}}\right\} \\
& =\bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_{n}}
\end{aligned}
$$

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\begin{aligned}
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega}<\omega\right) & =\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega \cdot x \in A_{\pi \upharpoonright_{n}}\right\} \\
& =\bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_{n}}
\end{aligned}
$$

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\begin{aligned}
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega}<\omega\right) & =\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega \cdot x \in A_{\pi \upharpoonright_{n}}\right\} \\
& =\bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_{n}}
\end{aligned}
$$

Theorem (Souslin [1916])
A is $\boldsymbol{\Sigma}_{1}^{1} \quad$ iff $\quad A=\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega<\omega}\right) \quad$ for some $\quad\left(A_{s}\right)_{s \in \omega<\omega} \subseteq \boldsymbol{\Pi}_{1}^{0}$

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega<\omega}\right) & =\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega . x \in A_{\pi \upharpoonright_{n}}\right\} \\
& =\bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_{n}}
\end{aligned} \\
& \text { Theorem (Souslin [1916]) }
\end{aligned}
$$

A is $\boldsymbol{\Sigma}_{1}^{1} \quad$ iff $\quad A=\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega<\omega}\right) \quad$ for some $\quad\left(A_{s}\right)_{s \in \omega<\omega} \subseteq \boldsymbol{\Pi}_{1}^{0}$

$$
\left(\text { i.e. } \boldsymbol{\Sigma}_{1}^{1}=\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{0}\right)\right)
$$

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega<\omega}\right) & =\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega . x \in A_{\pi \upharpoonright_{n}}\right\} \\
& =\bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_{n}}
\end{aligned} \\
& \text { Theorem (Souslin [1916]) }
\end{aligned}
$$

A is $\Sigma_{1}^{1} \quad$ iff $\quad A=\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega}<\omega\right) \quad$ for some $\quad\left(A_{s}\right)_{s \in \omega<\omega} \subseteq \Pi_{1}^{0}$
Theorem (Souslin [1917])
$\left(\right.$ i.e. $\left.\boldsymbol{\Sigma}_{1}^{1}=\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{0}\right)\right)$
Every $\boldsymbol{\Sigma}_{1}^{1}$ set has perfect set property.

Souslin operation \mathcal{A}

Idea: generate $\boldsymbol{\Sigma}_{1}^{1}$ sets from $\boldsymbol{\Pi}_{1}^{0}$ sets using an operation \mathcal{A}

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega}<\omega\right) & =\left\{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega \cdot x \in A_{\pi \upharpoonright_{n}}\right\} \\
& =\bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_{n}}
\end{aligned} \\
& \text { Theorem (Souslin [1916]) }
\end{aligned}
$$

A is $\Sigma_{1}^{1} \quad$ iff $\quad A=\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega}<\omega\right) \quad$ for some $\quad\left(A_{s}\right)_{s \in \omega<\omega} \subseteq \Pi_{1}^{0}$
Theorem (Souslin [1917])
(i.e. $\left.\boldsymbol{\Sigma}_{1}^{1}=\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{0}\right)\right)$

Every $\boldsymbol{\Sigma}_{1}^{1}$ set has perfect set property.
Theorem (Luzin, Sierpiński [1918])
Every $\boldsymbol{\Sigma}_{1}^{1}$ set is universally measurable.

Beyond Σ_{1}^{1}

Beyond Σ_{1}^{1}

- Σ_{1}^{1}-inductive sets (Moschovakis 1974)

Beyond Σ_{1}^{1}

- $\boldsymbol{\Sigma}_{1}^{1}$-inductive sets (Moschovakis 1974)
- \mathcal{C}-operation (Selivanovski [1928])

Beyond Σ_{1}^{1}

- Σ_{1}^{1}-inductive sets (Moschovakis 1974)
- \mathcal{C}-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])

Beyond Σ_{1}^{1}

- Σ_{1}^{1}-inductive sets (Moschovakis 1974)
- \mathcal{C}-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- \mathcal{R}-transform (Kolmogorov [1928])

Beyond Σ_{1}^{1}

- Σ_{1}^{1}-inductive sets (Moschovakis 1974)
- \mathcal{C}-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- \mathcal{R}-transform (Kolmogorov [1928])
- game quantifier \supset (Moschovakis [1971])

Beyond Σ_{1}^{1}

- Σ_{1}^{1}-inductive sets (Moschovakis 1974)
- \mathcal{C}-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- \mathcal{R}-transform (Kolmogorov [1928])
- game quantifier \supset (Moschovakis [1971])

Beyond Σ_{1}^{1}

- Σ_{1}^{1}-inductive sets (Moschovakis 1974)
- \mathcal{C}-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- \mathcal{R}-transform (Kolmogorov [1928])
- game quantifier 5 (Moschovakis [1971])

Positive analytic operations

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A})$

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X)
$$

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$
2. Player II chooses $n \in N \quad$ (a play consistent with N)

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$
2. Player II chooses $n \in N \quad$ (a play consistent with N)
3. we verify that $x \in A_{n}$

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$
2. Player II chooses $n \in N \quad$ (a play consistent with N)
3. we verify that $x \in A_{n}$

Typically:

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$
2. Player II chooses $n \in N \quad$ (a play consistent with N)
3. we verify that $x \in A_{n}$

Typically:

- sets A_{n} are simple (e.g. clopen)

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$
2. Player II chooses $n \in N \quad$ (a play consistent with N)
3. we verify that $x \in A_{n}$

Typically:

- sets A_{n} are simple (e.g. clopen)
- the complexity lies in \mathbb{B}

Positive analytic operations

$\Omega=(\mathbb{A}, \mathbb{B})$ with:

- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathrm{P}(\mathbb{A}) \quad$ (elements $N \in \mathbb{B}$ are called strategies)

$$
\begin{gathered}
\Omega: \mathrm{P}(X)^{\mathbb{A}} \rightarrow \mathrm{P}(X) \\
\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}
\end{gathered}
$$

To prove that $x \in \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$:

1. Player I chooses a strategy $N \in \mathbb{B}$
2. Player II chooses $n \in N \quad$ (a play consistent with N)
3. we verify that $x \in A_{n}$

Typically:

- sets A_{n} are simple (e.g. clopen) - the complexity lies in \mathbb{B}

Caution: $\forall A \subseteq X \exists \Omega \exists\left(A_{s}\right)_{s \in \mathbb{A}} . \quad\left(A_{s}\right)_{s} \subseteq \Pi_{1}^{0} \wedge \Omega\left(\left(A_{s}\right)_{s \in \mathbb{A}}\right)=A$

Positive analytic operations

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\bigcup=(\omega,\{\{n\} \mid n \in \omega\})
$$

Positive analytic operations

$$
\begin{array}{r}
\text { for } \Omega=(\mathbb{A}, \mathbb{B}) \quad \text { define } \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n} \\
\bigcup=(\omega,\{\{n\} \mid n \in \omega\}) \quad \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigcap_{n \in\{n\}} A_{n}
\end{array}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
U=(\omega,\{\{n\} \mid n \in \omega\}) \quad \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigcap_{\nsim \in\{n)} A_{n}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \quad & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigodot_{\notin \in\{n\}} A_{n} \\
\bigcup\left(\boldsymbol{\Pi}_{\eta}^{0}\right)=\boldsymbol{\Sigma}_{\eta+1}^{0}
\end{array}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\bigcup=(\omega,\{\{n\} \mid n \in \omega\}) \quad \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigodot_{\nsim \in\{n\}} A_{n}
$$

$\bigcap=(\omega,\{\omega\})$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\bigcup=(\omega,\{\{n\} \mid n \in \omega\}) & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigcap_{p \in\{n\}} A_{n} \\
& \bigcup\left(\boldsymbol{\Pi}_{\eta}^{0}\right)=\boldsymbol{\Sigma}_{\eta+1}^{0} \\
\bigcap=(\omega,\{\omega\}) & \bigcap\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{\omega\}} \bigcap_{n \in \omega} A_{n}
\end{array}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \quad & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigodot_{\nsim \in\{n\}} A_{n}
\end{array}
$$

$\bigcap=(\omega,\{\omega\})$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \quad & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigodot_{\nmid \in\{n\}} A_{n}
\end{array}
$$

$\bigcap=(\omega,\{\omega\})$

$$
\begin{aligned}
& \bigcap\left(\left(A_{n}\right)_{n \in \omega}\right)=\nprec \bigcap_{n \in \omega} A_{n} \\
& \cap\left(\boldsymbol{\Sigma}_{n}^{0}\right)=\boldsymbol{\Pi}_{n+1}^{0}
\end{aligned}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \quad & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigodot_{p \in\{n\}} A_{n} \\
\bigcup\left(\boldsymbol{\Pi}_{\eta}^{0}\right)=\boldsymbol{\Sigma}_{\eta+1}^{0}
\end{array}
$$

$\bigcap=(\omega,\{\omega\})$

$$
\begin{aligned}
& \bigcap\left(\left(A_{n}\right)_{n \in \omega}\right)=\varliminf_{\not \omega \chi} \bigcap_{n \in \omega} A_{n} \\
& \bigcap\left(\boldsymbol{\Sigma}_{\eta}^{0}\right)=\boldsymbol{\Pi}_{\eta+1}^{0}
\end{aligned}
$$

$\mathcal{A}=\left(\omega^{<\omega},\{\pi \mid \pi\right.$ is an infinite branch $\left.\}\right)$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\bigcup=(\omega,\{\{n\} \mid n \in \omega\}) & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} A_{\nsim \in\{n\}} \\
& \bigcup\left(\boldsymbol{\Pi}_{\eta}^{0}\right)=\boldsymbol{\Sigma}_{\eta+1}^{0} \\
\bigcap=(\omega,\{\omega\}) & \bigcap\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcap_{n \in \omega} A_{n} \\
& \bigcap\left(\boldsymbol{\Sigma}_{\eta}^{0}\right)=\boldsymbol{\Pi}_{\eta+1}^{0}
\end{array}
$$

$\mathcal{A}=\left(\omega^{<\omega},\{\pi \mid \pi\right.$ is an infinite branch $\left.\}\right)$

$$
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega^{<\omega}}\right)=\bigcup_{\pi} \bigcap_{s \in \pi} A_{s}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\bigcup=(\omega,\{\{n\} \mid n \in \omega\}) & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} A_{n} \\
& \bigcup\left(\boldsymbol{\Pi}_{\eta}^{0}\right)=\boldsymbol{\Sigma}_{\eta+1}^{0} \\
\bigcap=(\omega,\{\omega\}) & \bigcap\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcap_{n \in \omega} A_{n} \\
& \cap\left(\boldsymbol{\Sigma}_{\eta}^{0}\right)=\boldsymbol{\Pi}_{\eta+1}^{0}
\end{array}
$$

$\mathcal{A}=\left(\omega^{<\omega},\{\pi \mid \pi\right.$ is an infinite branch $\left.\}\right)$

$$
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega<\omega}\right)=\bigcup_{\pi} \bigcap_{s \in \pi} A_{s}
$$

Positive analytic operations

for $\quad \Omega=(\mathbb{A}, \mathbb{B}) \quad$ define $\quad \Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)=\bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_{n}$

$$
\begin{array}{ll}
\bigcup=(\omega,\{\{n\} \mid n \in \omega\}) & \bigcup\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcup_{\{n\}} \bigcap_{\nsim \in\{n\}} A_{n} \\
& \bigcup\left(\boldsymbol{\Pi}_{\eta}^{0}\right)=\boldsymbol{\Sigma}_{\eta+1}^{0} \\
\cap=(\omega,\{\omega\}) & \bigcap\left(\left(A_{n}\right)_{n \in \omega}\right)=\bigcap_{n \in \omega} A_{n}
\end{array}
$$

$\mathcal{A}=\left(\omega^{<\omega},\{\pi \mid \pi\right.$ is an infinite branch $\left.\}\right)$
$\mathcal{A}\left(\boldsymbol{\Pi}_{1}^{0}\right)=\boldsymbol{\Sigma}_{1}^{1}$

$$
\mathcal{A}\left(\left(A_{s}\right)_{s \in \omega^{<\omega}}\right)=\bigcup_{\pi} \bigcap_{s \in \pi} A_{s}
$$

Transforms

Transforms

Idea: generate more complicated operations from easier ones

Transforms

Idea: generate more complicated operations from easier ones co : $\Omega \mapsto \mathrm{co}-\Omega$

Transforms

Idea: generate more complicated operations from easier ones

$$
\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co-}(\mathbb{A}, \mathbb{B})=(\mathbb{A},\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\})
$$

Transforms

Idea: generate more complicated operations from easier ones

$$
\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co}-(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\})}_{\text {counter-strategies }}
$$

Transforms

Idea: generate more complicated operations from easier ones

$$
\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co-}(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\})}_{\text {counter-strategies }}
$$

$\operatorname{co}-\bigcup=\bigcap$

Transforms

Idea: generate more complicated operations from easier ones

$$
\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co-}(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})
$$

$$
\operatorname{co}-\bigcup=\bigcap \quad \operatorname{co}-\bigcap=\bigcup
$$

Transforms

Idea: generate more complicated operations from easier ones

$$
\begin{aligned}
& \operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co-}(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} \cdot N \cap M \neq \varnothing\}}_{\text {counter-strategies }}) \\
& \operatorname{co-} \bigcup=\bigcap \quad \operatorname{co-} \bigcap=\bigcup \quad X-\operatorname{co-} \Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)
\end{aligned}
$$

Transforms

Idea: generate more complicated operations from easier ones

$$
\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co}-(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})
$$

$$
\operatorname{co-} \cup=\bigcap \quad \operatorname{co}-\bigcap=\bigcup \quad X-\operatorname{co}-\Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)
$$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R} \Omega$

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Transforms

Idea: generate more complicated operations from easier ones
$\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co}-(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})$
$\operatorname{co-} \bigcup=\bigcap \quad \operatorname{co}-\bigcap=\bigcup \quad X-\operatorname{co-} \Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$
Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R} \Omega$

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Intuition:

Transforms

Idea: generate more complicated operations from easier ones $\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co}-(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})$
$\operatorname{co-} \bigcup=\bigcap \quad \operatorname{co-} \bigcap=\bigcup \quad X-\operatorname{co-} \Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$
Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R} \Omega$

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Intuition:

- play ω-iterated game for (\mathbb{A}, \mathbb{B})

Transforms

Idea: generate more complicated operations from easier ones $\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co}-(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})$
$\operatorname{co-} \bigcup=\bigcap \quad \operatorname{co-} \bigcap=\bigcup \quad X-\operatorname{co-} \Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)$
Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R} \Omega$

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Intuition:

- play ω-iterated game for (\mathbb{A}, \mathbb{B})
- M combines original strategies

Transforms

Idea: generate more complicated operations from easier ones $\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co-}(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})$

$$
\operatorname{co-} \bigcup=\bigcap \quad \operatorname{co}-\bigcap=\bigcup \quad X-\operatorname{co-} \Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)
$$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R} \Omega$

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Intuition:

- play ω-iterated game for (\mathbb{A}, \mathbb{B})
- M combines original strategies

Transforms

Idea: generate more complicated operations from easier ones $\operatorname{co}: \Omega \mapsto \operatorname{co-} \Omega \quad \operatorname{co-}(\mathbb{A}, \mathbb{B})=(\mathbb{A}, \underbrace{\{M \mid \forall N \in \mathbb{B} . N \cap M \neq \varnothing\}}_{\text {counter-strategies }})$

$$
\operatorname{co-} \bigcup=\bigcap \quad \operatorname{co}-\bigcap=\bigcup \quad X-\operatorname{co-} \Omega\left(\left(X-A_{n}\right)_{n \in \mathbb{A}}\right)=\Omega\left(\left(A_{n}\right)_{n \in \mathbb{A}}\right)
$$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R} \Omega$

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Intuition:

- play ω-iterated game for (\mathbb{A}, \mathbb{B})
- M combines original strategies

Examples

Examples

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Examples

$$
\mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right)
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \cup=(\omega,\{\{n\} \mid n \in \omega\})
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \cup=(\omega,\{\{n\} \mid n \in \omega\}) \\
& \cap=(\omega,\{\omega\})
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \cup=(\omega,\{\{n\} \mid n \in \omega\}) \\
& \bigcap=(\omega,\{\omega\}) \\
& \mathcal{R}(\cup)=\left(\omega^{<\omega},\left\{M|\epsilon \in M \wedge \forall s \in M \cdot|\left\{n \mid s^{\wedge} n \in M\right\} \mid=1\right\}\right)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \begin{array}{l}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \\
\bigcap=(\omega,\{\omega\}) \\
\\
\mathcal{R}(\cup)=\left(\omega^{<\omega},\left\{M|\epsilon \in M \wedge \forall s \in M \cdot|\left\{n \mid s^{\wedge} n \in M\right\} \mid=1\right\}\right)
\end{array} \\
& \begin{aligned}
\cup & \{M \mid M \text { is a branch }\})
\end{aligned}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \begin{array}{l}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \\
\cap=(\omega,\{\omega\})
\end{array} \\
& \begin{aligned}
\mathcal{R}(\bigcup) & =\left(\omega^{<\omega},\left\{M|\epsilon \in M \wedge \forall s \in M \cdot|\left\{n \mid s^{\wedge} n \in M\right\} \mid=1\right\}\right) \\
& =\left(\omega^{<\omega},\{M \mid M \text { is a branch }\}\right)
\end{aligned}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \begin{array}{l}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \\
\cap=(\omega,\{\omega\})
\end{array} \\
& \begin{aligned}
\mathcal{R}(\cup) & =\left(\omega^{<\omega},\left\{M|\epsilon \in M \wedge \forall s \in M \cdot|\left\{n \mid s^{\wedge} n \in M\right\} \mid=1\right\}\right) \\
& =\left(\omega^{<\omega},\{M \mid M \text { is a branch }\}\right)=\mathcal{A}
\end{aligned}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \begin{array}{l}
\cup=(\omega,\{\{n\} \mid n \in \omega\}) \\
\cap=(\omega,\{\omega\}) \\
\\
\mathcal{R}(\cup)=\left(\omega^{<\omega},\left\{M|\epsilon \in M \wedge \forall s \in M \cdot|\left\{n \mid s^{\wedge} n \in M\right\} \mid=1\right\}\right) \\
\mathcal{R}(\cap)=\left(\omega^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\}=\{\omega\}\right\}\right)
\end{array}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \begin{aligned}
U=(\omega,\{\{n\} \mid n \in \omega\}) \\
\cap=(\omega,\{\omega\})
\end{aligned} \\
& \begin{aligned}
\mathcal{R}(\bigcup) & =\left(\omega^{<\omega},\left\{M\left|\epsilon \in M \wedge \forall s \in M .\left|\left\{n \mid s^{\wedge} n \in M\right\}\right|=1\right\}\right)\right. \\
& =\left(\omega^{<\omega},\{M \mid M \text { is a branch }\}\right)=\mathcal{A} \\
\mathcal{R}(\cap) & =\left(\omega^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M .\left\{n \mid s^{\wedge} n \in M\right\}=\{\omega\}\right\}\right) \\
& =\left(\omega^{<\omega},\left\{\omega^{<\omega}\right\}\right)
\end{aligned}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{R}(\mathbb{A}, \mathbb{B})=\left(\mathbb{A}^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\} \in \mathbb{B}\right\}\right) \\
& \begin{aligned}
U=(\omega,\{\{n\} \mid n \in \omega\}) \\
\cap=(\omega,\{\omega\})
\end{aligned} \\
& \begin{aligned}
\mathcal{R}(\bigcup) & =\left(\omega^{<\omega},\left\{M|\epsilon \in M \wedge \forall s \in M \cdot|\left\{n \mid s^{\wedge} n \in M\right\} \mid=1\right\}\right) \\
& =\left(\omega^{<\omega},\{M \mid M \text { is a branch }\}\right)=\mathcal{A} \\
\mathcal{R}(\bigcap) & =\left(\omega^{<\omega},\left\{M \mid \epsilon \in M \wedge \forall s \in M \cdot\left\{n \mid s^{\wedge} n \in M\right\}=\{\omega\}\right\}\right) \\
& =\left(\omega^{<\omega},\left\{\omega^{<\omega}\right\}\right) \equiv \cap
\end{aligned}
\end{aligned}
$$

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

\mathcal{R}-sets (finite levels)

$$
\begin{aligned}
& \Sigma_{1}^{1} \text {-IND } \leadsto \sim(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \stackrel{\text { co- }}{\leftrightarrows} \mathcal{R}(\operatorname{co}-\mathcal{R})(U) \quad \leadsto \operatorname{co}-\Sigma_{1}^{1} \text {-IND } \\
& \Pi_{1}^{1} « \quad \operatorname{co}-\mathcal{A}=\operatorname{co}-\mathcal{R}(\bigcup) \stackrel{\text { co- }}{\longleftarrow} \mathcal{R}(\bigcup)=\mathcal{A} \quad \leadsto \Sigma_{1}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{R} \text {-sets (finite levels) }
\end{aligned}
$$

Theorem (Kolmogorov [1928], Luzin, Sierpiński [1918])
If Ω preserves measurability then co- Ω and $\mathcal{R} \Omega$ preserve measurability.

$$
\begin{aligned}
& \mathcal{R} \text {-sets (finite levels) }
\end{aligned}
$$

Theorem (Kolmogorov [1928], Luzin, Sierpiński [1918])
If Ω preserves measurability then co- Ω and $\mathcal{R} \Omega$ preserve measurability.

Corollary

All \mathcal{R}-sets are universally measurable.

Few examples. ..

Few examples. ..

Theorem (Saint Raymond [2006])
The set of cofinal trees is complete for $(\operatorname{co-} \mathcal{R})^{2}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)\left(=\boldsymbol{\Sigma}_{1}^{1}\right.$-IND $)$

Few examples. ..

Theorem (Saint Raymond [2006])
The set of cofinal trees is complete for $(\operatorname{co-} \mathcal{R})^{2}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)\left(=\boldsymbol{\Sigma}_{1}^{1}\right.$-IND $)$ cofinal $=\left\{t \subseteq \omega^{<\omega} \mid \forall \alpha \in \omega^{\omega} \exists \beta \in \omega^{\omega} \forall n . \alpha(n) \leqslant \beta(n) \wedge \beta \upharpoonright_{n} \in t\right\}$

Few examples...

Theorem (Saint Raymond [2006])
The set of cofinal trees is complete for $(\operatorname{co-} \mathcal{R})^{2}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)\left(=\boldsymbol{\Sigma}_{1}^{1}\right.$-IND $)$ cofinal $=\left\{t \subseteq \omega^{<\omega} \mid \forall \alpha \in \omega^{\omega} \exists \beta \in \omega^{\omega} \forall n . \alpha(n) \leqslant \beta(n) \wedge \beta \upharpoonright_{n} \in t\right\}$

Few examples. ..

Theorem (Saint Raymond [2006])
The set of cofinal trees is complete for $(\operatorname{co-} \mathcal{R})^{2}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)\left(=\boldsymbol{\Sigma}_{1}^{1}\right.$-IND $)$ cofinal $=\left\{t \subseteq \omega^{<\omega} \mid \forall \alpha \in \omega^{\omega} \exists \beta \in \omega^{\omega} \forall n . \alpha(n) \leqslant \beta(n) \wedge \beta \upharpoonright_{n} \in t\right\}$

Few examples. ..

Theorem (Saint Raymond [2006])
The set of cofinal trees is complete for $(\operatorname{co-} \mathcal{R})^{2}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)\left(=\boldsymbol{\Sigma}_{1}^{1}\right.$-IND $)$ cofinal $=\left\{t \subseteq \omega^{<\omega} \mid \forall \alpha \in \omega^{\omega} \exists \beta \in \omega^{\omega} \forall n . \alpha(n) \leqslant \beta(n) \wedge \beta \upharpoonright_{n} \in t\right\}$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co-} \mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

$$
\begin{aligned}
(\operatorname{co-} \mathcal{R})^{3}(\cup) & \mathcal{R}(\operatorname{co-} \mathcal{R})^{2}(\cup) \\
(\operatorname{co-} \mathcal{R})^{2}(\cup) & \mathcal{R}(\operatorname{co}-\mathcal{R})(\cup) \\
\operatorname{co-\mathcal {R}}(\cup) & \mathcal{R}(\cup)
\end{aligned}
$$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co-} \mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

$$
\begin{aligned}
& (0,3) \subseteq(\operatorname{co-} \mathcal{R})^{3}(\cup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \supseteq(1,4) \\
& (1,3) \subseteq(\operatorname{co-} \mathcal{R})^{2}(\cup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})(\bigcup) \quad \supseteq(0,2) \\
& (0,1) \subseteq \\
& \operatorname{co-} \mathcal{R}(\cup) \quad \mathcal{R}(\cup) \\
& \supseteq(1,2)
\end{aligned}
$$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

$$
\begin{aligned}
& W_{0,3} \in \quad(0,3) \subseteq \quad(\operatorname{co}-\mathcal{R})^{3}(\bigcup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \supseteq(1,4) \quad \ni W_{1,4} \\
& W_{1,3} \in \quad(1,3) \subseteq(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})(\bigcup) \quad \supseteq(0,2) \quad \ni W_{0,2} \\
& W_{0,1} \in \quad(0,1) \subseteq \quad \operatorname{co-} \mathcal{R}(\bigcup) \quad \mathcal{R}(\bigcup) \quad \supseteq(1,2) \quad \ni W_{1,2}
\end{aligned}
$$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

$$
\left.\begin{array}{lllll}
W_{0,3} \in & (0,3) \subseteq & (\operatorname{co-} \mathcal{R})^{3}(\cup) & \mathcal{R}(\operatorname{co}-\mathcal{R})^{2}(U) & \supseteq(1,4)
\end{array} \quad \ni W_{1,4}\right)
$$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

$$
\begin{aligned}
& W_{0,3} \in \quad(0,3) \subseteq \quad(\operatorname{co}-\mathcal{R})^{3}(\bigcup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \supseteq(1,4) \quad \ni W_{1,4} \\
& W_{1,3} \in \quad(1,3) \subseteq(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})(\bigcup) \quad \supseteq(0,2) \quad \ni W_{0,2} \\
& W_{0,1} \in \underbrace{(0,1)}_{\text {boldface hierarchy }} \subseteq \underbrace{\operatorname{co-\mathcal {R}}(\bigcup) \mathcal{R}(\bigcup)} \supseteq \underbrace{(1,2)} \ni W_{1,2}
\end{aligned}
$$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

$$
W_{0,3} \in \quad(0,3) \subseteq \quad(\operatorname{co}-\mathcal{R})^{3}(\bigcup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \supseteq(1,4) \quad \ni W_{1,4}
$$

$$
W_{1,3} \in \quad(1,3) \subseteq \quad(\operatorname{co}-\mathcal{R})^{2}(\bigcup) \quad \mathcal{R}(\operatorname{co}-\mathcal{R})(\bigcup) \quad \supseteq(0,2) \quad \ni W_{0,2}
$$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co-} \mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Corollary

Every regular set of trees is universally measurable.

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.
(both can be proved using forcing and absolutely Δ_{2}^{1} sets)
(Fenstand, Normann [1974])

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

$$
\text { (both can be proved using forcing and absolutely } \Delta_{2}^{1} \text { sets) }
$$

(Fenstand, Normann [1974])

Corollary

For every Borel measure μ, the rank on $W_{i, k}$ is continuous w.r.t. μ.

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

$$
\text { (both can be proved using forcing and absolutely } \Delta_{2}^{1} \text { sets) }
$$

(Fenstand, Normann [1974])

Corollary

For every Borel measure μ, the rank on $W_{i, k}$ is continuous w.r.t. μ.

Correspondence between \mathcal{R}-sets and $W_{i, k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set $W_{k-1,2 k-1}$ is Wadge-complete for $(\operatorname{co}-\mathcal{R})^{k}(\bigcup)\left(\boldsymbol{\Pi}_{1}^{0}\right)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property. (both can be proved using forcing and absolutely Δ_{2}^{1} sets)
(Fenstand, Normann [1974])

Corollary

For every Borel measure μ, the rank on $W_{i, k}$ is continuous w.r.t. μ.

Also: correspondence between parity games and \mathcal{R}-transform

Hierarchy-type problems for regular sets

Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k) ?

Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k) ?
$\leadsto s$ open

Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k) ?
\leadsto open Partial results by (Facchini, Murlak, S. [2013]),
(Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k) ?
\leadsto open Partial results by (Facchini, Murlak, S. [2013]), (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Conjecture

Every disjoint pair of regular sets of index (i, k)
can be separated by a set of index both (i, k) and $(i+1, k+1)$

Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k) ?
\leadsto open Partial results by (Facchini, Murlak, S. [2013]), (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Conjecture

Every disjoint pair of regular sets of index (i, k)
can be separated by a set of index both (i, k) and $(i+1, k+1)$ iff
k is even.

Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k) ?
\leadsto open Partial results by (Facchini, Murlak, S. [2013]),
(Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Conjecture

Every disjoint pair of regular sets of index (i, k)
can be separated by a set of index both (i, k) and $(i+1, k+1)$ iff
k is even.
Proved for $(i, k)=(1,2) \quad($ Rabin [1970] $)$
Proved for $(i, k)=(0,1)$ (Michalewski, Hummel, Niwiński [2009])
Proved for all odd k (Arnold, Michalewski, Niwiński [2012])
\leadsto open for even k (except $(1,2)$)

Wadge hierarchy of regular sets

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Possibly related (Louveau, Saint Raymond [1986]):

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets

$$
\text { can be proved in Second-Order arithmetic. }
$$

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets
can be proved in Second-Order arithmetic.
Theorem (Murlak [2006])
The Wadge hierarchy of deterministic regular sets has length $\omega^{\omega \cdot 3}+3$.

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets
can be proved in Second-Order arithmetic.
Theorem (Murlak [2006])
The Wadge hierarchy of deterministic regular sets has length $\omega^{\omega \cdot 3}+3$.
The level of a given deterministic regular set can be computed.

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets
can be proved in Second-Order arithmetic.
Theorem (Murlak [2006])
The Wadge hierarchy of deterministic regular sets has length $\omega^{\omega \cdot 3}+3$.
The level of a given deterministic regular set can be computed.
Theorem (Duparc, Murlak [2007])
The Wadge hierarchy of weakly definable sets has length at least ϵ_{0}.

Wadge hierarchy of regular sets

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2 .

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets
can be proved in Second-Order arithmetic.
Theorem (Murlak [2006])
The Wadge hierarchy of deterministic regular sets has length $\omega^{\omega \cdot 3}+3$.
The level of a given deterministic regular set can be computed.
Theorem (Duparc, Murlak [2007])
The Wadge hierarchy of weakly definable sets has length at least ϵ_{0}.

Conjecture

If a regular set is $\boldsymbol{\Sigma}_{1}^{1}$ and not Borel then it is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Index vs. topological complexity

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$. \leadsto open

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.
$\leadsto s$ open
Partial results by (Niwiński, Walukiewicz [2003]), ...

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.
\leadsto open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\mathrm{UB}}=\{t \mid$ there is a unique branch of t with infinitely many $a\}$

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.
\leadsto open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\mathrm{UB}}=\{t \mid$ there is a unique branch of t with infinitely many $a\}$
L_{UB} is Π_{1}^{1}-complete and regular

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.
\leadsto open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\mathrm{UB}}=\{t \mid$ there is a unique branch of t with infinitely many $a\}$
L_{UB} is Π_{1}^{1}-complete and regular but L_{UB} does not have index $(0,1)$.

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.
\leadsto open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\mathrm{UB}}=\{t \mid$ there is a unique branch of t with infinitely many $a\}$
L_{UB} is Π_{1}^{1}-complete and regular but L_{UB} does not have index $(0,1)$.

Question

Does Borel rank match weak quantifier alternation

Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index $(0,1)$ and $(1,2)$ then it is Borel.

Conjecture

If a regular set if Borel then it has index $(0,1)$ and $(1,2)$.
\leadsto open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\mathrm{UB}}=\{t \mid$ there is a unique branch of t with infinitely many $a\}$
L_{UB} is Π_{1}^{1}-complete and regular but L_{UB} does not have index $(0,1)$.

Question

Does Borel rank match weak quantifier alternation for weakly definable sets?

Uniformisation and choice over trees

Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is no MSO-def. choice function over trees.

Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is no MSO-def. choice function over trees.
(no MSO-def. uniformisation for the formula $\varphi(x, X):=x \in X$)

Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is no MSO-def. choice function over trees.
(no MSO-def. uniformisation for the formula $\varphi(x, X):=x \in X$)

Conjecture

There is no MSO-def. choice function for scattered sets X.

Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is no MSO-def. choice function over trees.
(no MSO-def. uniformisation for the formula $\varphi(x, X):=x \in X$)

Conjecture

There is no MSO-def. choice function for scattered sets X. X can be covered by countably many branches

Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007])
There is no MSO-def. choice function over trees.
(no MSO-def. uniformisation for the formula $\varphi(x, X):=x \in X$)

Conjecture

There is no MSO-def. choice function for scattered sets X. X can be covered by countably many branches
\leadsto applications to unambiguous automata

Summary

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$
- Index hierarchy - complexity measure à la quantifier-alternation

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$
- Index hierarchy - complexity measure à la quantifier-alternation
- Game tree sets $W_{i, k}$ - complete sets for the hierarchy of \mathcal{R}-sets

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$
- Index hierarchy - complexity measure à la quantifier-alternation
- Game tree sets $W_{i, k}$ - complete sets for the hierarchy of \mathcal{R}-sets
- Connection between parity games and \mathcal{R}-transform of Kolmogorov

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$
- Index hierarchy - complexity measure à la quantifier-alternation
- Game tree sets $W_{i, k}$ - complete sets for the hierarchy of \mathcal{R}-sets
- Connection between parity games and \mathcal{R}-transform of Kolmogorov
- Many hierarchy-type questions for regular sets

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$
- Index hierarchy - complexity measure à la quantifier-alternation
- Game tree sets $W_{i, k}$ - complete sets for the hierarchy of \mathcal{R}-sets
- Connection between parity games and \mathcal{R}-transform of Kolmogorov
- Many hierarchy-type questions for regular sets
- Decidability questions

Summary

- Regular sets of trees - effectively representable sets in $\boldsymbol{\Delta}_{2}^{1}$
- Index hierarchy - complexity measure à la quantifier-alternation
- Game tree sets $W_{i, k}$ - complete sets for the hierarchy of \mathcal{R}-sets
- Connection between parity games and \mathcal{R}-transform of Kolmogorov
- Many hierarchy-type questions for regular sets
- Decidability questions
- Synergy between descriptive set theory and automata theory

