An automata-theoretic hierarchy inside $\mathbf{\Delta}_2^1$

Michał Skrzypczak

replacing Damian Niwiński

SSLPS annual meeting 2015 Lausanne

Theorem (Presburger [1929])

The FO theory of addition $(\mathbb{N}, +)$ is decidable.

Theorem (Presburger [1929])

The FO theory of addition $(\mathbb{N}, +)$ is decidable.

Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943]) The FO theory of arithmetic $(\mathbb{N}, +, \cdot)$ is undecidable.

Theorem (Presburger [1929])

The FO theory of addition $(\mathbb{N}, +)$ is decidable.

Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943]) The FO theory of arithmetic $(\mathbb{N}, +, \cdot)$ is undecidable.

Theorem (Tarski [1951]) The FO theory of reals $(\mathbb{R}, +, \cdot)$ is decidable.

Theorem (Presburger [1929])

The FO theory of addition $(\mathbb{N}, +)$ is decidable.

Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943]) The FO theory of arithmetic $(\mathbb{N}, +, \cdot)$ is undecidable.

Theorem (Tarski [1951]) The FO theory of reals $(\mathbb{R}, +, \cdot)$ is decidable.

Theorem (Büchi [1960]) The MSO theory of one successor $(\mathbb{N}, +1)$ is decidable.

```
Theorem (Presburger [1929])
```

The FO theory of addition $(\mathbb{N}, +)$ is decidable.

Theorem (Gödel [1931], Church [1936], Turing [1936], Kleene [1943]) The FO theory of arithmetic $(\mathbb{N}, +, \cdot)$ is undecidable.

```
Theorem (Tarski [1951])
The FO theory of reals (\mathbb{R}, +, \cdot) is decidable.
```

```
Theorem (Büchi [1960])
The MSO theory of one successor (\mathbb{N}, +1) is decidable.
```

Theorem (Rabin [1969])

The MSO theory of two successors $(\{0,1\}^{<\omega}, \hat{0}, \hat{1})$ is decidable.

Structures:

Structures:

A-labelled binary trees $t: \{0, 1\}^{<\omega} \to A$ (the universe is $\{0, 1\}^{<\omega}$)

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$ Vocabulary:

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$

Vocabulary:

Two successors: $s_0(u, u^0)$, $s_1(u, u^1)$; Predicates a(u) for $a \in A$

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$

Vocabulary:

Two successors: $s_0(u, u^0)$, $s_1(u, u^1)$; Predicates a(u) for $a \in A$

(also definable: prefix order \leq , lexicographic order \leq_{lex} , root ϵ , ...)

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$

Vocabulary:

Two successors: $s_0(u, u^0)$, $s_1(u, u^1)$; Predicates a(u) for $a \in A$ (also definable: prefix order \leq , lexicographic order \leq_{lex} , root ϵ , ...)

Theorem (Rabin [1969])

The MSO theory of the A-labelled trees is decidable.

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$

Vocabulary:

Two successors: $s_0(u, u^0)$, $s_1(u, u^1)$; Predicates a(u) for $a \in A$ (also definable: prefix order \leq , lexicographic order \leq_{lex} , root ϵ, \dots)

Theorem (Rabin [1969]) The MSO theory of the *A*-labelled trees is decidable.

"Mother of all decidability results"

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$ Vocabulary:

Two successors: $s_0(u, u^0)$, $s_1(u, u^1)$; Predicates a(u) for $a \in A$ (also definable: prefix order \leq , lexicographic order \leq_{lex} , root ϵ, \dots)

Theorem (Rabin [1969]) The MSO theory of the *A*-labelled trees is decidable.

"Mother of all decidability results"

→→ applications in verification, model-checking, synthesis, ...

Structures:

A-labelled binary trees $t \colon \{0,1\}^{<\omega} \to A$ (the universe is $\{0,1\}^{<\omega}$) Logic:

Monadic Second-Order (MSO) logic: $\exists X, \exists x, \lor, \neg$ Vocabulary:

Two successors: $s_0(u, u^0)$, $s_1(u, u^1)$; Predicates a(u) for $a \in A$ (also definable: prefix order \leq , lexicographic order \leq_{lex} , root ϵ, \ldots)

Theorem (Rabin [1969]) The MSO theory of the *A*-labelled trees is decidable.

"Mother of all decidability results"

→→ applications in verification, model-checking, synthesis, . . . MSO subsumes LTL, CTL*, μ -calculus, . . .

Rabin's decidability of S2S — consequences

Rabin's decidability of S2S — consequences

Theorem (Rabin [1969])

The MSO theory of the *A*-labelled trees is decidable.

Rabin's decidability of S2S — consequences

Theorem (Rabin [1969])

The MSO theory of the *A*-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

The MSO theory of the *A*-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $(\Sigma_2^0(2^\omega), \subseteq, A \mapsto \overline{A})$ is decidable.

The MSO theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma^0_2(2^\omega), \subseteq, A \mapsto \overline{A} \right)$ is decidable.

Corollary

The FO theory of $(\mathsf{P}(A^*), \subseteq, \dots)$ is decidable.

The MSO theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma^0_2(2^\omega), \subseteq, A \mapsto \overline{A} \right)$ is decidable.

Corollary

The FO theory of $(\mathsf{P}(A^*), \subseteq, ...)$ is decidable.

Corollary

The FO theory of (\mathbb{N}, \cdot) is decidable.

The MSO theory of the A-labelled trees is decidable.

Corollary

The MSO theory of (\mathbb{Q}, \leqslant) is decidable.

Corollary

The FO theory of $\left(\Sigma_2^0(2^\omega), \subseteq, A \mapsto \overline{A} \right)$ is decidable.

Corollary

The FO theory of $(\mathsf{P}(A^*), \subseteq, ...)$ is decidable.

Corollary

:

The FO theory of (\mathbb{N}, \cdot) is decidable.

Example:

Example:

 $A=\{a,b\}$

Example:

$$A = \{a, b\}$$

 $L = \left\{ t \mid t \text{ has a branch with infinitely many } a \right\}$

Example:

 $A = \{a, b\}$ $L = \{t \mid t \text{ has a branch with infinitely many } a\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example:

 $A = \{a, b\}$ $L = \{t \mid t \text{ has a branch with infinitely many } a\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example:

 $A = \{a, b\}$ $L = \{t \mid t \text{ has a branch with infinitely many } a\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

1.
$$\varphi := \exists X. \exists x \in X \land$$

Example:

 $A = \{a, b\}$ $L = \{t \mid t \text{ has a branch with infinitely many } a\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

1.
$$\varphi := \exists X. \exists x \in X \land$$
 — X is non-empty

Example:

 $A = \{a, b\}$ $L = \left\{t \mid t \text{ has a branch with infinitely many } a\right\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example:

 $A = \{a, b\}$ $L = \left\{t \mid t \text{ has a branch with infinitely many }a\right\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.
Example: $A = \{a \}$

$$= \{a, b\}$$

$$L = \{t \mid t \text{ has a branch with infinitely many } a\}$$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example:

 $A = \{a, b\}$ $L = \left\{t \mid t \text{ has a branch with infinitely many } a\right\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example: $A = \{a \}$

$$= \{a, b\}$$

$$L = \left\{ t \mid t \text{ has a branch with infinitely many } a \right\}$$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example: $A = \{a \}$

$$= \{a,b\}$$

 $L = ig\{t \mid t ext{ has a branch with infinitely many }aig\}$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Example: $A = \{a \}$

$$= \{a, b\}$$

$$L = \{t \mid t \text{ has a branch with infinitely many } a\}$$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

Proof

2. $L = \{t \mid t \models \varphi\}$

Example: $A = \{e_i\}$

$$= \{a, b\}$$

$$L = \left\{ t \mid t \text{ has a branch with infinitely many } a \right\}$$

Theorem (Niwiński [1985])

L is a non-Borel set of trees definable in MSO.

- **2.** $L = \{t \mid t \models \varphi\}$
- **3.** L is Σ_1^1 -complete

Acceptance / winning conditions:

— Büchi

- Büchi
- Rabin

- Büchi
- Rabin
- Streett

- Büchi
- Rabin
- Streett
- Muller

- Büchi
- Rabin
- Streett
- Muller
- parity

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

— . . .

5 / 26

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity — . . .

Parity index: pair (i, k) with $i \leq k$

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity — . . .

Parity index: pair (i, k) with $i \leq k$

$$L_{i,k} = \left\{ \alpha \in \{i, \dots, k\}^{\omega} \mid \limsup_{n \to \infty} \alpha(n) \equiv 0 \pmod{2} \right\}$$

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity

— . . .

Parity index: pair (i, k) with $i \leq k$

 $L_{i,k} = \left\{ \alpha \in \{i, \dots, k\}^{\omega} \mid \limsup_{n \to \infty} \alpha(n) \equiv 0 \pmod{2} \right\}$

Intuition: numbers $j \in \{i, \ldots, k\}$ are ordered events

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity — . . .

Parity index: pair (i, k) with $i \leq k$

$$L_{i,k} = \left\{ \alpha \in \{i, \dots, k\}^{\omega} \mid \limsup_{n \to \infty} \alpha(n) \equiv 0 \pmod{2} \right\}$$

Intuition: numbers $j \in \{i, \ldots, k\}$ are ordered events

- odd event is bad

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller
- parity — . . .

Parity index: pair (i, k) with $i \leq k$

$$L_{i,k} = \left\{ \alpha \in \{i, \dots, k\}^{\omega} \mid \limsup_{n \to \infty} \alpha(n) \equiv 0 \pmod{2} \right\}$$

Intuition: numbers $j \in \{i, \dots, k\}$ are ordered events

- odd event is bad
- even event is good

5 / 26

Acceptance / winning conditions:

- Büchi
- Rabin
- Streett
- Muller

Parity index: pair (i, k) with $i \leq k$

$$L_{i,k} = \left\{ \alpha \in \{i, \dots, k\}^{\omega} \mid \limsup_{n \to \infty} \alpha(n) \equiv 0 \pmod{2} \right\}$$

Intuition: numbers $j \in \{i, \dots, k\}$ are ordered events

- odd event is bad
- even event is good

Büchi condition
$$\equiv L_{1,2}$$

Task: given φ check if there is t such that $t \models \varphi$

1. Transform φ into a finite automaton \mathcal{A}

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)

- **1.** Transform φ into a finite automaton \mathcal{A}
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$

- 1. Transform φ into a finite automaton \mathcal{A}
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists

Task: given φ check if there is t such that $t \models \varphi$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists

Task: given φ check if there is t such that $t \models \varphi$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists

Game $G_{\mathcal{A}}(t)$:

— positions $u \in \{0,1\}^{<\omega}$

Task: given φ check if there is t such that $t \models \varphi$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists

- positions $u \in \{0,1\}^{<\omega}$
- labelled by (P, j)

Task: given φ check if there is t such that $t \models \varphi$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists

- positions $u \in \{0,1\}^{<\omega}$
- labelled by (P, j) $P \in \{I, II\}$ is a player

Task: given φ check if there is t such that $t \models \varphi$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists

- positions $u \in \{0,1\}^{<\omega}$
- labelled by (P, j) $P \in \{I, II\}$ is a player $j \in \{i, \dots, k\}$ is a priority

- 1. Transform φ into a finite automaton \mathcal{A}
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists
- Game $G_{\mathcal{A}}(t)$:
- positions $u \in \{0,1\}^{<\omega}$
- labelled by (P, j) $P \in \{I, II\}$ is a player $j \in \{i, \dots, k\}$ is a priority

Task: given φ check if there is t such that $t \models \varphi$

- 1. Transform φ into a finite automaton ${\cal A}$
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_{\mathcal{A}}(t)$
- **5.** it is decidable if such t exists
- Game $G_{\mathcal{A}}(t)$:
- positions $u \in \{0,1\}^{<\omega}$
- labelled by (P, j) $P \in \{I, II\}$ is a player $j \in \{i, \dots, k\}$ is a priority

— Player I wins a play crossing $(P_0, j_0), (P_1, j_1), (P_2, j_2), \ldots$ if

(II, 3)

(I, 2)

(I,3) (I,1) (II,4) (I,2)

(I, 1)

1 1 1 1

Task: given φ check if there is t such that $t \models \varphi$

- **1.** Transform φ into a finite automaton \mathcal{A}
- **2.** \mathcal{A} is a parity automaton of index (i, k)
- **3.** For every tree t the automaton \mathcal{A} induces a game $G_{\mathcal{A}}(t)$
- **4.** $t \models \varphi$ iff Player I wins $G_A(t)$
- 5. it is decidable if such t exists
- Game $G_A(t)$:
- positions $u \in \{0, 1\}^{<\omega}$
- labelled by (P, j) $P \in \{I, II\}$ is a player

 $j \in \{i, \ldots, k\}$ is a priority

— Player I wins a play crossing $(P_0, j_0), (P_1, j_1), (P_2, j_2), \ldots$ if $(j_0, j_1, \ldots) \in L_{i,k}$ i.e. $\limsup_{n \to \infty} j_n \equiv 0 \pmod{2}$

(II, 3)

(I, 2)

(I,3) (I,1) (II,4) (I,2)1.3

(I, 1)

Index hierarchy
From the proof:

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

 $t \models \varphi \iff \mathsf{Player I wins } G_{\mathcal{A}}(t)$

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

 $t \models \varphi \iff \mathsf{Player I wins } G_{\mathcal{A}}(t)$

(also the opposite — for every \mathcal{A} there effectively exists φ as above)

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

 $t \models \varphi \iff \mathsf{Player I wins } G_{\mathcal{A}}(t)$

(also the opposite — for every ${\cal A}$ there effectively exists φ as above) Definition

A set of trees L is regular if $L = \{t \mid t \models \varphi\}$ for some φ .

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

 $t \models \varphi \iff \mathsf{Player I wins } G_{\mathcal{A}}(t)$

(also the opposite — for every ${\cal A}$ there effectively exists φ as above) Definition

A set of trees L is regular if $L = \{t \mid t \models \varphi\}$ for some φ .

(equivalently if $L = \{t \mid \mathsf{Player} \mid \mathsf{wins} \ G_{\mathcal{A}}(t)\}$ for some \mathcal{A})

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

 $t \models \varphi \iff \mathsf{Player I wins } G_{\mathcal{A}}(t)$

(also the opposite — for every \mathcal{A} there effectively exists φ as above) **Definition**

A set of trees L is regular if $L = \{t \mid t \models \varphi\}$ for some φ .

(equivalently if $L = \{t \mid \mathsf{Player I} \text{ wins } G_{\mathcal{A}}(t)\}$ for some \mathcal{A})

Definition

A regular set L has index (i, k) if for some alternating (i, k)-parity automaton $I = \{t \mid \text{Playor Lyping } C_{i}(t)\}$

$$L = \{t \mid \mathsf{Player I wins } G_{\mathcal{A}}(t)\}$$

From the proof:

for every φ there effectively exists a parity automaton ${\mathcal A}$ s.t.

 $t \models \varphi \iff \mathsf{Player I wins } G_{\mathcal{A}}(t)$

(also the opposite — for every \mathcal{A} there effectively exists φ as above) **Definition**

A set of trees L is regular if $L = \{t \mid t \models \varphi\}$ for some φ .

(equivalently if $L = \{t \mid \mathsf{Player I} \text{ wins } G_{\mathcal{A}}(t)\}$ for some \mathcal{A})

Definition

A regular set L has index (i, k) if for some alternating (i, k)-parity automaton $L = \{t \mid \text{Player I wins } G_A(t)\}$

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

Fact L has index (i, k) iff L^c has index (i + 1, k + 1)

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

Fact L has index (i, k) iff L^{c} has index (i + 1, k + 1)L has index (i, k) iff L has index (i + 2, k + 2)

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

FactL has index (i, k) iff L^c has index (i + 1, k + 1)L has index (i, k) iffL has index (i + 2, k + 2)Index hierarchy

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

FactL has index (i, k) iff L^c has index (i + 1, k + 1)L has index (i, k) iffL has index (i + 2, k + 2)Index hierarchy

÷

(0,3)	(1, 4)

÷

(1,3) (0,2)

(0,1) (1,2)

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

FactL has index (i, k) iff L^c has index (i + 1, k + 1)L has index (i, k) iffL has index (i + 2, k + 2)Index hierarchy

÷

(0,3) (1,4)

÷

(1,3) (0,2)

universal fragment \longleftrightarrow (0,1) (1,2) \leadsto existential fragment

Theorem (Bradfield [1998], Arnold [1999])

For every index (i, k) there is a regular set L that is **not** of index (i, k).

FactL has index (i, k) iff L^c has index (i + 1, k + 1)L has index (i, k) iffL has index (i + 2, k + 2)Index hierarchy

:

(0, 3)	(1, 4)

÷

(1,3) (0,2)

universal fragment \longleftrightarrow (0,1) (1,2) \leadsto existential fragment

Index hierarchy is the alternation-depth hierarchy for μ -calculus

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$

 $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree

Let $W_{i,k} = \{t \mid \mathsf{Player I wins over } t\}$

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree Let $W_{i,k} = \{t \mid \text{Player I wins over } t\}$ (Arnold [1999], Walukiewicz)

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree Let $W_{i,k} = \{t \mid \text{Player I wins over } t\}$ (Arnold [1999], Walukiewicz)

• $W_{i,k}$ is regular

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree Let $W_{i,k} = \{t \mid \text{Player I wins over } t\}$ (Arnold [1999], Walukiewicz)

- $W_{i,k}$ is regular
- $W_{i,k}$ has index (i,k)

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree Let $W_{i,k} = \{t \mid \text{Player I wins over } t\}$ (Arnold [1999], Walukiewicz)

- $W_{i,k}$ is regular
- $W_{i,k}$ has index (i,k)

• $t \mapsto G_{\mathcal{A}}(t)$ is continuous

Let $A_{i,k} = \{I, II\} \times \{i, \dots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree Let $W_{i,k} = \{t \mid \text{Player I wins over } t\}$ (Arnold [1999], Walukiewicz)

- $W_{i,k}$ is regular
- $W_{i,k}$ has index (i,k)

• $t \mapsto G_{\mathcal{A}}(t)$ is continuous

 $t \models \varphi$ iff $G_{\mathcal{A}}(t) \in W_{i,k}$

$\begin{array}{c} \textbf{Game trees} \\ \text{Let } A_{i,k} = \{\text{I}, \text{II}\} \times \{i, \dots, k\} \\ \hline G_{\mathcal{A}}(t) \text{ is just an } A_{i,k} \text{-labelled tree} \\ \text{Let } W_{i,k} = \{t \mid \text{Player I wins over } t\} \\ (\text{Arnold [1999], Walukiewicz}) \\ \hline (\text{I}, 3) \quad (\text{I}, 3) \end{array}$

• $W_{i,k}$ is regular

 $(I,3) \quad (I,1) \quad (II,4) \quad (I,2)$

 $(I,2) \quad G_{\mathcal{A}}(t)$

(I, 1)

• $W_{i,k}$ has index (i,k) • $t \mapsto G_{\mathcal{A}}(t)$ is continuous

 $t\models \varphi \quad \text{ iff } \quad G_{\mathcal{A}}(t)\in W_{i,k}$

• $W_{i,k}$ is Wadge-complete for all regular sets of index (i,k)

Game trees Let $A_{i,k} = \{I, II\} \times \{i, \ldots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree (II, 3)Let $W_{i,k} = \{t \mid \mathsf{Player} \mid \mathsf{wins} \text{ over } t\}$ (Arnold [1999], Walukiewicz) (I,3) (I,1) (II,4) (I,2)

- $W_{i,k}$ is regular
- $W_{i,k}$ has index (i,k)• $t \mapsto G_{\mathcal{A}}(t)$ is continuous

 $t \models \varphi$ iff $G_{\mathcal{A}}(t) \in W_{i,k}$

• $W_{i,k}$ is Wadge-complete for all regular sets of index (i,k)

Theorem (Arnold, Niwiński [2006]) $W_{i,k}$ does **not** Wadge-reduce to $W_{i+1,k+1}$. $(I,2) \quad G_{\mathcal{A}}(t)$

(I, 1)

Game trees Let $A_{i,k} = \{I, II\} \times \{i, \ldots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree (II, 3)Let $W_{i,k} = \{t \mid \mathsf{Player} \mid \mathsf{wins} \text{ over } t\}$ (Arnold [1999], Walukiewicz) (I,3) (I,1) (II,4) (I,2)

- $W_{i,k}$ is regular
- $W_{i,k}$ has index (i,k)• $t \mapsto G_{\mathcal{A}}(t)$ is continuous

 $t \models \varphi$ iff $G_{\mathcal{A}}(t) \in W_{i,k}$

• $W_{i,k}$ is Wadge-complete for all regular sets of index (i,k)

Theorem (Arnold, Niwiński [2006]) $W_{i,k}$ does **not** Wadge-reduce to $W_{i+1,k+1}$.

Proof: Banach's fix-point theorem.

 $(I,2) \quad G_{\mathcal{A}}(t)$

(I, 1)

Game trees Let $A_{i,k} = \{I, II\} \times \{i, \ldots, k\}$ $G_{\mathcal{A}}(t)$ is just an $A_{i,k}$ -labelled tree (II, 3)Let $W_{i,k} = \{t \mid \mathsf{Player I wins over } t\}$ (Arnold [1999], Walukiewicz) (I,3) (I,1) (II,4) (I,2)

- $W_{i,k}$ is regular
- $W_{i,k}$ has index (i,k)• $t \mapsto G_{\mathcal{A}}(t)$ is continuous

 $t \models \varphi$ iff $G_A(t) \in W_{i,k}$

• $W_{i,k}$ is Wadge-complete for all regular sets of index (i,k)

Theorem (Arnold, Niwiński [2006]) $W_{i,k}$ does **not** Wadge-reduce to $W_{i+1,k+1}$.

Proof: Banach's fix-point theorem. *w* strictness of the index hierarchy

 $(I,2) \quad G_{\mathcal{A}}(t)$

(I, 1)

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_2^1 .

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_2^1 .

Fact

The sets $W_{i,k}$ form a Wadge hierarchy of length ω .

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_2^1 .

Fact

The sets $W_{i,k}$ form a Wadge hierarchy of length ω .

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015]) Regular sets can be obtained by the game quantifier 5 applied to the difference hierarchy over Π_2^0 .

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_2^1 .

Fact

The sets $W_{i,k}$ form a Wadge hierarchy of length ω .

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015]) Regular sets can be obtained by the game quantifier \mathfrak{I} applied to the difference hierarchy over $\mathbf{\Pi}_2^0$.

Question (Mio [2012])

Is every regular set universally measurable?
Descriptive complexity of regular sets

Theorem (Niwiński [1985])

There are non-Borel regular sets.

Fact

By Rabin's theorem, every regular set is Δ_2^1 .

Fact

The sets $W_{i,k}$ form a Wadge hierarchy of length ω .

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015]) Regular sets can be obtained by the game quantifier \mathfrak{I} applied to the difference hierarchy over $\mathbf{\Pi}_2^0$.

```
Question (Mio [2012])
```

Is every regular set universally measurable?

Is the natural rank on $W_{i,k}$ continuous w.r.t. every Borel measure?

$$\Delta_2^1$$
 — a frontier of well-behaved sets

$$\Delta_2^1$$
 — a frontier of well-behaved sets

$$\mathbf{\Delta}_2^1$$
 — a frontier of well-behaved sets

 \dashrightarrow search for constructive representations of sets in $\mathbf{\Delta}_2^1$

Souslin operation ${\cal A}$

Souslin operation $\ensuremath{\mathcal{A}}$

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

Souslin operation \mathcal{A}

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation \mathcal{A}

 $\mathcal{A}((A_s)_{s \in \omega^{<\omega}}) = \{ x \mid \exists \pi \in \omega^{\omega} \ \forall n \in \omega. \ x \in A_{\pi \upharpoonright_n} \}$

Souslin operation ${\cal A}$

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

$$\mathcal{A}((A_s)_{s\in\omega^{<\omega}}) = \{x \mid \exists \pi \in \omega^{\omega} \ \forall n \in \omega. \ x \in A_{\pi\restriction_n}\} \\ = \bigcup_{\pi\in\omega^{\omega}} \bigcap_{n\in\omega} A_{\pi\restriction_n}$$

Souslin operation ${\cal A}$

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

Souslin operation \mathcal{A}

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

Т

$$\mathcal{A}((A_s)_{s\in\omega^{<\omega}}) = \{x \mid \exists \pi \in \omega^{\omega} \ \forall n \in \omega. \ x \in A_{\pi \upharpoonright_n} \}$$
$$= \bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi \upharpoonright_n}$$
$$\overset{\mathsf{heorem}}{\longrightarrow} (\operatorname{Souslin} [1916])$$
$$A \text{ is } \Sigma_1^1 \quad \text{iff} \quad A = \mathcal{A}((A_s)_{s\in\omega^{<\omega}}) \quad \text{for some} \quad (A_s)_{s\in\omega^{<\omega}} \subseteq \Pi_1^0$$

Souslin operation ${\cal A}$

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

$$\mathcal{A}((A_s)_{s\in\omega^{<\omega}}) = \{x \mid \exists \pi \in \omega^{\omega} \ \forall n \in \omega. \ x \in A_{\pi\uparrow_n}\}$$
$$= \bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi\uparrow_n}$$
$$\mathsf{Theorem} \ (\mathsf{Souslin} \ [1916])$$
$$A \ \mathsf{is} \ \mathbf{\Sigma}_1^1 \quad \mathsf{iff} \quad A = \mathcal{A}((A_s)_{s\in\omega^{<\omega}}) \quad \mathsf{for some} \quad (A_s)_{s\in\omega^{<\omega}} \subseteq \mathbf{\Pi}_1^0$$
$$(\mathsf{i.e.} \ \mathbf{\Sigma}_1^1 = \mathcal{A}(\mathbf{\Pi}_1^0))$$

Souslin operation \mathcal{A}

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

٦

Souslin operation ${\cal A}$

Idea: generate $\mathbf{\Sigma}_1^1$ sets from $\mathbf{\Pi}_1^0$ sets using an operation $\mathcal A$

$$\mathcal{A}((A_s)_{s\in\omega^{<\omega}}) = \{x \mid \exists \pi \in \omega^{\omega} \forall n \in \omega. \ x \in A_{\pi\uparrow_n}\} \\ = \bigcup_{\pi \in \omega^{\omega}} \bigcap_{n \in \omega} A_{\pi\uparrow_n} \\ \mathsf{Theorem} (\mathsf{Souslin} [1916]) \\ A \text{ is } \Sigma_1^1 \quad \text{iff} \quad A = \mathcal{A}((A_s)_{s\in\omega^{<\omega}}) \quad \text{for some} \quad (A_s)_{s\in\omega^{<\omega}} \subseteq \Pi_1^0 \\ \mathsf{Theorem} (\mathsf{Souslin} [1917]) \\ \mathsf{Every} \ \Sigma_1^1 \text{ set has perfect set property.} \\ (\text{i.e. } \Sigma_1^1 = \mathcal{A}(\Pi_1^0)) \\ \mathsf{Every} \ \Sigma_1^1 \text{ set has perfect set property.} \\ \mathsf{Every} \ \mathsf{Souslin} [\mathsf{I} \mathsf{Souslin}] \\ \mathsf{Ind} \ \mathsf$$

Theorem (Luzin, Sierpiński [1918]) Every Σ_1^1 set is universally measurable.

• Σ_1^1 -inductive sets (Moschovakis 1974)

- Σ_1^1 -inductive sets (Moschovakis 1974)
- C-operation (Selivanovski [1928])

- Σ_1^1 -inductive sets (Moschovakis 1974)
- C-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])

- Σ_1^1 -inductive sets (Moschovakis 1974)
- C-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- *R*-transform (Kolmogorov [1928])

- Σ_1^1 -inductive sets (Moschovakis 1974)
- C-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- *R*-transform (Kolmogorov [1928])
- game quantifier 9 (Moschovakis [1971])

- Σ_1^1 -inductive sets (Moschovakis 1974)
- C-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- *R*-transform (Kolmogorov [1928])
- game quantifier 9 (Moschovakis [1971])

• . . .

- Σ_1^1 -inductive sets (Moschovakis 1974)
- C-operation (Selivanovski [1928])
- Borel programmable sets (Blackwell [1978])
- *R*-transform (Kolmogorov [1928])
- game quantifier 9 (Moschovakis [1971])

• . . .

 $\Omega = (\mathbb{A}, \mathbb{B})$ with:

- $\Omega = (\mathbb{A}, \mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$

- $\Omega = (\mathbb{A}, \mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- \bullet a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$

- $\Omega = (\mathbb{A}, \mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies)

 $\Omega = (\mathbb{A},\mathbb{B})$ with:

- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies)

 $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$

 $\Omega = (\mathbb{A},\mathbb{B})$ with:

- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{R}} \bigcap_{n \in N} A_n$

 $\Omega = (\mathbb{A},\mathbb{B})$ with:

- \bullet a countable arena \mathbbm{A}
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- \bullet a countable arena \mathbbm{A}
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{R}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

1. Player I chooses a strategy $N \in \mathbb{B}$

- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- 1. Player I chooses a strategy $N \in \mathbb{B}$
- 2. Player II chooses $n \in N$ (a play consistent with N)

- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- a countable arena \mathbb{A}
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- 1. Player I chooses a strategy $N \in \mathbb{B}$
- 2. Player II chooses $n \in N$ (a play consistent with N)
- 3. we verify that $x \in A_n$

- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- 1. Player I chooses a strategy $N \in \mathbb{B}$
- 2. Player II chooses $n \in N$ (a play consistent with N)
- 3. we verify that $x \in A_n$

Typically:
- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- 1. Player I chooses a strategy $N \in \mathbb{B}$
- 2. Player II chooses $n \in N$ (a play consistent with N)
- 3. we verify that $x \in A_n$

Typically:

• sets A_n are simple (e.g. clopen)

- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- 1. Player I chooses a strategy $N \in \mathbb{B}$
- 2. Player II chooses $n \in N$ (a play consistent with N)
- 3. we verify that $x \in A_n$

Typically:

- sets A_n are simple (e.g. clopen)
- \bullet the complexity lies in $\mathbb B$

- $\Omega = (\mathbb{A},\mathbb{B})$ with:
- \bullet a countable arena $\mathbb A$
- a basis $\mathbb{B} \subseteq \mathsf{P}(\mathbb{A})$ (elements $N \in \mathbb{B}$ are called strategies) $\Omega \colon \mathsf{P}(X)^{\mathbb{A}} \to \mathsf{P}(X)$ $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{R}} \bigcap_{n \in N} A_n$

To prove that $x \in \Omega((A_n)_{n \in \mathbb{A}})$:

- 1. Player I chooses a strategy $N \in \mathbb{B}$
- 2. Player II chooses $n \in N$ (a play consistent with N)
- 3. we verify that $x \in A_n$

Typically:

• sets A_n are simple (e.g. clopen) • the complexity lies in \mathbb{B}

Caution: $\forall A \subseteq X \exists \Omega \exists (A_s)_{s \in \mathbb{A}}$. $(A_s)_s \subseteq \mathbf{\Pi}^0_1 \land \Omega((A_s)_{s \in \mathbb{A}}) = A$

$\begin{array}{lll} \text{Positive analytic operations} \\ \text{for} \quad \Omega = \left(\mathbb{A}, \mathbb{B}\right) & \text{define} \quad \Omega \big((A_n)_{n \in \mathbb{A}} \big) \ = \ \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} \ A_n \end{array}$

Positive analytic operations for $\Omega = (\mathbb{A}, \mathbb{B})$ define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

 $\bigcup = \left(\omega, \left\{\{n\} \mid n \in \omega\right\}\right)$

for
$$\Omega = (\mathbb{A}, \mathbb{B})$$
 define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$
$$\bigcup = (\omega, \{\{n\} \mid n \in \omega\}) \qquad \bigcup ((A_n)_{n \in \omega}) = \bigcup_{\{n\}} \bigcap_{n \in \{n\}} A_n$$

for
$$\Omega = (\mathbb{A}, \mathbb{B})$$
 define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$
$$\bigcup = (\omega, \{\{n\} \mid n \in \omega\}) \qquad \bigcup ((A_n)_{n \in \omega}) = \bigcup_{\{n\}} \bigwedge_{\nu \in \{n\}} A_n$$

for
$$\Omega = (\mathbb{A}, \mathbb{B})$$
 define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$
$$\bigcup = \left(\omega, \{\{n\} \mid n \in \omega\}\right) \qquad \bigcup \left((A_n)_{n \in \omega}\right) = \bigcup_{\{n\}} \bigcap_{\mu \in \{n\}} A_n$$

$$igcup \left(\Pi_{\eta}^{0}
ight) = \Sigma_{\eta+1}^{0} \quad \stackrel{\{\overline{n}\}}{\longrightarrow} \quad rac{1}{\sqrt{n}}$$

Positive analytic operations for $\Omega = (\mathbb{A}, \mathbb{B})$ define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup_{N \in \mathbb{B}} \bigcap_{n \in N} A_n$

$$\bigcup = \left(\omega, \left\{\{n\} \mid n \in \omega\right\}\right) \qquad \bigcup \left((A_n)_{n \in \omega}\right) = \bigcup_{\{n\}} \bigwedge_{\eta \in \{n\}} A_n$$
$$\bigcup \left(\Pi_{\eta}^0\right) = \Sigma_{\eta+1}^0$$

 $\bigcap = \Bigl(\omega, \{\omega\} \Bigr)$

Positive analytic operations for $\Omega = (\mathbb{A}, \mathbb{B})$ define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup \bigcap A_n$ $\bigcup = \left(\omega, \{\{n\} \mid n \in \omega\}\right) \qquad \bigcup \left((A_n)_{n \in \omega}\right) = \bigcup_{\{n\}} \bigwedge_{\eta \in \{n\}} A_n$ $\bigcup \left(\Pi_n^0\right) = \Sigma_{n+1}^0$ $\bigcap \left((A_n)_{n \in \omega} \right) = \bigcup_{(\omega)} \bigcap_{n \in \omega} A_n$ $\bigcap \left(\Sigma_n^0 \right) = \Pi_{n+1}^0$ $\bigcap = (\omega, \{\omega\})$

$$\mathcal{A} = \left(\omega^{<\omega}, \{\pi \mid \pi \text{ is an infinite branch}\}
ight)$$

 $\mathcal{A}ig((A_s)_{s \in \omega^{<\omega}}ig) = igcup_{\pi} igcup_{s \in \pi} A_s$

Positive analytic operations for $\Omega = (\mathbb{A}, \mathbb{B})$ define $\Omega((A_n)_{n \in \mathbb{A}}) = \bigcup \bigcap A_n$ $\bigcup = \left(\omega, \{\{n\} \mid n \in \omega\}\right) \qquad \bigcup \left((A_n)_{n \in \omega}\right) = \bigcup_{\{n\}} \bigwedge_{p \in \{n\}} A_n$ $\bigcup \left(\Pi_n^0\right) = \Sigma_{n+1}^0$ $\bigcap \left((A_n)_{n \in \omega} \right) = \bigvee_{(\omega)} \bigcap_{n \in \omega} A_n$ $\bigcap \left(\Sigma_n^0 \right) = \Pi_{n+1}^0$ $\bigcap = (\omega, \{\omega\})$ $\mathcal{A} = \left(\omega^{<\omega}, \{\pi \mid \pi \text{ is an infinite branch}\}\right)$ $\mathcal{A}((A_s)_{s\in\omega^{<\omega}}) = \bigcup_{\pi} \bigcap_{s\in\pi} A_s$

Idea: generate more complicated operations from easier ones

Idea: generate more complicated operations from easier ones

 $\operatorname{co}\colon\Omega\mapsto\operatorname{co-}\Omega$

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset \right\} \right)$$

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset \right\} \right)$$

counter-strategies

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset}_{\mathsf{counter-strategies}} \right\} \right)$$

co- () = ()

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset}_{\mathsf{counter-strategies}} \right\} \right)$$

 $\mathsf{co-}\bigcup=\bigcap\quad\mathsf{co-}\bigcap=\bigcup$

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset} \right\} \right)$$

counter-strategies

 $\operatorname{co-} \bigcup = \bigcap \qquad \operatorname{co-} \bigcap = \bigcup \qquad X - \operatorname{co-} \Omega \bigl((X - A_n)_{n \in \mathbb{A}} \bigr) = \Omega \bigl((A_n)_{n \in \mathbb{A}} \bigr)$

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset} \right\} \right)$$

counter-strategies

 $\operatorname{co-} \bigcup = \bigcap \qquad \operatorname{co-} \bigcap = \bigcup \qquad X - \operatorname{co-} \Omega \bigl((X - A_n)_{n \in \mathbb{A}} \bigr) = \Omega \bigl((A_n)_{n \in \mathbb{A}} \bigr)$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R}\Omega$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\hat{}}n \in M\} \in \mathbb{B}\}\right)$$

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset} \right\} \right)$$

counter-strategies

 $\operatorname{co-} \bigcup = \bigcap \qquad \operatorname{co-} \bigcap = \bigcup \qquad X - \operatorname{co-} \Omega \bigl((X - A_n)_{n \in \mathbb{A}} \bigr) = \Omega \bigl((A_n)_{n \in \mathbb{A}} \bigr)$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R}\Omega$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\uparrow}n \in M\} \in \mathbb{B}\}\right)$$

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset} \right\} \right)$$

counter-strategies

 $\operatorname{co-} \bigcup = \bigcap \qquad \operatorname{co-} \bigcap = \bigcup \qquad X - \operatorname{co-} \Omega \big((X - A_n)_{n \in \mathbb{A}} \big) = \Omega \big((A_n)_{n \in \mathbb{A}} \big)$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R}\Omega$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\hat{}}n \in M\} \in \mathbb{B}\}\right)$$

Intuition:

• play ω -iterated game for (\mathbb{A}, \mathbb{B})

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset} \right\} \right)$$

counter-strategies

 $\operatorname{co-} \bigcup = \bigcap \qquad \operatorname{co-} \bigcap = \bigcup \qquad X - \operatorname{co-} \Omega \big((X - A_n)_{n \in \mathbb{A}} \big) = \Omega \big((A_n)_{n \in \mathbb{A}} \big)$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R}\Omega$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\hat{}}n \in M\} \in \mathbb{B}\}\right)$$

- play ω -iterated game for (\mathbb{A}, \mathbb{B})
- $\bullet~M$ combines original strategies

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset}_{} \right\} \right)$$

counter-strategies

co- $\bigcup = \bigcap$ co- $\bigcap = \bigcup$ $X - \operatorname{co-}\Omega((X - A_n)_{n \in \mathbb{A}}) = \Omega((A_n)_{n \in \mathbb{A}})$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R}\Omega$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\hat{}}n \in M\} \in \mathbb{B}\}\right)$$

- play ω -iterated game for (\mathbb{A}, \mathbb{B})
- M combines original strategies

Idea: generate more complicated operations from easier ones

$$\operatorname{co:} \Omega \mapsto \operatorname{co-} \Omega \qquad \operatorname{co-} \left(\mathbb{A}, \mathbb{B} \right) = \left(\mathbb{A}, \left\{ \underbrace{M \mid \forall N \in \mathbb{B}. \ N \cap M \neq \emptyset}_{} \right\} \right)$$

counter-strategies

co- $\bigcup = \bigcap$ co- $\bigcap = \bigcup$ $X - \operatorname{co-}\Omega((X - A_n)_{n \in \mathbb{A}}) = \Omega((A_n)_{n \in \mathbb{A}})$

Definition (Kolmogorov [1928]) $\mathcal{R}: \Omega \mapsto \mathcal{R}\Omega$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\hat{}}n \in M\} \in \mathbb{B}\}\right)$$

- play ω -iterated game for (\mathbb{A}, \mathbb{B})
- M combines original strategies

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\hat{}}n \in M\} \in \mathbb{B}\}\right)$$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s \hat{n} \in M\} \in \mathbb{B}\}\right)$$

$$\mathcal{R}(\mathbb{A},\mathbb{B}) = \left(\mathbb{A}^{<\omega}, \{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\circ}n \in M\} \in \mathbb{B}\}\right)$$
$$\bigcup = \left(\omega, \{\{n\} \mid n \in \omega\}\right)$$
$$\bigcap = \left(\omega, \{\omega\}\right)$$

$$\begin{split} \mathcal{R}(\mathbb{A},\mathbb{B}) &= \left(\mathbb{A}^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \left\{n \mid s^{\circ}n \in M\right\} \in \mathbb{B}\right\}\right) \\ & \bigcup = \left(\omega, \left\{\{n\} \mid n \in \omega\right\}\right) \\ & \bigcap = \left(\omega, \left\{\omega\right\}\right) \\ \mathcal{R}(\bigcup) &= \left(\omega^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \left|\{n \mid s^{\circ}n \in M\}\right| = 1\}\right) \\ &= \left(\omega^{<\omega}, \ \left\{M \mid M \text{ is a branch}\right\}\right) = \mathcal{A} \\ \mathcal{R}(\bigcap) &= \left(\omega^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \left\{n \mid s^{\circ}n \in M\right\} = \left\{\omega\right\}\right\}\right) \end{split}$$

$$\begin{split} \mathcal{R}(\mathbb{A},\mathbb{B}) &= \left(\mathbb{A}^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \{n \mid s^{\circ}n \in M\} \in \mathbb{B}\}\right) \\ & \bigcup = \left(\omega, \left\{\{n\} \mid n \in \omega\}\right) \\ & \bigcap = \left(\omega, \left\{\omega\}\right) \\ \mathcal{R}(\bigcup) &= \left(\omega^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \left|\{n \mid s^{\circ}n \in M\}\right| = 1\}\right) \\ &= \left(\omega^{<\omega}, \ \left\{M \mid M \text{ is a branch}\right\}\right) = \mathcal{A} \\ \mathcal{R}(\bigcap) &= \left(\omega^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \{n \mid s^{\circ}n \in M\} = \left\{\omega\}\right\}\right) \\ &= \left(\omega^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \{n \mid s^{\circ}n \in M\} = \left\{\omega\}\right\}\right) \\ &= \left(\omega^{<\omega}, \ \left\{M \mid \epsilon \in M \land \forall s \in M. \ \{n \mid s^{\circ}n \in M\} = \left\{\omega\}\right\}\right) \\ &= \left(\omega^{<\omega}, \ \left\{\omega^{<\omega}\right\}\right) \end{split}$$

$$\begin{split} \mathcal{R}(\mathbb{A},\mathbb{B}) &= \left(\mathbb{A}^{<\omega}, \left\{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\circ}n \in M\} \in \mathbb{B}\}\right) \\ &\bigcup = \left(\omega, \{\{n\} \mid n \in \omega\}\right) \\ &\bigcap = \left(\omega, \{\omega\}\right) \\ \mathcal{R}(\bigcup) &= \left(\omega^{<\omega}, \left\{M \mid \epsilon \in M \land \forall s \in M. \left|\{n \mid s^{\circ}n \in M\}\right| = 1\}\right) \\ &= \left(\omega^{<\omega}, \left\{M \mid M \text{ is a branch}\right\}\right) = \mathcal{A} \\ \mathcal{R}(\bigcap) &= \left(\omega^{<\omega}, \left\{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\circ}n \in M\} = \{\omega\}\}\right) \\ &= \left(\omega^{<\omega}, \left\{M \mid \epsilon \in M \land \forall s \in M. \{n \mid s^{\circ}n \in M\} = \{\omega\}\}\right) \\ &= \left(\omega^{<\omega}, \left\{\omega^{<\omega}\right\}\right) \equiv \bigcap \end{split}$$

R-sets (finite levels)

$$\operatorname{co-}\mathcal{A} = \operatorname{co-}\mathcal{R}(\bigcup) \xleftarrow{\operatorname{co-}}_{\mathcal{R}} \mathcal{R}(\bigcup) = \mathcal{A}$$

R-sets (finite levels)

$$(\operatorname{co-}\mathcal{R})^{2}(\bigcup) \xleftarrow{\operatorname{co-}}\mathcal{R}(\operatorname{co-}\mathcal{R})(\bigcup)$$
$$\operatorname{co-}\mathcal{A} = \operatorname{co-}\mathcal{R}(\bigcup) \xleftarrow{\operatorname{co-}}\mathcal{R}(\bigcup) = \mathcal{A}$$
$$\bigcup \xleftarrow{\operatorname{co-}}\bigcap$$

:

$$\Sigma_{1}^{1}-\mathsf{IND} \longleftrightarrow (\mathsf{co-}\mathcal{R})^{2}(\bigcup) \xleftarrow{}^{\mathsf{co-}} \mathcal{R}(\mathsf{co-}\mathcal{R})(\bigcup) \longleftrightarrow \mathsf{co-}\Sigma_{1}^{1}-\mathsf{IND}$$

$$\Pi_{1}^{1} \longleftrightarrow \mathsf{co-}\mathcal{R}(\bigcup) \xleftarrow{}^{\mathcal{R}} \mathcal{R}(\bigcup) = \mathcal{A} \qquad \longleftrightarrow \Sigma_{1}^{1}$$

$$\bigcup \xleftarrow{}^{\mathsf{co-}} \bigcap$$

÷

Theorem (Kolmogorov [1928], Luzin, Sierpiński [1918]) If Ω preserves measurability then co- Ω and $\mathcal{R}\Omega$ preserve measurability.

Theorem (Kolmogorov [1928], Luzin, Sierpiński [1918]) If Ω preserves measurability then co- Ω and $\mathcal{R}\Omega$ preserve measurability.

Corollary

All \mathcal{R} -sets are universally measurable.

Theorem (Saint Raymond [2006])

The set of *cofinal* trees is complete for $(co-\mathcal{R})^2(\bigcup)(\Pi_1^0)$ (= Σ_1^1 -IND)

Theorem (Saint Raymond [2006])

The set of *cofinal* trees is complete for $(co-\mathcal{R})^2(\bigcup)(\Pi_1^0)$ (= Σ_1^1 -IND)

Theorem (Saint Raymond [2006])

The set of *cofinal* trees is complete for $(co-\mathcal{R})^2(\bigcup)(\Pi_1^0)$ (= Σ_1^1 -IND)

Theorem (Saint Raymond [2006])

The set of *cofinal* trees is complete for $(co-\mathcal{R})^2(\bigcup)(\Pi_1^0)$ (= Σ_1^1 -IND)

Theorem (Saint Raymond [2006])

The set of *cofinal* trees is complete for $(co-\mathcal{R})^2(\bigcup)(\Pi_1^0)$ (= Σ_1^1 -IND)

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Theorem (Gogacz, Michalewski, Mio, S. [2014]) The set $W_{k-1,2k-1}$ is Wadge-complete for $(\text{co-}\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

$$(\operatorname{co-}\mathcal{R})^{3}(\bigcup) \qquad \mathcal{R}(\operatorname{co-}\mathcal{R})^{2}(\bigcup)$$
$$(\operatorname{co-}\mathcal{R})^{2}(\bigcup) \qquad \mathcal{R}(\operatorname{co-}\mathcal{R})(\bigcup)$$
$$\operatorname{co-}\mathcal{R}(\bigcup) \qquad \mathcal{R}(\bigcup)$$

: :

Theorem (Gogacz, Michalewski, Mio, S. [2014])

:

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

: :

$$(0,3) \subseteq (\operatorname{co-}\mathcal{R})^{3}(\bigcup) \quad \mathcal{R}(\operatorname{co-}\mathcal{R})^{2}(\bigcup) \supseteq (1,4)$$
$$(1,3) \subseteq (\operatorname{co-}\mathcal{R})^{2}(\bigcup) \quad \mathcal{R}(\operatorname{co-}\mathcal{R})(\bigcup) \supseteq (0,2)$$
$$(0,1) \subseteq \operatorname{co-}\mathcal{R}(\bigcup) \quad \mathcal{R}(\bigcup) \supseteq (1,2)$$

:

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

$$W_{0,3} \in (0,3) \subseteq (\operatorname{co-}\mathcal{R})^3 (\bigcup) \quad \mathcal{R} (\operatorname{co-}\mathcal{R})^2 (\bigcup) \supseteq (1,4) \quad \exists W_{1,4}$$

 $W_{1,3} \in (1,3) \subseteq (\operatorname{co-}\mathcal{R})^2 (\bigcup) \quad \mathcal{R} (\operatorname{co-}\mathcal{R}) (\bigcup) \supseteq (0,2) \quad \exists W_{0,2}$

 $W_{0,1} \in (0,1) \subseteq \operatorname{co-}\mathcal{R}(\bigcup) \quad \mathcal{R}(\bigcup) \qquad \supseteq (1,2) \quad \exists W_{1,2}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])

:

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

: : : :

$$W_{0,3} \in (0,3) \subseteq (\operatorname{co-}\mathcal{R})^{3}(\bigcup) \quad \mathcal{R}(\operatorname{co-}\mathcal{R})^{2}(\bigcup) \supseteq (1,4) \quad \exists W_{1,4}$$

$$W_{1,3} \in (1,3) \subseteq (\operatorname{co-}\mathcal{R})^{2}(\bigcup) \quad \mathcal{R}(\operatorname{co-}\mathcal{R})(\bigcup) \supseteq (0,2) \quad \exists W_{0,2}$$

$$W_{0,1} \in (0,1) \subseteq \underbrace{\operatorname{co-}\mathcal{R}(\bigcup) \quad \mathcal{R}(\bigcup)}_{\operatorname{boldface hierarchy}} \supseteq (1,2) \quad \exists W_{1,2}$$

:

Theorem (Gogacz, Michalewski, Mio, S. [2014])

÷

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

$$W_{0,3} \in (0,3) \subseteq (\operatorname{co-}\mathcal{R})^3(\bigcup) \quad \mathcal{R}(\operatorname{co-}\mathcal{R})^2(\bigcup) \supseteq (1,4) \quad \exists W_{1,4}$$

$$W_{1,3} \in (1,3) \subseteq (\operatorname{co-}\mathcal{R})^2 (\bigcup) \quad \mathcal{R} (\operatorname{co-}\mathcal{R}) (\bigcup) \supseteq (0,2) \quad \ni W_{0,2}$$

:

Theorem (Gogacz, Michalewski, Mio, S. [2014])

:

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

$$W_{0,3} \in (0,3) \subseteq (\operatorname{co-}\mathcal{R})^3(\bigcup) \quad \mathcal{R}(\operatorname{co-}\mathcal{R})^2(\bigcup) \supseteq (1,4) \quad \exists W_{1,4}$$

$$W_{1,3} \in (1,3) \subseteq (\operatorname{co-}\mathcal{R})^2 (\bigcup) \quad \mathcal{R} (\operatorname{co-}\mathcal{R}) (\bigcup) \supseteq (0,2) \quad \exists W_{0,2}$$

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Corollary

Every regular set of trees is universally measurable.

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

(both can be proved using forcing and absolutely Δ_2^1 sets) (Fenstand, Normann [1974])
Correspondence between \mathcal{R} -sets and $W_{i,k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

(both can be proved using forcing and absolutely Δ_2^1 sets) (Fenstand, Normann [1974])

Corollary

For every Borel measure μ , the rank on $W_{i,k}$ is continuous w.r.t. μ .

Correspondence between \mathcal{R} -sets and $W_{i,k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

(both can be proved using forcing and absolutely Δ_2^1 sets) (Fenstand, Normann [1974])

Corollary

٠

For every Borel measure μ , the rank on $W_{i,k}$ is continuous w.r.t. μ .

Correspondence between \mathcal{R} -sets and $W_{i,k}$

Theorem (Gogacz, Michalewski, Mio, S. [2014])

The set $W_{k-1,2k-1}$ is Wadge-complete for $(co-\mathcal{R})^k(\bigcup)(\Pi_1^0)$ sets.

Corollary

Every regular set of trees is universally measurable.

Corollary

Every regular set of trees has Baire property.

(both can be proved using forcing and absolutely Δ_2^1 sets) (Fenstand, Normann [1974])

Corollary

:

For every Borel measure μ , the rank on $W_{i,k}$ is continuous w.r.t. μ .

Also: correspondence between parity games and $\mathcal{R}\text{-transform}$

Problem (Rabin-Mostowski index problem)

Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k)?

Problem (Rabin-Mostowski index problem)

Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k)?

→ open

Problem (Rabin-Mostowski index problem)Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k)? $\checkmark \bullet$ openPartial results by (Facchini, Murlak, S. [2013]),(Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Conjecture

Every disjoint pair of regular sets of index (i, k)

can be separated by a set of index both (i,k) and (i+1,k+1)

Conjecture

Every disjoint pair of regular sets of index (i, k)can be separated by a set of index both (i, k) and (i + 1, k + 1)

iff

k is even.

Problem (Rabin-Mostowski index problem)
Given φ and (i, k), decide if $\{t \mid t \models \varphi\}$ has index (i, k)? $\cdots \rightarrow$ openPartial results by (Facchini, Murlak, S. [2013]),
(Colcombet, Kuperberg, Löding, Vanden Boom [2013])

Conjecture

Every disjoint pair of regular sets of index (i, k)can be separated by a set of index both (i, k) and (i + 1, k + 1)iff

k is even.

Proved for (i, k) = (1, 2) (Rabin [1970])

Proved for (i, k) = (0, 1) (Michalewski, Hummel, Niwiński [2009]) Proved for all odd k (Arnold, Michalewski, Niwiński [2012])

 \longrightarrow open for even k (except (1,2))

22 / 26

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):

Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):

Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.

Theorem (Murlak [2006])

The Wadge hierarchy of **deterministic** regular sets has length $\omega^{\omega \cdot 3} + 3$.

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):

Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.

Theorem (Murlak [2006])

The Wadge hierarchy of **deterministic** regular sets has length $\omega^{\omega \cdot 3} + 3$.

The level of a given **deterministic** regular set can be computed.

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):

Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.

Theorem (Murlak [2006])

The Wadge hierarchy of **deterministic** regular sets has length $\omega^{\omega \cdot 3} + 3$.

The level of a given **deterministic** regular set can be computed.

Theorem (Duparc, Murlak [2007])

The Wadge hierarchy of weakly definable sets has length at least ϵ_0 .

Conjecture

The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):

Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.

Theorem (Murlak [2006])

The Wadge hierarchy of **deterministic** regular sets has length $\omega^{\omega \cdot 3} + 3$.

The level of a given deterministic regular set can be computed.

Theorem (Duparc, Murlak [2007])

The Wadge hierarchy of weakly definable sets has length at least ϵ_0 .

Conjecture

If a regular set is Σ_1^1 and **not** Borel then it is Σ_1^1 -complete.

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

→ open

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

•••• open Partial results by (Niwiński, Walukiewicz [2003]), ...

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

•••• open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{UB} = \{t \mid \text{there is a unique branch of } t \text{ with infinitely many } a\}$

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

vvv open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\text{UB}} = \{t \mid \text{there is a unique branch of } t \text{ with infinitely many } a\}$ $L_{\text{UB}} \text{ is } \Pi_1^1\text{-complete and regular}$

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

•••• open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\text{UB}} = \{t \mid \text{there is a unique branch of } t \text{ with infinitely many } a\}$ L_{UB} is Π_1^1 -complete and regular but L_{UB} does **not** have index (0, 1).

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

•••• open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\text{UB}} = \{t \mid \text{there is a unique branch of } t \text{ with infinitely many } a\}$ $L_{\text{UB}} \text{ is } \Pi_1^1\text{-complete and regular but } L_{\text{UB}} \text{ does not have index } (0,1).$

Question

Does Borel rank match weak quantifier alternation

Fact (Rabin [1970])

If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture

If a regular set if Borel then it has index (0,1) and (1,2).

•••• open Partial results by (Niwiński, Walukiewicz [2003]), ...

Example

Let $L_{\text{UB}} = \{t \mid \text{there is a unique branch of } t \text{ with infinitely many } a\}$ L_{UB} is Π_1^1 -complete and regular but L_{UB} does **not** have index (0, 1).

Question

Does Borel rank match weak quantifier alternation

for weakly definable sets?

Question (Rabin)

Does every MSO-def. relation admit an MSO-def. uniformisation?

Question (Rabin)

Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-def. choice function over trees.

Question (Rabin)

Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-def. choice function over trees. (no MSO-def. uniformisation for the formula $\varphi(x, X) := x \in X$)

Question (Rabin)

Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-def. choice function over trees. (no MSO-def. uniformisation for the formula $\varphi(x, X) := x \in X$)

Conjecture

There is **no** MSO-def. choice function for scattered sets X.

Question (Rabin)

Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-def. choice function over trees. (no MSO-def. uniformisation for the formula $\varphi(x, X) := x \in X$)

Conjecture

There is **no** MSO-def. choice function for scattered sets X.

 $X\ {\rm can}\ {\rm be}\ {\rm covered}\ {\rm by}\ {\rm countably}\ {\rm many}\ {\rm branches}$

Question (Rabin)

Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-def. choice function over trees. (no MSO-def. uniformisation for the formula $\varphi(x, X) := x \in X$)

Conjecture

There is **no** MSO-def. choice function for scattered sets X.

 $X\ {\rm can}\ {\rm be}\ {\rm covered}\ {\rm by}\ {\rm countably}\ {\rm many}\ {\rm branches}$

vvv applications to unambiguous automata

Summary
- Regular sets of trees — effectively representable sets in $\mathbf{\Delta}_2^1$

- Regular sets of trees effectively representable sets in $\mathbf{\Delta}_2^1$
- Index hierarchy complexity measure à la quantifier-alternation

- Regular sets of trees effectively representable sets in ${f \Delta}_2^1$
- Index hierarchy complexity measure à la quantifier-alternation
- Game tree sets $W_{i,k}$ complete sets for the hierarchy of \mathcal{R} -sets

- Regular sets of trees effectively representable sets in $\mathbf{\Delta}_2^1$
- Index hierarchy complexity measure à la quantifier-alternation
- Game tree sets $W_{i,k}$ complete sets for the hierarchy of \mathcal{R} -sets
- \bullet Connection between parity games and $\mathcal{R}\text{-}\mathsf{transform}$ of Kolmogorov

- Regular sets of trees effectively representable sets in ${f \Delta}_2^1$
- Index hierarchy complexity measure à la quantifier-alternation
- Game tree sets $W_{i,k}$ complete sets for the hierarchy of \mathcal{R} -sets
- \bullet Connection between parity games and $\mathcal{R}\text{-}\mathsf{transform}$ of Kolmogorov
- Many hierarchy-type questions for regular sets

- Regular sets of trees effectively representable sets in ${f \Delta}_2^1$
- Index hierarchy complexity measure à la quantifier-alternation
- Game tree sets $W_{i,k}$ complete sets for the hierarchy of \mathcal{R} -sets
- \bullet Connection between parity games and $\mathcal{R}\text{-}\mathsf{transform}$ of Kolmogorov
- Many hierarchy-type questions for regular sets
- Decidability questions

- Regular sets of trees effectively representable sets in ${f \Delta}_2^1$
- Index hierarchy complexity measure à la quantifier-alternation
- Game tree sets $W_{i,k}$ complete sets for the hierarchy of \mathcal{R} -sets
- \bullet Connection between parity games and $\mathcal{R}\text{-}\mathsf{transform}$ of Kolmogorov
- Many hierarchy-type questions for regular sets
- Decidability questions
- Synergy between descriptive set theory and automata theory