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Theorem (Presburger [1929])
The FO theory of addition (N, +) is decidable.

Theorem (Godel [1931], Church [1936], Turing [1936], Kleene [1943])
The FO theory of arithmetic (N, +,-) is undecidable.

Theorem (Tarski [1951])
The FO theory of reals (R, +, -) is decidable.

Theorem (Biichi [1960])
The MSO theory of one successor (N, +1) is decidable.

Theorem (Rabin [1969])
The MSO theory of two successors ({0,1}<¥,"0,"1) is decidable.
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Logic:
Monadic Second-Order (MsO) logic: 3X, 3z, v, —
Vocabulary:
Two successors: so(u,u”0), s1(u,u"1); Predicates a(u) for a € A

(also definable: prefix order <, lexicographic order <y, root e, ...)

Theorem (Rabin [1969])
The MSO theory of the A-labelled trees is decidable.

“Mother of all decidability results”

> applications in verification, model-checking, synthesis, ...

MSO subsumes LTL, CTL*, p-calculus, . ..
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Monadic Second-Order logic over trees
Example:
A = {a,b}
L= {t | t has a branch with infinitely many a}

Theorem (Niwinski [1985])
L is a non-Borel set of trees definable in MSO.

Proof
1. p:=3X. dJze X A — X is non-empty
Ve,ye X. (x <y v y<z) A — X is a <-chain
Vee X dJye X. 2 <y A — X is infinite
Ve e X. a(x) — X is a-labelled

2. L={t|tk ¢}

3. L is X}-complete
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Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
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Theorem (Bradfield [1998], Arnold [1999])
For every index (i, k) there is a regular set L that is not of index (i, k).
Fact L has index (i,k) iff L° hasindex (i + 1,k + 1)
L has index (i,k) iff L hasindex (i + 2,k + 2)

Index hierarchy

(0,3) (1,4)
(1,3) (0,2)
universal fragment <~ (0,1) (1,2) v existential fragment

Index hierarchy is the alternation-depth hierarchy for p-calculus
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o W, 1, has index (i, k) o t — (G 4(t) is continuous

teEe iff Ga(t) e Wig

o W, 1, is Wadge-complete for all regular sets of index (i, k)

Theorem (Arnold, Niwinski [2006])
Wi . does not Wadge-reduce to Wi 1 j41.

Proof: Banach's fix-point theorem. - strictness of the index hierarchy
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Theorem (Niwiniski [1985])
There are non-Borel regular sets.

Fact
By Rabin's theorem, every regular set is Al.

Fact
The sets W; . form a Wadge hierarchy of length w.

Theorem (Simonnet [1992], Finkel, Lecomte, Simonnet [2015])
Regular sets can be obtained by the game quantifier 9 applied to the
difference hierarchy over IT3.

Question (Mio [2012])
Is every regular set universally measurable?
Is the natural rank on W; ;. continuous w.r.t. every Borel measure?
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Al — a frontier of well-behaved sets

perfect set property for 31

determinacy for A}

universal measurability for ?

> search for constructive representations of sets in Al
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A((As)sew=w) = {z|Imew” Vnew. v € Ay}

= U N 4n, Ary,

TEWY NEW

Theorem (Souslin [1916])
Ais3l  iff A= A((As)sew<w) forsome (Ag)sew<w < IIY

Theorem (Souslin [1917]) <i.e. ¥ = A(H?))
Every X! set has perfect set property.

Theorem (Luzin, Sierpinski [1918])

Every X! set is universally measurable.
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Q= (A,B) with:
e a countable arena A

e a basis B < P(A)  (elements N € B are called strategies)

Q: P(X)* - P(X)

Q((An)neA) = U ﬂ Ap

NeB neN
To prove that z € Q((Ap)nea):

1. Player | chooses a strategy N € B
2. Player Il chooses n € N (a play consistent with V)
3. we verify that z € A,

Typically:
e sets A,, are simple (e.g. clopen) e the complexity lies in B

Caution: VA C X 30 3(Ay)sen. (Ag)s I A Q((AS)SGA) =A
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R(A,B) = (A<w, (M|eeM A VseM. {n|sAneM}eB}>

= (w, {{n}|ne w})

N = (w {w}) \
5

w<, {M|eeM A VseM.|{n]s" neM}‘—l})

WY, {M|M|sabranch})
R(N) = (w™, {M]|eeM A VseM.{n|s"neM}= {w}})

w<Y, {w<“}>
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R-sets (finite levels)

o R(U) ——R(U)
v

U——~nN
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R-sets (finite levels)
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(coR)*(U) —=—R(co-R) ()

R

coAd=co-R(J)——R(U)=A
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R-sets (finite levels)

SLIND e (c0-R)* () —=—R(co-R)(lJ) > co-SI-IND

R

I} «~ CO'A:CO'R(U)iR(U):A wo 31

U——~nN

Theorem (Kolmogorov [1928], Luzin, Sierpinski [1918])
If Q preserves measurability then co-{2 and RS2 preserve measurability.
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R-sets (finite levels)

SLIND e (c0-R)* () —=—R(co-R)(lJ) > co-SI-IND

R

I} «~ CO'A:CO'R(U)iR(U):A wo 31

U——~nN

Theorem (Kolmogorov [1928], Luzin, Sierpinski [1918])
If Q preserves measurability then co-{2 and RS2 preserve measurability.

Corollary
All R-sets are universally measurable.
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Correspondence between R-sets and W ;.
Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set Wy_1 21 is Wadge-complete for (co-R)¥(|J) (I1?) sets.
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Correspondence between R-sets and W ;.
Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set Wy_1 21 is Wadge-complete for (co-R)¥(|J) (I1?) sets.

Woze (0,3)c  (coR)*(U) R(co-R)*(U) 2(1,4) 3Wig4
Wize (1,3)c  (coR)*(U) R(co-R)(U) =2(0,2) 3 Wps
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[N— v [N—
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Correspondence between R-sets and W ;.
Theorem (Gogacz, Michalewski, Mio, S. [2014])
The set Wy_1 21 is Wadge-complete for (co-R)¥(|J) (I1?) sets.

Corollary
Every regular set of trees is universally measurable.

Corollary
Every regular set of trees has Baire property.

(both can be proved using forcing and absolutely A} sets)
(Fenstand, Normann [1974])

Corollary
For every Borel measure i, the rank on W ;. is continuous w.r.t. p.

Also: correspondence between parity games and R-transform
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Problem (Rabin-Mostowski index problem)
Given ¢ and (i, k), decide if {t | t = ¢} has index (i, k)?
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Hierarchy-type problems for regular sets

Problem (Rabin-Mostowski index problem)
Given ¢ and (i, k), decide if {t | t = ¢} has index (i, k)?
> open Partial results by (Facchini, Murlak, S. [2013]),
(Colcombet, Kuperberg, Loding, Vanden Boom [2013])

Conjecture
Every disjoint pair of regular sets of index (i, k)
can be separated by a set of index both (i,k) and (i + 1,k + 1)

iff
k is even.
Proved for (i, k) = (1,2) (Rabin [1970])
Proved for (i, k) = (0,1) (Michalewski, Hummel, Niwinski [2009])
Proved for all odd k& (Arnold, Michalewski, Niwinski [2012])

v~ open for even k (except (1,2))
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Wadge hierarchy of regular sets
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Conjecture
The Wadge hierarchy of regular sets is well-founded and has width 2.

Possibly related (Louveau, Saint Raymond [1986]):
Determinacy of Wadge games for Borel sets

can be proved in Second-Order arithmetic.

Theorem (Murlak [2006])
The Wadge hierarchy of deterministic regular sets has length w3+ 3.

The level of a given deterministic regular set can be computed.

Theorem (Duparc, Murlak [2007])
The Wadge hierarchy of weakly definable sets has length at least €.

Conjecture
If a regular set is X} and not Borel then it is 31-complete.

Michat Skrzypczak An automata-theoretic hierarchy inside A% 23/ 26



Index vs. topological complexity

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

w~> open

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

v~ open  Partial results by (Niwinski, Walukiewicz [2003]), ...

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

v~ open  Partial results by (Niwinski, Walukiewicz [2003]), ...

Example
Let Lyp = {t | there is a unique branch of ¢ with infinitely many a}

Michat Skrzypczak An automata-theoretic hierarchy inside A%

24/ 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

v~ open  Partial results by (Niwinski, Walukiewicz [2003]), ...

Example
Let Lyp = {t | there is a unique branch of ¢ with infinitely many a}

Lyg is ITi-complete and regular

Michat Skrzypczak An automata-theoretic hierarchy inside A%

24/ 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

v~ open  Partial results by (Niwinski, Walukiewicz [2003]), ...

Example
Let Lyp = {t | there is a unique branch of ¢ with infinitely many a}

Luyg is ITi-complete and regular but Lyp does not have index (0,1).

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

v~ open  Partial results by (Niwinski, Walukiewicz [2003]), ...

Example
Let Lyp = {t | there is a unique branch of ¢ with infinitely many a}

Luyg is ITi-complete and regular but Lyp does not have index (0,1).

Question
Does Borel rank match weak quantifier alternation

Michat Skrzypczak An automata-theoretic hierarchy inside A% 24 / 26



Index vs. topological complexity

Fact (Rabin [1970])
If a regular set has index (0,1) and (1,2) then it is Borel.

Conjecture
If a regular set if Borel then it has index (0,1) and (1,2).

v~ open  Partial results by (Niwinski, Walukiewicz [2003]), ...
Example
Let Lyp = {t | there is a unique branch of ¢ with infinitely many a}
Lyg is H%—complete and regular but Lyp does not have index (0, 1).
Question

Does Borel rank match weak quantifier alternation
for weakly definable sets?
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Uniformisation and choice over trees

Question (Rabin)
Does every MSO-def. relation admit an MSO-def. uniformisation?

Theorem (Gurevich, Shelah [1983], Carayol, Léding [2007])
There is no MSO-def. choice function over trees.
(no MSo-def. uniformisation for the formula ¢(z, X) := z € X)

Conjecture
There is no MSO-def. choice function for scattered sets X.

~

X can be covered by
countably many branches

~~> applications to unambiguous automata
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Summary
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e Index hierarchy — complexity measure a la quantifier-alternation
e Game tree sets W, , — complete sets for the hierarchy of R-sets
e Connection between parity games and R-transform of Kolmogorov
e Many hierarchy-type questions for regular sets
e Decidability questions

e Synergy between descriptive set theory and automata theory
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