Descriptive set theoretic methods in automata theory

Michał Skrzypczak

PhD dissertation University of Warsaw December 2014

355LLI Barcelona August 14th 2015

Supervisors: prof. Mikołaj Bojańczyk prof. Igor Walukiewicz

Motivation:

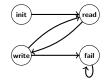
Motivation: Theoretical Computer Science

device

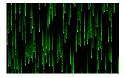
device

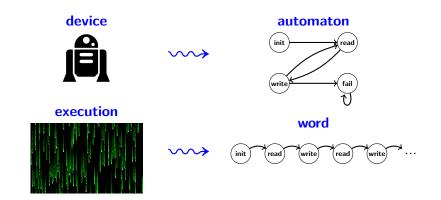
 \longrightarrow

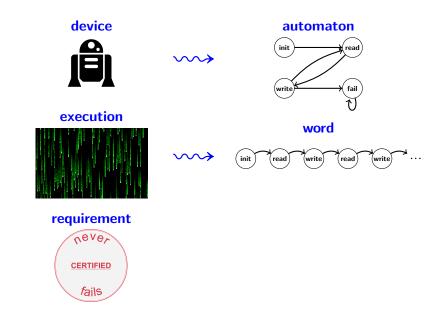
automaton

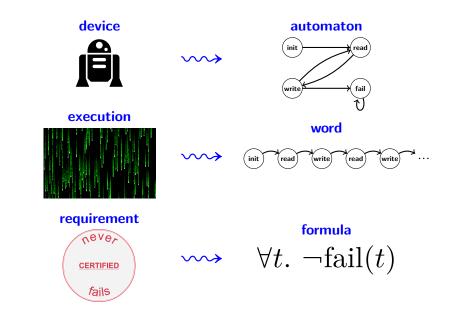


execution









Structures:

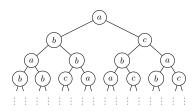
Structures: finite / **infinite**:

Structures: finite / infinite:

words

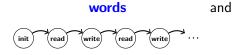
Structures: finite / **infinite**:

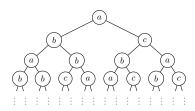
trees



Structures: finite / infinite:

trees

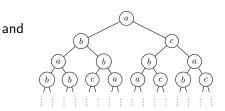




Logic:

Structures: finite / infinite:

words



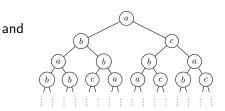
trees

Logic: Monadic Second-Order (MSO) logic

Michał Skrzypczak Descriptive set theoretic methods in automata theory 3 / 9

Structures: finite / infinite:

words



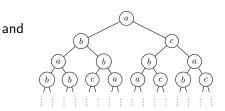
trees

Logic: Monadic Second-Order (MSO) logic

- \exists_x , \forall_x x — node

Structures: finite / infinite:

words



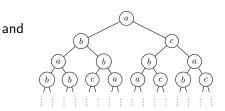
trees

Logic: Monadic Second-Order (MSO) logic

- \exists_x , \forall_x x node
- \exists_X, \forall_X X set of nodes

Structures: finite / infinite:

words



trees

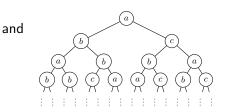
Logic: Monadic Second-Order (MSO) logic

- \exists_x , \forall_x x node
- \exists_X, \forall_X X set of nodes

- $x \in X$, x = y

Structures: finite / infinite:

words



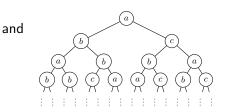
trees

Logic: Monadic Second-Order (MSO) logic

- \exists_x , \forall_x x node
- \exists_X, \forall_X X set of nodes
- $x \in X$, x = y- successor predicates: x y y x x

Structures: finite / infinite:

words



trees

Logic: Monadic Second-Order (MSO) logic

- \exists_x , \forall_x x node
- \exists_X, \forall_X X set of nodes
- $x \in X$, x = y
- successor predicates:

- order \leqslant / \preceq

Michał Skrzypczak

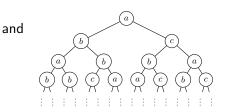
(x)

~y

y

Structures: finite / infinite:

words



trees

Logic: Monadic Second-Order (MSO) logic

- \exists_x , \forall_x x node
- \exists_X, \forall_X X set of nodes
- $x \in X$, x = y
- successor predicates:
- order \leqslant / \preceq
- label predicates: a(x), b(x), . . .

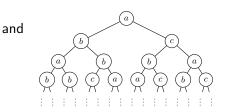
(x)

~y

y

Structures: finite / infinite:

words



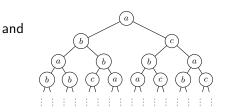
trees

Logic: Monadic Second-Order (MSO) logic

- label predicates: a(x), b(x), ...

Structures: finite / infinite:

words



trees

Logic: Monadic Second-Order (MSO) logic

Descriptive set theoretic methods in automata theory 3 / 9

Infinite words

Infinite words

— safety:
$$\forall x. \neg a(x)$$

Infinite words

- safety:
$$\forall x. \neg a(x)$$

- liveness: $\forall x. \exists y. x < y \land b(y)$

Infinite words

- safety:
$$\forall x. \neg a(x)$$

- liveness: $\forall x. \exists y. x < y \land b(y)$

Infinite trees

Infinite words

- safety:
$$\forall x. \neg a(x)$$

- liveness: $\forall x. \exists y. x < y \land b(y)$

Infinite trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

Infinite words

Infinite trees

— two incomparable b:

$$\exists x. \ \exists y. \ b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

— infinite chain of a:

$$\exists X. \ (\exists x. \ x \in X) \land$$

Infinite words

Infinite trees

— two incomparable b:

$$\exists x. \exists y. b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

— infinite chain of a:

$$\exists X. \ (\exists x. \ x \in X) \land \\ (\forall x. \ x \in X \Rightarrow a(x)) \land$$

Infinite words

Infinite trees

— two incomparable b:

$$\exists x. \exists y. b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

— infinite chain of a:

$$\exists X. \ (\exists x. \ x \in X) \land (\forall x. \ x \in X \Rightarrow a(x)) \land \forall x. \ x \in X \Rightarrow \exists y. \ x < y \land y \in X$$

Infinite words

Infinite trees

— two incomparable b:

$$\exists x. \exists y. b(x) \land b(y) \land \neg (x \le y \lor y \le x)$$

— infinite chain of a:

$$\exists X. \ (\exists x. \ x \in X) \land (\forall x. \ x \in X \Rightarrow a(x)) \land \forall x. \ x \in X \Rightarrow \exists y. \ x < y \land y \in X$$

MSO **subsumes**: LTL, CTL*, modal μ -calculus, ...

Decidability

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

Key ingredient

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

Key ingredient

formula $\varphi \leftrightarrow \varphi$ automaton \mathcal{A}

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

— is L empty?

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$ — is *L* empty? \checkmark [Büc62] / [Rab69]

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$ — is *L* empty? \checkmark [Büc62] / [Rab69]

— is *L* countable?

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$ — is L empty? \checkmark [Büc62] / [Rab69] — is L countable? \checkmark [BKR10]

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$ [Büc62] / [Rab69]

— is L empty?

— is L countable? [BKR10]

— is L First-order definable?

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

- $is L empty? \qquad \checkmark \qquad [Büc62] / [Rab69] \\ is L countable? \qquad \checkmark \qquad [BKR10]$
- is *L* First-order definable? ✓/? [Sch65], [McNP71], [Tho79]

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees

satisfying φ

[Büc62] / [Rab69]

[BKR10]

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

- is L empty?
- is *L* countable?
- is L First-order definable? $\checkmark/?$ [Sch65], [McNP71], [Tho79]

— is L weak MSO definable?

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

1

- is L empty?
- is *L* countable?
- is L First-order definable? \checkmark [Sch65], [McNP71], [Tho79]
- is L weak MSO definable? +/? [McN66], [KV97]

[Büc62] / [Rab69] [BKR10] [Sch65], [McNP71], [Tho [McN66] [KV97]

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \{s \mid s \models \varphi\}$

1

— is L empty?

_ . . .

- is *L* countable?
- is L First-order definable? \checkmark [Sch65], [McNP71], [Tho79]
- is L weak MSO definable? +/? [McN66], [KV97]

[Büc62] / [Rab69] [BKR10] [Sch65], [McNP71], [Tho

Theorem (Büchi [1962], Rabin [1969]) The Monadic Second-order logic is decidable over: infinite words and infinite trees. set of words / trees satisfying φ **Meta problems**: given φ decide properties of $L = \{s \mid s \models \varphi\}$ — is L empty? [Büc62] / [Rab69] — is L countable? [BKR10] ✓/? [Sch65], [McNP71], [Tho79] — is *L* First-order definable? +/ ? [McN66], [KV97] — is *L* weak MSO definable? ??? - . . .

Theorem (Büchi [1962], Rabin [1969])

The Monadic Second-order logic is decidable over:

- infinite words and
- infinite trees.

set of words / trees satisfying φ

Meta problems: given φ decide properties of $L = \overline{\{s \mid s \models \varphi\}}$

- is L empty?
- is *L* countable?
- is L First-order definable? $\checkmark/?$
- is L weak MSO definable?

[BKR10] [Sch65], [McNP71], [Tho79] [McN66], [KV97]

[Büc62] / [Rab69]

Theorem (Rice [1939])

— . . .

Every non-trivial property of recursively enumerable sets is undecidable.

+/?

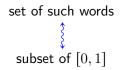
???

word labelled by $\{0,1,\ldots,9\}$

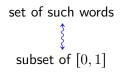
word labelled by $\{0, 1, \dots, 9\}$ real number in [0, 1]

word labelled by $\{0, 1, \dots, 9\}$ real number in [0, 1] set of such words

word labelled by $\{0, 1, \dots, 9\}$ real number in [0, 1]

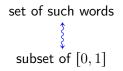


word labelled by $\{0,1,\ldots,9\}$ real number in [0,1]



In general

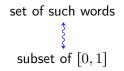
word labelled by $\{0, 1, \dots, 9\}$ real number in [0, 1]



In general

 A^ω with the product topology

word labelled by $\{0, 1, \dots, 9\}$ real number in [0, 1]

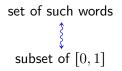


In general

 A^ω with the product topology

the set of A-labelled words

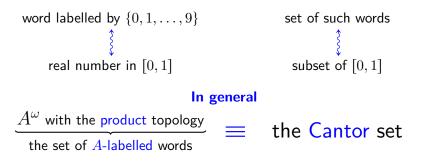
word labelled by $\{0, 1, \dots, 9\}$ real number in [0, 1]

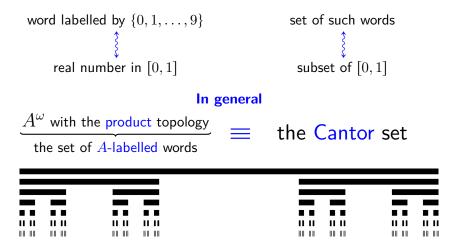


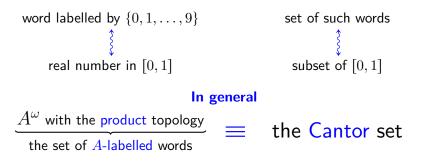
In general

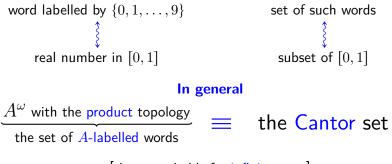
 A^ω with the product topology

the set of A-labelled words

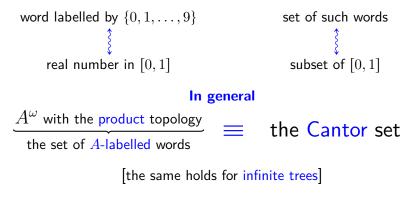




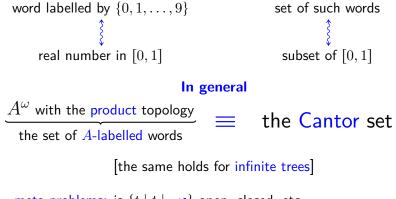




[the same holds for infinite trees]



 \longrightarrow meta-problems: is $\{t \mid t \models \varphi\}$ open, closed, etc.



 \longrightarrow meta-problems: is $\{t \mid t \models \varphi\}$ open, closed, etc.

Theorem (Niwiński [1985])

There exists an MSO formula φ such that

 $\{t \mid t \models \varphi\}$ is non-Borel.

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003])

The conjecture holds for deterministic automata.

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

Theorem

The conjecture holds for game automata.

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

Theorem

The conjecture holds for game automata.

Theorem

For $L = \{t \mid t \models \varphi \land t \text{ is scattered}\}$ either:

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

Theorem

The conjecture holds for game automata.

Theorem For $L = \{t \mid t \models \varphi \land t \text{ is scattered}\}$ either:

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

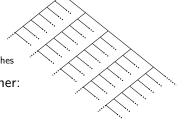
Theorem

The conjecture holds for game automata.

Theorem

has only countably many branches

For $L = \{t \mid t \models \varphi \land t \text{ is scattered}\}$ either:



Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

Theorem

The conjecture holds for game automata.

Theorem

has only countably many branches

For $L = \{t \mid t \models \varphi \land t \text{ is scattered}\}$ either:

— L is Π_1^1 -complete and **not** weak MSO-definable,

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

Theorem

The conjecture holds for game automata.

Theoremhas only countably many branchesFor $L = \{t \mid t \models \varphi \land t \text{ is scattered}\}$ either:-L is Π_1^1 -complete and not weak MSO-definable,-L is Borelandweak MSO-definable.

Conjecture (Skurczyński [1993])

For every MSO-definable set of infinite trees $L = \{t \mid t \models \varphi\}$:

L is Borel iff L is weak MSO-definable

Theorem (Niwiński, Walukiewicz [2003]) The conjecture holds for deterministic automata.

Theorem

The conjecture holds for game automata.

Theoremhas only countably many branchesFor $L = \{t \mid t \models \varphi \land t \text{ is scattered}\}$ either:-L is Π_1^1 -complete and not weak MSO-definable,-L is Borelandweak MSO-definable.Moreover, it is decidable which of the cases holds.

Definition

 $\varphi(x,X)$ defines choice if

Definition

 $\varphi(x, X)$ defines choice if

 $\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words:

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv$ "x is the <-minimal element of X"

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \boldsymbol{\varphi}(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

<

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \boldsymbol{\varphi}(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

X

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \boldsymbol{\varphi}(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

X

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \boldsymbol{\varphi}(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

X

???

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

[equivalent statement in terms of thin algebras]

X

???

Definition

 $\varphi(x,X)$ defines choice if

$$\forall X \neq \emptyset. \exists ! x \in X. \quad \varphi(x, X)$$

I.e. from every non-empty set of nodes \boldsymbol{X}

 $\varphi(x,X)$ chooses a unique element $x \in X$

Words: $\varphi(x, X) \equiv "x$ is the <-minimal element of X"

Theorem (Gurevich, Shelah [1983], Carayol, Löding [2007]) There is **no** MSO-definable choice over infinite trees.

Conjecture

There is **no** MSO-definable choice over **scattered** trees.

equivalent statement in terms of thin algebras

vvv applications to unambiguous automata

X

???

- synergy between logic, combinatorics, and topology

- synergy between logic, combinatorics, and topology
- most results are effective

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO
 - Rabin-Mostowski index problem

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO
 - Rabin-Mostowski index problem
 - algebras for infinite trees

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO
 - Rabin-Mostowski index problem
 - algebras for infinite trees
 - uniformisation and choice

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO
 - Rabin-Mostowski index problem
 - algebras for infinite trees
 - uniformisation and choice
- relations between decidability and topological complexity

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO
 - Rabin-Mostowski index problem
 - algebras for infinite trees
 - uniformisation and choice
- relations between decidability and topological complexity

Sincere thanks to the supervisors:

prof. Mikołaj Bojańczyk and prof. Igor Walukiewicz

- synergy between logic, combinatorics, and topology
- most results are effective
- topology used in the proofs (e.g. for hardness)
- advances in classical problems:
 - definability in weak MSO
 - Rabin-Mostowski index problem
 - algebras for infinite trees
 - uniformisation and choice
- relations between decidability and topological complexity

Sincere thanks to the supervisors:

prof. Mikołaj Bojańczyk and prof. Igor Walukiewicz

http://www.mimuw.edu.pl/~mskrzypczak/