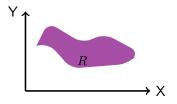
On uniformisation in ${\rm MSO}$ over infinite trees

Michał Skrzypczak

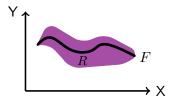
LIAFA, University of Warsaw

GT-ALGA 2015 Paris

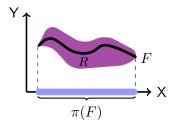
M. Skrzypczak On uniformisation in MSO over infinite trees 1 / 10



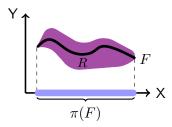
Relation $R \subseteq X \times Y$



Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$



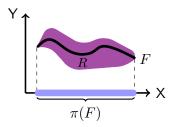
Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$



Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Theorem [Axiom of Choice]

Every relation admits a uniformisation.

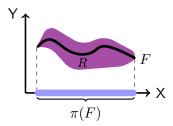


Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Theorem [Axiom of Choice]

Every relation admits a uniformisation.

What about definability?



Relation $R \subseteq X \times Y$ Uniformisation $F \subseteq R$ Projection $\pi(F) = \pi(R)$

Theorem [Axiom of Choice]

Every relation admits a uniformisation.

What about definability?

Theorem (Novikov, Kondô [1938])

Every co-analytic (Π^1_1) relation admits a co-analytic uniformisation.

Structure s over A

Structure s^\prime over B

Structure s over AStructure s' over BPair $(s,s') \sim s \otimes s'$ over $A \times B$

Structure s over A Structure s' over B Pair $(s, s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

Structure s over A Structure s' over B Pair $(s,s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words 🗸

Structure s over A Structure s' over B Pair $(s,s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words \checkmark - finite trees \checkmark

Structure s over AStructure s' over BPair $(s, s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words \checkmark - finite trees \checkmark - infinite words \checkmark

Structure s over A Structure s' over B Pair $(s, s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words \checkmark - finite trees \checkmark - infinite words \checkmark

Rabin's Uniformisation Problem

What about infinite trees?

Structure s over A Structure s' over B Pair $(s, s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words \checkmark - finite trees \checkmark - infinite words \checkmark

Rabin's Uniformisation Problem

What about infinite trees?

Theorem (Gurevich, Shelah [1983]) The relation $\mathbf{y} \in \mathbf{X}$ does not admit MSO-def. uniformisation of \mathbf{y} .

Structure s over A Structure s' over B Pair $(s, s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words \checkmark - finite trees \checkmark - infinite words \checkmark

Rabin's Uniformisation Problem

What about infinite trees?

Theorem (Gurevich, Shelah [1983]) The relation $\mathbf{y} \in \mathbf{X}$ does not admit MSO-def. uniformisation of \mathbf{y} .

Structure s over A Structure s' over B Pair $(s, s') \sim s \otimes s'$ over $A \times B$

Does every MSO-def. relation admit MSO-def. uniformisation?

- finite words \checkmark - finite trees \checkmark - infinite words \checkmark

Rabin's Uniformisation Problem

What about infinite trees?

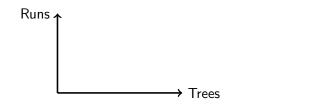
Theorem (Gurevich, Shelah [1983])

The relation $y \in X$ does not admit MSO-def. uniformisation of y.

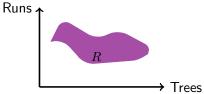
vvv no MSO-def. choice function over infinite trees

[a model-theoretic argument with some subtleties]

 \mathcal{A} — non-deterministic tree automaton



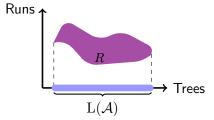
 \mathcal{A} — non-deterministic tree automaton



$$R = \big\{ (t, \rho) \mid \rho \text{ is an acc. run over } t \big\}$$

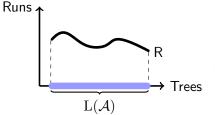
M. Skrzypczak On uniformisation in MSO over infinite trees 4 / 10

\mathcal{A} — non-deterministic tree automaton



$$R = \{(t, \rho) \mid \rho \text{ is an acc. run over } t\}$$
$$L(\mathcal{A}) = \{t \mid \exists_{\rho} (t, \rho) \in R\}$$

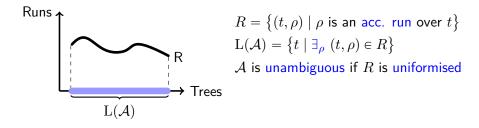
\mathcal{A} — non-deterministic tree automaton



$$R = \{(t,\rho) \mid \rho \text{ is an acc. run over } t\}$$
$$L(\mathcal{A}) = \{t \mid \exists_{\rho} (t,\rho) \in R\}$$

 ${\cal A}$ is unambiguous if R is uniformised

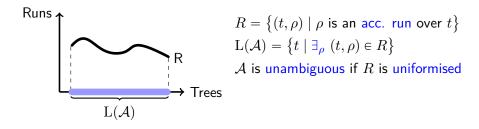
\mathcal{A} — non-deterministic tree automaton



Theorem (Niwiński, Walukiewicz [1996])

The language $\exists_y a(y)$ cannot be recognised by any unambiguous automaton.

\mathcal{A} — non-deterministic tree automaton



Theorem (Niwiński, Walukiewicz [1996])

The language $\exists_y \ a(y)$ cannot be recognised by any unambiguous automaton.

Proof

Any unambiguous automaton for $\exists_y a(y)$ induces an MSO-definable choice function.

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Proof

Pumping of runs of a marking automaton.

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Proof

Pumping of runs of a marking automaton.

State of the art

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Proof

Pumping of runs of a marking automaton.

State of the art

- no uniformisation in MSO

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Proof

Pumping of runs of a marking automaton.

State of the art

- no uniformisation in MSO

 $\begin{bmatrix} y \in X & \text{and its variants} \end{bmatrix}$

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Proof

Pumping of runs of a marking automaton.

State of the art

- no uniformisation in MSO $\begin{bmatrix} y \in X \\ y \in X \end{bmatrix}$ and its variants
- no unambiguous automata for MSO

Theorem (Carayol, Löding [2007])

There is no MSO-def. choice function over infinite trees.

Proof

Pumping of runs of a marking automaton.

State of the art

- no uniformisation in MSO $y \in X$
 - no unambiguous automata for MSO

 $\begin{bmatrix} y \in X & \text{and its variants} \end{bmatrix}$ $\begin{bmatrix} \exists_y \ a(y) & \text{and its variants} \end{bmatrix}$

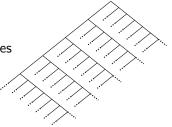
Thin trees

Thin trees [also: scattered or tame trees]

- partial, infinite, labelled, binary trees

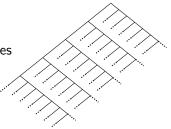
- partial, infinite, labelled, binary trees
- with only countably many infinite branches

- partial, infinite, labelled, binary trees
- with only countably many infinite branches



- partial, infinite, labelled, binary trees
- with only countably many infinite branches

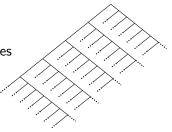
Thin trees = Finite trees \otimes Infinite words



- partial, infinite, labelled, binary trees
- with only countably many infinite branches

Thin trees = Finite trees \otimes Infinite words

Theorem (Bojańczyk, Idziaszek [2013]) MSO over thin trees is equivalent with thin algebra.



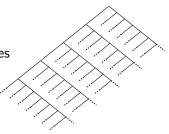
- partial, infinite, labelled, binary trees
- with only countably many infinite branches

Thin trees = Finite trees \otimes Infinite words

Theorem (Bojańczyk, Idziaszek [2013]) MSO over thin trees is equivalent with thin algebra.

Proof

Induction over the structure of a decomposition of a given tree.



- partial, infinite, labelled, binary trees
- with only countably many infinite branches

Thin trees = Finite trees \otimes Infinite words

Theorem (Bojańczyk, Idziaszek [2013]) MSO over thin trees is equivalent with thin algebra. effective characterisations

Proof

Induction over the structure of a decomposition of a given tree.

Skeleton — a decomposition of t into separate branches

- partial, infinite, labelled, binary trees
- with only countably many infinite branches

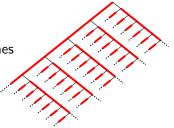
Thin trees = Finite trees \otimes Infinite words

Theorem (Bojańczyk, Idziaszek [2013]) MSO over thin trees is equivalent with thin algebra. effective characterisations

Proof

Induction over the structure of a decomposition of a given tree.

Skeleton — a decomposition of t into separate branches [formally a set of nodes of t]



- partial, infinite, labelled, binary trees
- with only countably many infinite branches

Thin trees = Finite trees \otimes Infinite words

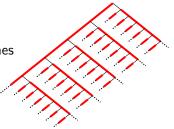
Theorem (Bojańczyk, Idziaszek [2013]) MSO over thin trees is equivalent with thin algebra. effective characterisations

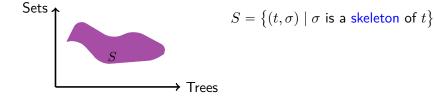
Proof

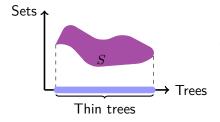
Induction over the structure of a decomposition of a given tree.

Skeleton — a decomposition of t into separate branches [formally a set of nodes of t]

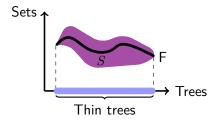
t has a skeleton $\Leftrightarrow t$ is thin



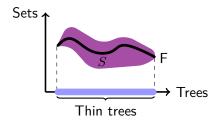




 $S = \{(t, \sigma) \mid \sigma \text{ is a skeleton of } t\}$ t is thin iff t has a skeleton



 $S = \{(t, \sigma) \mid \sigma \text{ is a skeleton of } t\}$ t is thin iff t has a skeleton ls there MSO-def. F?

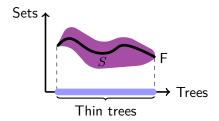


 $S = \{(t, \sigma) \mid \sigma \text{ is a skeleton of } t\}$ t is thin iff t has a skeleton Is there MSO-def. F?

Theorem (S. [2013])

There is **no** MSO-def. uniformisation of skeletons.

Thin trees cannot be recognised by unambiguous automaton.



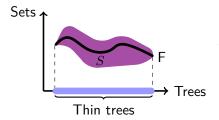
 $S = \{(t, \sigma) \mid \sigma \text{ is a skeleton of } t\}$ t is thin iff t has a skeleton Is there MSO-def. F?

Theorem (S. [2013])

There is **no** MSO-def. uniformisation of skeletons.

Thin trees cannot be recognised by unambiguous automaton.

vvv new examples of non-uniformisable / ambiguous languages



 $S = \{(t, \sigma) \mid \sigma \text{ is a skeleton of } t\}$ t is thin iff t has a skeleton Is there MSO-def. F?

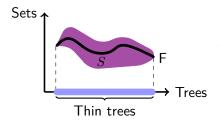
Theorem (S. [2013])

There is **no** MSO-def. uniformisation of skeletons.

Thin trees cannot be recognised by unambiguous automaton.

Proof

A method of proving non-uniformisability via consistent markings.



 $S = \{(t, \sigma) \mid \sigma \text{ is a skeleton of } t\}$ t is thin iff t has a skeleton Is there MSO-def. F?

Theorem (S. [2013])

There is **no** MSO-def. uniformisation of skeletons.

Thin trees cannot be recognised by unambiguous automaton.

Proof

A method of proving non-uniformisability via consistent markings.

Conjecture (S. [2013])

There is **no** MSO-def. choice function over thin trees.

A finite algebra H

i.e. monoid, forest algebra, thin algebra,...

A finite algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ ~ type of structures

A finite algebra H

i.e. monoid, forest algebra, thin algebra,...

element $h \in H$ ~ type of structures operation \cdot in H ~ composition of structures

M. Skrzypczak On uniformisation in MSO over infinite trees 8 / 10

A finite algebra ${\cal H}$

i.e. monoid, forest algebra, thin algebra,...

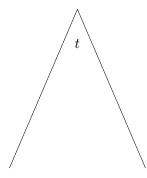
- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism $\alpha: \text{Struct} \to H \quad \sim \quad \text{assignment of actual types}$

A finite algebra ${\cal H}$

i.e. monoid, forest algebra, thin algebra,...

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism α : Struct $\rightarrow H \sim$ assignment of actual types

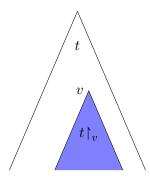
Marking : a labelling τ of a tree t by H



A finite algebra ${\cal H}$

i.e. monoid, forest algebra, thin algebra,...

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism α : Struct $\rightarrow H \sim$ assignment of actual types

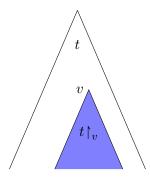


A finite algebra ${\cal H}$

i.e. monoid, forest algebra, thin algebra,...

- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism $\alpha: \text{Struct} \to H \quad \sim \quad \text{assignment of actual types}$

Actual marking : $\tau(v) = \alpha(t \upharpoonright_v)$



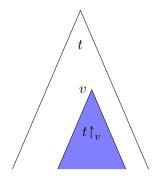
A finite algebra H

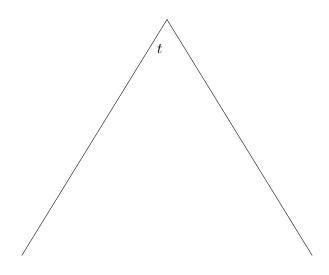
i.e. monoid, forest algebra, thin algebra,...

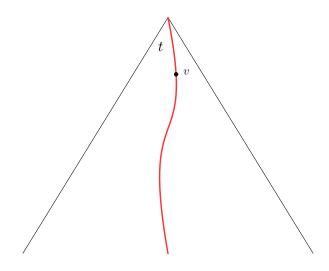
- element $h \in H$ ~ type of structures
- operation \cdot in H \sim composition of structures
- homomorphism $\alpha: \text{Struct} \to H \quad \sim \quad \text{assignment of actual types}$

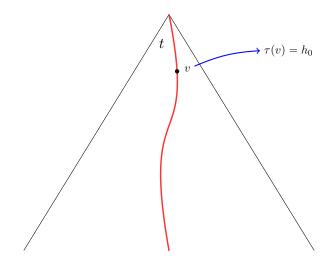
Actual marking : $\tau(v) = \alpha(t \upharpoonright_v)$

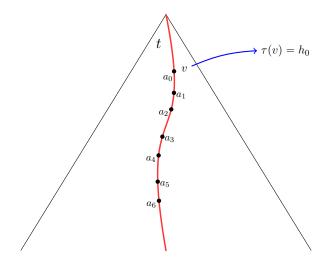
if there exists α : Trees $\rightarrow H...$

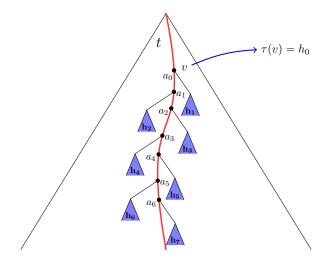


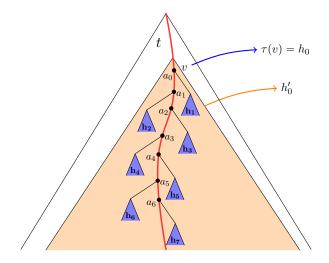






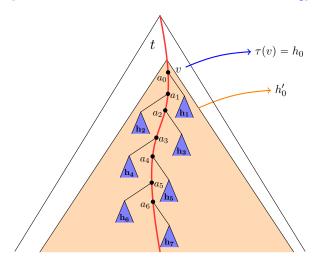






 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h'_0$]



 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h'_0$]

Example

 τ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

 τ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$ Example

$$H = \{h_0, h_1\}, \quad h_0 \equiv$$
 "no letter a ", $h_1 \equiv$ "exists letter a "

For all v let:

 τ is consistent if the declarations are consistent along branches [it is enough to use thin algebra to check if $h_0=h_0']$

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b

 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0=h_0^\prime$]

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\tau(v) = h_1$ ("exists a")

 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0=h_0^\prime$]

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv \text{``no letter } a'', \quad h_1 \equiv \text{``exists letter } a''$ For all v let: t(v) = b and $\tau(v) = h_1$ (``exists a'') τ is consistent!

 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0=h_0^\prime$]

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\tau(v) = h_1$ ("exists a") τ is consistent!

Theorem (S. [2013])

There is no ${\rm MSO}\xspace$ def choice function on thin trees iff

 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0 = h_0'$]

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\tau(v) = h_1$ ("exists a") τ is consistent!

Theorem (S. [2013])

There is no MSO-def choice function on thin trees iff For every finite thin algebra H and every tree t (thin or non-thin)

 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0=h_0^\prime$]

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\tau(v) = h_1$ ("exists a") τ is consistent!

Theorem (S. [2013])

There is no MSO-def choice function on thin trees iff For every finite thin algebra H and every tree t (thin or non-thin) there exists a consistent marking of t by H.

 τ is consistent if the declarations are consistent along branches

[it is enough to use thin algebra to check if $h_0=h_0^\prime$]

Example

 $H = \{h_0, h_1\}, \quad h_0 \equiv$ "no letter a", $h_1 \equiv$ "exists letter a"

For all v let: t(v) = b and $\tau(v) = h_1$ ("exists a") τ is consistent!

Theorem (S. [2013])

There is no ${\rm MSO}\xspace$ def choice function on thin trees

iff

For every finite thin algebra H and every tree t (thin or non-thin) there exists a consistent marking of t by H.

[no actual marking because $\alpha: \text{Thin} \to H \pmod{\alpha: \text{Trees} \to H}$]

New examples of non-uniformisability / ambiguity in MSO

New examples of non-uniformisability / ambiguity in MSO

New conjecture: no MSO-def. choice function over thin trees

New examples of non-uniformisability / ambiguity in MSO

New conjecture: no MSO-def. choice function over thin trees

Equivalently: every tree admits a consistent marking by every thin algebra

New examples of non-uniformisability / ambiguity in MSO

New conjecture: no MSO-def. choice function over thin trees

Equivalently: every tree admits a consistent marking by every thin algebra

Example (Bojańczyk, Kuperberg [2014]) Even if $t \equiv a_0$ there may be no consistent $\tau \equiv h_0$ (i.e. constant).

New examples of non-uniformisability / ambiguity in MSO

New conjecture: no MSO-def. choice function over thin trees

Equivalently: every tree admits a consistent marking by every thin algebra

Example (Bojańczyk, Kuperberg [2014]) Even if $t \equiv a_0$ there may be no consistent $\tau \equiv h_0$ (i.e. constant).

Theorem (Bilkowski, S. [2013]) If there is **no** MSO-def. choice function over thin trees

New examples of non-uniformisability / ambiguity in MSO

New conjecture: no MSO-def. choice function over thin trees

Equivalently: every tree admits a consistent marking by every thin algebra

Example (Bojańczyk, Kuperberg [2014]) Even if $t \equiv a_0$ there may be no consistent $\tau \equiv h_0$ (i.e. constant).

Theorem (Bilkowski, S. [2013])
If there is no MSO-def. choice function over thin trees
then it is decidable if a regular language of complete trees

New examples of non-uniformisability / ambiguity in MSO

New conjecture: no MSO-def. choice function over thin trees

Equivalently: every tree admits a consistent marking by every thin algebra

Example (Bojańczyk, Kuperberg [2014]) Even if $t \equiv a_0$ there may be no consistent $\tau \equiv h_0$ (i.e. constant).

Theorem (Bilkowski, S. [2013]) If there is **no** MSO-def. choice function over thin trees then it is decidable if a regular language of complete trees is bi-unambiguous [both L and Trees-L are unambiguous].