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Abstract. We introduce a general method for proving measurability of
topologically complex sets by establishing a correspondence between the
notion of game tree languages from automata theory and the σ-algebra
of R-sets, introduced by A. Kolmogorov as a foundation for measure
theory. We apply the method to answer positively to an open problem
regarding the game interpretation of the probabilistic µ-calculus.

1 Introduction

Among logics for expressing properties of nondeterministic (including concur-
rent) processes, represented as transition systems, Kozen’s modal µ-calculus [15]
plays a fundamental rôle. This logic enjoys an intimate connection with parity
games, which offers an intuitive reading of fixed-points, and underpins the ex-
isting technology for model-checking µ-calculus properties. An abstract setting
for investigating parity games, using the tools of descriptive set theory, is given
by so-called game tree languages (see, e.g. [2]). The language Wi,k is the set of
parity games with priorities in {i . . . k}, played on an infinite binary tree struc-
ture, which are winning for Player ∃. The (i, k)-indexed sets Wi,k form a strict
hierarchy of increasing topological complexity called the index hierarchy of game
tree languages (see [5,1,2]). Precise definitions are presented in Section 2.

For many purposes in computer science, it is useful to add probability to the
computational model, leading to the notion of probabilistic nondeterministic
transition systems (PNTS’s). In an attempt to identify a satisfactory analogue
of Kozen’s µ-calculus for expressing properties of PNTS’s, the third author has
recently introduced in [19,20] a quantitative fixed-point logic called probabilistic
µ-calculus with independent product (pLµ). A central contribution of [20] is the
definition of a game interpretation of pLµ, given in terms of a novel class of games
generalizing ordinary two-player stochastic parity games. While in ordinary two-
player (stochastic) parity games the outcomes are infinite sequences of game-
states, in pLµ-games the outcomes are infinite trees, called branching plays,
whose vertices are labelled with game-states. This is because in pLµ some of
the game-states, called branching states, are interpreted as generating distinct
game-threads, one for each successor state of the branching state, which continue
their execution concurrently and independently. The winning set of a pLµ-game
is therefore a collection of branching plays specified by a combinatorial condition
associated with the structure of the game arena.



Unlike winning sets of ordinary two-player (stochastic) parity games, which
are well-known to be Borel sets, the winning sets of pLµ-games generally be-
long to the ∆1

2-class of sets in the projective hierarchy of Polish spaces [20,
Theorem 4.20]. This high topological complexity is a serious concern because
pLµ-games are stochastic, i.e. the final outcome (the branching play) is deter-
mined not only by the choices of the two players but also by the randomized
choices made by a probabilistic agent. A pair of strategies for ∃ and ∀, repre-
senting a play up-to the choice of the probabilistic agent, only defines a prob-
ability measure on the space of outcomes. For this reason, one is interested in
the probability of a play to satisfy the winning condition. Under the standard
Kolmogorov’s measure-theoretic approach to probability theory, a set has a well-
defined probability only if it is a measurable set4. Due to a result of Kurt Gödel
(see [11, § 25]), it is consistent with Zermelo-Fraenkel Set Theory with the Ax-
iom of Choice (ZFC) that there exists a ∆1

2 set which is not measurable. This
means that it is not possible to prove (in ZFC) that all ∆1

2-sets are measurable.
However it may be possible to prove that a particular set (or family of sets) in
the ∆1

2-class is measurable. In [19] the author asks the following question5:

Question: are the winning sets of pLµ-games provably measurable?

This problem provided the original motivation of our work. We will answer
positively to the question by developing a general method for proving measura-
bility of topologically complicated sets.

This type of questions has been investigated since the first developments of
measure theory, in late 19th century, as the existence of non-measurable sets
(e.g. Vitali sets [11]) was already known. The measure-theoretic foundations of
probability theory are based around the concept of a σ-algebra of measurable
events on a space of potential outcomes. Typically, the σ-algebra is assumed to
contain all open sets. Hence the minimal σ-algebra under consideration consists
of all Borel sets whereas the maximal consists, by definition, of the collection
of all measurable sets. The Borel σ-algebra, while simple to work with, lacks
important classes of measurable sets (e.g. Π1

1-complete sets). On the other hand,
the full σ-algebra of measurable sets may be difficult to work with since there
is no constructive methodology for establishing its membership relation, i.e. for
proving that a given set belongs to this σ-algebra.

This picture led to a number of attempts to find the largest σ-algebra, ex-
tending the Borel σ-algebra and including as many measurable sets as possible
and, at the same time, providing practical techniques for establishing the mem-
bership relation. A general methodology for constructing such σ-algebras is to
identify a family F of safe operations on sets which, when applied to measurable
sets are guaranteed to produce measurable sets. When the operations considered
have countable arity (e.g. countable union), the σ-algebra generated by the open
sets closing under the operations in F admits a transfinite decomposition into

4 More precisely, universally measurable, see Section 2.
5 Statement “is mG-UM(Γp) true?”, see Definition 5.1.18 and discussion at the end of
Section 4.5 in [19]. See also Section 8.1 in [20].



ω1 levels, and this allows the membership relation to be established inductively.
The simplest case is given by the σ-algebra of Borel sets, with F consisting of
the operations of complementation and countable union. Other less familiar ex-
amples include C-sets studied by E. Selivanovski [21], Borel programmable sets
proposed by D. Blackwell [4] and R-sets proposed by A. Kolmogorov [14].

The σ-algebra of R-sets is, to our knowledge, the largest ever considered.
Most measurable sets arising in ordinary mathematics are R-sets belonging to
the finite levels of the transfinite hierarchy of R-sets. For example, all Borel
sets, analytic sets, co-analytic sets and Selivanovski’s C-sets lie in the first two
levels [8]. Thus, for most practical purposes, the following principle is valid:

Principle: “ all practically useful measurable sets belong to the finite
levels of the transfinite hierarchy of Kolomogorov’s R-sets.”

Contributions. The definition of R-sets in [14], formulated in terms of op-
erations on sets and transformations on operations (Section 3), is purely set-
theoretical. As a main technical contribution of this work, we provide an alter-
native game-theoretical characterization of the finite levels of the hierarchy of
R-sets in terms of game tree languages Wi,k.

Theorem 1. Wk−1,2k−1 is complete for the k-th level of the hierarchy of R-sets.

As a consequence one can establish the measurability of a given set A⊆X by
constructing a continuous reduction to Wi,k. This can be thought as a coding f
of elements in X in terms of parity games with priorities in {i, . . . , k} such that
x∈A if and only if f(x) is winning for Player ∃. Parity games are well-known
and relatively simple to work with. Thus the proof method allows for easier
applications. Since R-sets exhaust the realm of reasonable measurable sets, and
the sets Wi,k are complete among R-sets, the method should cover most cases.

Additionally, in Section 6, we investigate the special continuity property of
measures on Wi,k with respect to the approximations Wα

i,k, crucially required in
the proof of determinacy of pLµ-games of [20,19]. As observed in [19], the prop-
erty follows from the set-theoretic Martin Axiom at ℵ1 (MAℵ1). The problem
of whether the property holds in ZFC alone is left open in [19]. Our contri-
bution shows that the continuity property holds for W0,1 and that for higher
indices it does not depend on cardinality assumptions such as the negation of
the Continuum Hypothesis, which is one of the consequences of MAℵ1 .

Applications. As already observed in [19, §5.4], the winning sets of pLµ-games
reduce to game tree languages. Thus Theorem 1 settles the question posed in [19]
about the measurability of pLµ winning sets. More generally, our result can find
applications in solving similar problems. For example, in models of probabilis-
tic concurrent computation (e.g. probabilistic Petri nets [16], probabilistic event
structures [9], stochastic distributed games [22]), executions are naturally mod-
elled by configurations of event structures (i.e. special kinds of acyclic graphs)
and not by sequences. Many natural predicates on executions (e.g. the collection
of well-founded graphs) are of high topological complexity.



Related Work. Beside the original work of Kolmogorov [14], the measure the-
oretic properties of R-sets are investigated with set-theoretic methods by Lya-
punov in [17]. A game-theoretic approach to R-sets, closely related to this work,
is developed by Burgess in [8] where the following characterization is stated as a
remark without a formal proof: (1) every set A⊆X belongs to a finite level of the
hierarchy of R-sets if and only if it is of the form A=a(K), for some set K ⊆ ωω
which is a Boolean combination of Fσ sets, and (2) the levels of the hierarchy of
R-sets are in correspondence with the levels of the difference hierarchy (see [13,
§22.E]) of Fσ sets. The operation a is the so-called game quantifier (see [13,
§20.D] and [6,7,12,18]). Admittedly, our characterization of R-sets in terms of
game tree languages Wi,k, can be considered as a modern variant of the result
of Burgess.6 Having concrete examples of complete sets, however, sheds light
on the concept of R-sets and, in analogy with the study of complexity classes
in computational complexity theory, may simplify further investigations. Lastly,
it is suggestive to think that the origins of the concept of parity games, devel-
oped since the 80’s in Computer Science to investigate ω-regular properties of
transition systems, could be backdated to the original work of A. Kolmogorov.

2 Basic Notions from Descriptive Set Theory

We assume the reader is familiar with the basic notions of descriptive set theory
and measure theory. We refer to [13] as a standard reference on these subjects.

Given two sets X and Y , we denote with XY the set of functions from Y
to X. We denote with 2 and ω the two element set and the set of all natural
numbers, respectively. The powerset of X will be denoted by both 2X and P(X),
as more convenient to improve readability. A topological space is Polish if it is
separable and the topology is induced by a complete metric. A set is clopen if it
is both closed and open. A space is zero-dimensional if the clopen subsets form
a basis of the topology. In this work we limit our attention to zero-dimensional
Polish spaces. Let X,Y be two topological spaces and A ⊆ X, B ⊆ Y be two
sets. We say that A is Wadge reducible to B, written as A≤W B, if there exists
a continuous function f : X → Y such that A = f−1(B). Two sets A and B
are Wadge equivalent (denoted A∼W B) if A≤W B and B≤W A hold. Given a
family C of subsets of X, we say a set A∈C is Wadge complete if B≤W A holds
for all B∈C. Given a Polish space X, we denote withM=1(X) the Polish space
of all Borel probability measures µ on X (see e.g. [13, Theorem 17.22]). A set
N ⊆ X is µ-null if there exists a Borel set B ⊇ N such that µ(B) = 0. A set
A⊆ X is µ-measurable if A = B ∪ N , for a Borel set B and a µ-null set N . A
set A ⊆ X is universally measurable if it is µ-measurable for all µ∈M=1(X). In
what follows we omit the “universally” adjective.
6 The fact that the setsWi,k are R-sets follows from the above formulation of Burgess’
theorem. Also, our Theorem 1 can be easily inferred for k = 1. The case of k = 2
follows from the theorem of Burgess in conjunction with [18]. Our proof of Theorem 1
yields an independent and formal argument which backs the above statement of
Burgess’ theorem.



Given two natural numbers i < k, the set Tri,k of all complete (i.e. without
leaves) binary trees whose vertices are labelled by elements of {∃,∀}×{i, . . . , k}
is endowed with a Polish topology (see e.g. [2]). Each t ∈ Tri,k can be interpreted
as a two-player parity game with priorities in {i, . . . , k}, with players ∃ and ∀
controlling vertices labelled by ∃ and ∀, respectively.

Definition 1. Given two natural numbers i < k, the game tree language Wi,k

is the subset of Tri,k consisting of all parity games admitting a winning strategy
for ∃. The pair (i, k) is called the index of Wi,k.

Clearly, there is a natural Wadge equivalence between the languages Wi,k

and Wi+2,k+2. Therefore, we identify indices (i, k) and (i+ 2j, k + 2j) for every
i≤k and j∈ω. Indexes can be partially ordered by defining (i, k)⊆(i′, k′) if and
only if {i, . . . , k}⊆{i′, . . . , k′}.

3 Definition and Basic Properties of R–sets

Following Kolmogorov, we introduce R–sets as the family generated by the op-
eration

⋃
◦
⋂

and closing under a transformation co-R. It will be convenient
to assume that the countably many inputs of an operation Γ are indexed by a
countable set (called the arena) denoted by AΓ . Thus an operation Γ has type
Γ :P(X)AΓ → P(X). The operations of countable union and intersections are
denoted by

⋃
and

⋂
, respectively, and their arena is defined as A⋃ =A⋂ = ω.

Definition 2. Given two operations Γ and Θ their composition Θ ◦ Γ is the
operation with arena AΓ × AΘ defined as: Θ ◦ Γ ({As,s′ | s ∈ AΓ , s′ ∈ AΘ}) =
Θ( { Γ ({As,s′ | s ∈ AΓ }) | s′ ∈ AΘ}).

Definition 3. A basis for an operation Γ is a set NΓ ⊆2AΓ such that

Γ ({As : s ∈ AΓ }) =
⋃

S∈NΓ

⋂
s∈S

As (1)

Not all operations have a basis, but a family N⊆2A uniquely determines an
operation Γ with arena A and basis N . In what follows we will only consider
operations Γ with a basis NΓ . One can check that N⋂ = {{n} | n ∈ ω} and
N⋂ ={ω}. A proof is presented in Section B.3.

Definition 4. For a given operation Θ with arena A and basis NΘ, we de-
fine a dual operation co-Θ = Γ with the same arena A and basis Nco-Θ

def
={

S ∈ 2A | ∀T ∈ NΘ T ∩ S 6= ∅
}
. One can notice that equivalently we can define

co-Θ({As : s ∈ A}) =
⋂
S∈N

⋃
s∈S As.

As an illustration of this definition, the equalities co-
⋃

=
⋂

and co-
⋂

=
⋃

hold. The simple proof is presented in Section B.3.



Definition 5. The R-transformation of an operation Θ with basis NΘ is the
operation RΘ=Γ , with arena AΓ =(AΘ)∗ (finite sequences of elements in AΘ)
uniquely determined by the basis:

NRΘ
def
= {S ⊆ (AΘ)∗ | ∃T ⊆ S. ε ∈ T ∧ ∀t ∈ T {v ∈ AΘ : tv ∈ T} ∈ NΘ} (2)

where ε denotes the empty sequence and tv the concatenation of t∈ (AΘ)∗ with
v∈AΘ. We denote with co-R the composition co-(R(Θ)) and define the iteration

Θk
def
= (co-R)k

(⋃
◦
⋂)

.

Definition 6. For a positive number k≥1, we say that a set A⊆X is an R-set
of k-th level if and only if A = Θk({Us : s ∈ AΘk}) for some clopen sets Us⊆X.

In what follows by R-sets we mean R-sets of finite levels. For a proof of the
following lemma see Section B.1.

Lemma 1 ([8]). The k–th level of R-sets is closed under pre-images of contin-
uous functions.

We say that an operation Γ preserves measurability if for any family E =
{As}s∈AΓ of measurable sets, the set Γ (E) is measurable. The following property
motivates the notion of R-sets (see Section B.2 in the Appendix for a proof):

Theorem 2 ([17, Theorem 4]). If Γ and Θ preserve measurability then Γ ◦Θ,
RΓ , and co-Γ preserve measurability.

Corollary 31. All R-sets are measurable.

4 Matryoshka games

In this section we defineMatryoshka games, a variant of parity games which make
it easier to establish a connection with the operations Θk defined in Section 3.

A Matryoshka game is the familiar structure of a two-player parity game
played on an infinite countably branching graph, extended with a labelling func-
tion assigning to each finite play (i.e. every sequence of game-states ending in a
terminal state) a play label. Formally:

G = {V G = V G∃ t V
G
∀ , F

G , EG , vGI , Ω
G ,AG , labelG},

such that {V G =V G∃ t V
G
∀ , F

G , EG , vGI , Ω
G} is a standard parity game with ter-

minal positions FG , see Section B.5. Additionally, AG is a set of play labels, and
labelG : (V G)∗FG → AG is a function assigning to finite plays their play labels.

We assume that for every v∈V G there is at least one v′ ∈ V G ∪FG such that
(v, v′) ∈EG , so that the only terminal game-states are in FG . As for standard
parity games, the pair (i, k) containing the minimal and maximal values of Ω is
called the index of the game. By P ∈ {∃,∀} we denote the players of the game.
The opponent of P is denoted by P̄ .



A play is defined as usual as a maximal path in the arena, i.e., either as a finite
sequence in

(
V G
)∗
FG or as an infinite sequence (V G)G . Similarly, a strategy σ

for a player P is a function σ :
(
V G
)∗
V GP → V G ∪ FG defined as expected.

The novelty in Matryoshka games is given by the set of play labels AG and the
associated labelling function labelG . These are used to define parametric winning
condition in the Matryoshka game, as we now describe.

A set of play labels X ⊆ AG is called a promise. A finite play π is winning
for ∃ with promise X if label(π) ∈ X. An infinite play is π is winning for ∃ if(

lim supn→∞ ΩG(π(n))
)
is even, as usual. If a play is not winning for ∃ then it

is winning for ∀. A strategy σ for Player P is winning in the Matryoshka game
G with promise X if, for every counter-strategy τ of P , the resulting play π(σ, τ)
is winning for P with promise X, in the sense just described. The following
proposition directly follows from the well-known determinacy of parity games.

Proposition 1. If G is a Matryoshka game with play labels AG and X ⊆ AG
then exactly one of the players has a winning strategy in G with promise X.

The point of having parametrized winning conditions in Matryoshka games is
the possibility of defining set-theoretical operations with a direct game interpre-
tation. Given a Polish space X, the operation on sets (see Section 2) associated
with a Matryoshka game G has arena AG and is defined as follows:

G(E)
def
=
{
x ∈X : ∃ has a w. s. in G with promise {s∈AG : x ∈Es}

}
(3)

where E={Es : s ∈ AG} is a family of subsets of X.
We now sketch the definition of a Matryoshka game, called G0, whose as-

sociated operation is precisely the operation (
⋃
◦
⋂

) of Section 2 (a proof is
presented in Section B.5). The structure of G0 is depicted in Figure 1. This is a
simple game of two steps, where ∃ chooses a number n and ∀ responds choosing
a number m. Every play is finite and of the form 〈ε, n, n.m〉. The set of play
labels AG0 is defined as ω × ω and labelG(〈ε, n, n.m〉)=(n,m).

G0(∃, 0)

(∀, 0)
0

0 . . .1 . . .2 . . .

(∀, 0)
1

0 . . .1 . . .2 . . .

(∀, 0)
2

0 . . .1 . . .2 . . .

(∀, 0)
3

0 . . .1 . . .2 . . .

. . .

Fig. 1. The game G0 corresponding to the operation
⋃
◦
⋂
.

We now introduce transformations on games which directly match the cor-
responding transformations on operations defined in Section 2. Due to space
limitations, formal introduction of these transformation is given in Section B.5.



For a Matryoshka game G of index (i, k), we define co-G as the game obtained
from G by replacing the sets V∃ ↔ V∀ and increasing all priorities in Ω by 1.
Note that the index of co-G is (i + 1, k + 1), and that the sets of plays in the
two games are equal. We define Aco-G def

= AG and labelco-G(π)
def
= labelG(π).

Lastly, we define the R transformation on games. Let us take a Matryoshka
game G of index (i, k). Let 2j be the minimal even number such that k ≤ 2j.
The game RG is depicted on Figure 2.

RG
G

· · ·

(∀, 2j)

. . .

G
· · ·

(∀, 2j)

. . .

G
· · ·

(∀, 2j)

. . .

· · ·

Fig. 2. The game RG.

A play in the game RG starts from a first copy of G. In this inner game, the
play π can either be infinite (in which case π is a valid play in RG and is winning
for Player P iff it is winning for P in G) or terminate in a terminal state of G.
In this latter case, Player ∀ can either conclude the game RG, or start another
session of the inner game G. Observe that if ∀ always chooses to start a new
session, he loses because the even priority 2j is maximal in RG.

The set of play labels ARG is defined as
(
AG
)∗, i.e., the set of finite sequences

of play labels in G. Let π be a play in RG that passes through n copies of G and
then ends in a terminal position of RG. In that case π can be decomposed into n
plays π0, . . . , πn−1 in G. We then define the labelling function of RG as follows:

labelRG(π)
def
=
(
labelG(π0), labelG(π1), . . . , labelG(πn−1)

)
. (4)

Given the basic Matryoshka game G0 and the two transformations of games
co- and R, we can construct more and more complex “nested” games. This fact
motivates the name of this class of games. We denote with Gk the game obtained
from G0 by iterating k-times the composed transformation co-R.

By the definition, the game Gk for k > 0 consists of infinitely many copies of
Gk−1 and an additional set of new vertices as depicted on Figure 2. These new
vertices are called the k-layer of the game. Therefore, by unfolding the definition,
each vertex v of Gk is either a vertex of a copy of G0 or it belongs to a j-layer
for some 1 ≤ j ≤ k. Observe that if v is in a j-layer of Gk then

ΩGk(v) = k+j−1 and
(
v ∈ V Gk∀ ⇔ k+j−1 ≡ 0 (mod 2)

)
. (5)



We are now ready to state the expected correspondence between the oper-
ation Θk of Section 2 and the Matryoshka game Gk. Due to the lack of space
proofs (available in Appendix B) are omitted.

Theorem 3. For every k∈ω the basis NΘk of the Θk operation equals the family
promise(Gk)

def
={X⊆ Ak : ∃ has a winning strategy in Gk with promise X}.

Corollary 1. For each k and (Es)s∈Ak we have Θk
(
(Es)s∈Ak

)
= Gk

(
(Es)s∈Ak

)
.

5 Relation between R–sets and the index hierarchy

In this section we prove the main result of this work, that is Theorem 1. As
a preliminary step, it is convenient to define a variant of game tree languages
defined on countable trees. This will simplify the connection with Matryoshka
games which are played on countably branching structures. Let Trωi,k be the space
of labelled ω-trees t : ω∗ → {∃,∀} × {i, . . . , k,>,⊥}. Each t∈Trωi,k is naturally
interpreted as a parity game on the countable tree structure, with the possibility
of terminating at leaves, labelled by > and ⊥, which are winning for ∃ and ∀,
respectively. We also require (1) that in the root there is a vertex (P, k) where
P = ∃ if i is even and P = ∀ if i is odd and (2) that the tree is alternating, that
is ∃ and ∀ make moves in turns.

Definition 7. Wω
i,k ⊆ Trωi,k is the set of ω-trees such that ∃ has a w.s.

An easy argument (see Section B.7) shows that dropping conditions (1) and
(2) gives a Wadge equivalent language. The following routine lemma (see Sec-
tion B.8 for a proof) establishes the connection between ω-branching game tree
languages Wω

i,k and binary (as in Section 2) game tree languages Wi,k.

Lemma 2. For i < k the language Wi,k is Wadge equivalent to Wω
i+1,k. In

particular W0,1 ∼W Wω
1,1 and W1,3 ∼W Wω

0,1.

The fact that Wi,k corresponds to Wω
i+1,k reflects the cost of the translation

of ω-branching games into binary games: an extra priority is required to mimic
countably many choices by iterating binary choices. Thanks to this lemma, in
Theorem 1 one can replace the languagesWk−1,2k−1 with the languagesWω

k,2k−1.
First, we show that everyWω

k,2k−1 is indeed anR-set. We will do so by explic-
itly constructing a family Ek={Es | s ∈ Ak} of clopen sets in Trωk,2k−1 such that
Θk(Ek)=Wω

k,2k−1, where Ak is the arena of the operation Θk. The construction
requires some effort. First we recall, from Section 3 that the arena of the opera-
tion

⋃
◦
⋂

is A0 ={〈n,m〉 : n,m ∈ ω} (the pairs of natural numbers) and from
the definition of the transformation R we have Ak=

(
Ak−1

)∗. Thus, for all k∈ω,
Ak is a set of nested sequences of pairs of natural numbers. For a sequence s ∈ Ak
we define the maps flatten and prioritiesMap such that flatten(s)∈A?0 and
prioritiesMap(s) ∈ ω∗. The map flatten takes a nested sequence in Ak and
returns the “flattened” sequence, that is all the braces are removed, for example
flatten

(
(((〈2, 15〉)), ((〈7, 5〉), (〈6, 4〉)))

)
= (〈2, 15〉, 〈7, 5〉, 〈6, 4〉). The function



prioritiesMap computes (see Section B.9) the number of the closing brack-
ets after each pair of natural numbers:

prioritiesMap
(

(((〈2, 15〉)), ((〈7, 5〉), (〈6, 4〉)))
)

= (2, 1, 3).

We also define treeMap(t, s) where t∈Trωk,2k−1 and s∈Ak. Since we limited
our attention to alternating trees, each vertex in the ω-branching tree t can be
identified with a sequence of pairs of natural numbers. Then, if s ∈ Ak, the
function treeMap(t, s) computes first flatten(s) and returns the sequence of
priorities assigned to the vertices along the path of t indicated by flatten(s).
On Figure 3 we have an example of a tree t where

treeMap
(
t, (((〈2, 15〉)), ((〈7, 5〉), (〈6, 4〉)))

)
= (2, 1, 3).

(∀, 3)

(∃, 2)

0

(∃, 2)

1

(∃, 2)

2

(∃, 2)

3 . . .

. . .

(∀, 2)

14

(∀, 2)

16

(∀, 2)

15

. . . . . .

(∃, 1)

6 7 8

. . . . . .

(∀, 1)

4 5 6

. . . . . .

(∃, 3)

5 6 7

. . . . . .

(∀, 3)

3 4 5

. . . . . .
...

Fig. 3. An illustration of treeMap.

Define Ek = {Es : s ∈ Ak} such that for t ∈
Trωk,2k−1 we have t∈Es iff for

– v = prioritiesMap(s),
– b = treeMap(t, s),
– L = min{k ∈ ω : v(k) 6= b(k)}

v 6=b holds, and either b(L)=> or

min(b(L), v(L))≡0 (mod 2). (6)

It is simple to verify that the sets Es are indeed
clopen in the space Trωk,2k−1 (for a definition of the
topology see, e.g. [2]).

Theorem 4. ∀k≥1 Θk(Ek) =Wω
k,2k−1.

Proof. The proof is based on Matryoshka games.
Consider a tree t ∈ Trωk,2k−1 and assume that
player P ∈ {∃,∀} has a winning strategy σ on
the tree t. We claim that P has a winning strat-
egy in the Matryoshka game Gk with promise Ek.
From this fact the theorem will follow by an ap-
plication of Corollary 1 and Proposition 1. For the
simplicity we assume that P = ∃, the opposite case is analogous.

We will simulate the game on t in the Matryoshka game Gk. A play in Gk
consists of playing pairs of numbers (corresponding to moves in t) in the copies
of G0 and additionally of deciding whether to exit an j-layer of the game or not.
We say that a play in Gk is fair if whenever the players encounter a priority k+j
in t then they exit exactly j first layers of Gk (i.e. the layer j+1 is reached) and
if they encounter a symbol ⊥ or > then the players exit all the layers of Gk.

Let ∃ use the original strategy σ in the copies of G0 and play “fairly” as long as
∀ does. If ∀ also plays “fairly” then the play is winning for ∃: either > is reached



in t and ∃ wins since t ∈ Es or the play is infinite and ∃ wins by the parity
condition — the priorities visited in Gk agree with those visited in t, see (5).

If ∀ does not play “fairly” (i.e. when a priority k+j is reached in t he does
not exit the l-layer of Gk with l ≤ j or he exits the (j+1)-layer of Gk) then ∃ uses
the following counter-strategy: whenever possible she exits the current layer of
Gk. There are two possible developments of such a play. The first case is that
∀ allows to exit the whole game and then ∃ wins thanks to (6). Now assume
that ∀ never allows the game to reach a terminal position. In that case, let j be
maximal such that the j-layer of Gk is visited infinitely often. By (5) we know
that the limes superior of the priorities visited in Gk is k+j−1 and since ∀ is the
owner of the vertices in the j-layer of Gk so k+j−1 ≡ 0 (mod 2). Therefore, ∃
wins the play by the parity condition.

Theorem 5. Let L=Θk(Es) be a set obtained using the Θk operation applied to
a family of clopen subsets (Es)s∈Ak with Es ⊆ Y in a Polish space Y . Then, there
exists a continuous reduction f : Y → Trωk,2k−1 such that f−1

(
Wω
k,2k−1

)
= L.

Sketch. The operation Θk is presented as the corresponding Matryoshka game.
This is a parity game played on a countable arena and thus continuously re-
ducible to Wω

k,2k−1. A detailed proof is available in Appendix B.

Theorems 4 and 5 imply that the language Wω
k,2k−1 is complete for the k-th

level of the hierarchy of R-sets. Theorem 1 follows from Lemmas 1 and 2.

6 Continuity of measures on Wi,k

For an odd k∈ ω the languageWi,k admits a natural decomposition into simpler
approximant setsWα

i,k, for α<ω1. In the proof of the determinacy of pLµ games
of [19], the following special continuity property is required: supα<ω1

µ
(
Wα
i,k

)
=

µ
(
Wi,k

)
. Since the increasing chain Wα

i,k is uncountable, the property does not
follow from the standard σ-continuity of measures. As observed in [19], the prop-
erty holds under Martin Axiom at ℵ1 (MAℵ1). The problem of whether the
property holds in ZFC alone is left open (see Item 2 of Section 8.2 in [19]). The
following theorem gives a partial answer to this problem.

Theorem 6. The continuity property holds in ZFC for W0,1. Let k be an odd
number, i<k. For Wi,k the continuity property holds assuming the determinacy
of Harrington’s games7 with arbitrary analytic winning sets.

An introduction of the sets Wα
i,k and a proof of this theorem is given in

Appendix C. Despite the fact that the assumption of determinacy of Harrington’s
games with analytic winning sets is not a consequence of ZFC, this result is an
improvement over the application of MAℵ1 because MAℵ1 implies determinacy of
Harrington’s games, while the converse implication does not hold. Furthermore,
our proof based on determinacy, shows that continuity property does not depend
on cardinality assumptions such as the Continuum Hypothesis.
7 See, e.g., [11, Section 33.5] for details about this type of games.



7 Conclusion

The notion of R-sets is a robust concept and admits natural variations. One can
equivalently work in arbitrary (not zero-dimensional) Polish spaces and start
from a basis of, e.g. Borel sets rather than clopens. The family of operations
Θk = (co-R)k(

⋃
◦
⋂

) can be replaced by, e.g. either (co-R)k(
⋃

) or (co-R)k(
⋂

).
Similarly, one can consider binary rather than countably branching, Matryoshka
games. The notion of R-sets remains unchanged in these alternative setups. The
specific choices of this paper have been made in an attempt to find a balance
between the modern language of parity games and older literature such as [8].
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B Remaining proofs

B.1 Proofs of basic facts about R–sets

Lemma 1. The k-th level of R-sets is closed under pre-images of continuous
functions.

Proof. Because pre-image of a clopen set is also clopen, the following equation
finishes the proof

f−1(Θ({Es}s)) = f−1
(⋃

N∈NΘ
⋂
s∈N Es

)
=

=
⋃
N∈NΘ

⋂
s∈N f

−1(Es) =

= Θ
(
{f−1(Es)}s

)
.

(7)

Lemma 3. For a given operator Θ the classes of sets which can be obtained by
operators RΘ and RΘ ◦ RΘ are the same.

For a proof of this lemma we refer to [13, Proposition 25.6] which is stated
for the Souslin operator; the same proof works when we replace A by RΘ.

Lemma 4. Let k > 0 and assume that f : X → Y is a function between two
Polish spaces X,Y such that for every clopen set C ⊂ Y the preimage f−1[C] is
on the k-th level of the R-hierarchy. Then for every R-set A ⊂ Y on the k–th
level of the R-hierarchy the preimage f−1[A] also belongs to the k–the level of
the R-hierarchy.

Proof. First observe that similarly as in (7) we have

f−1(RΘk({Es}s)) = RΘk({f−1(Es)}s).

Now, by the assumption, each of the sets f−1(Es) is of the form

RΘ
(
(Fs,s′)s′∈ARΘ

)
.

Therefore,
f−1(RΘ({Es}s)) = RΘ ◦ RΘ

(
Fs,s′

)
and the thesis holds by normality of the operator RΘ.



B.2 Proof of the preservation Theorem 2

Theorem 2. If Γ and Θ preserve measurability then Γ ◦ Θ, RΓ , and co-Γ
preserve measurability.

Preservation of measurability under R transformation follows immediately
from Lemma 6. More elementary preservation of measurability under two other
transformation co- and composition is discussed in Lemma 8. In the proof of
Lemma 6 we will need the following

Lemma 5 ([13, Theorem 29.12]). For every set B ⊆ R there exists a mea-
surable set B̄ ⊃ B such that for every measurable set C, B ⊆ C ⊆ B̄ one has
µ(B̄ \ C) = 0.

Lemma 6 ([17, Theorem 4]). If Θ preserves measurability then RΘ preserve
measurability.

The proof below was proposed by Barua in [3]; the method is an adaptation
of a classical proof of Marczewski regarding the Souslin A operation.

Proof. Let A be the arena of Θ, {Es}s∈A<ω be a family of clopen sets. Let
Es denote the partial result of RΘ application, i.e. Es =RΘ({Est|t ∈ A<ω}).
By definition Eε =RΘ({Es}s∈A<ω ). By Lemma 5 one can find measurable sets
Ēs ⊇ Es. Without loss of generality one can assume, that Ēs ⊆ Es. In order
to complete the proof of preservation of measurability it will be enough to show
the following

Lemma 7.
Ēε \ Eε ⊆

⋃
s

(Ēs \Θ({Ēst|t ∈ A}))

Proof. Suppose not. Then there is an x ∈ Ēε \ Eε such that ∀s x ∈ Ēs → x ∈
Θ({Ēst|t ∈ A}). Since

x ∈ Θ({Ēst|t ∈ A}) ⇔ ∃η ∈ N∀n ∈ η(x ∈ Ēsn)

by induction on length sequence s we get

∃η0 ∈ N∀n0 ∈ η0 ∃η1 ∈ N∀n1 ∈ η1 . . . ∀k(x ∈ Ē(n0,...,nk)).

But Ēs ⊆ Es, so the statement above shows that x ∈ Eε, a contradiction.

In Lemma 7 the set on the right hand side has measure 0, so every its sub-
set has external measure 0. Hence, it is measurable. Set Ēε is measurable by
definition, so Eε also is measurable.

This finished the proof of the preservation of measurability under R trans-
formation. It remains to prove the following elementary



Lemma 8. If Γ and Θ preserves measurability then Γ ◦Θ and co-(Γ ) preserve
measurability.

Proof. By definition application Γ ◦ Θ to clopen sets is an application of Γ to
results of application Θ to clopen sets. Since Θ preserves measurability, Γ is
applied to measurable sets. Since Γ is also preservers measurability, at the end
we get measurable set.

Assuming that Γ preserves measurability, co-(Γ ) also preserves measurability
thanks to the following equality

co-Θ({Es}s∈A) = Θ({Ecs}s∈A)c

This Lemma implicitly appears in [17] and is considered a part of mathemat-
ical folklore.

B.3 Examples showing relation between transformation R and
operations

⋃
,
⋂

and A

First we notice that N⋃ = {{n}|n ∈ N} and N⋂ = {N}

Example 1. We claim, that R
⋃

= A, the Souslin operation, and the basis for
R
⋃

is equal to

NR
⋃ = {{v|v is a finite prefix of s} : s ∈ ωω}

Consider arbitrary T ∈ NR⋃. From the definition of the operation R
⋃
, T is a

tree such that for every node v ∈ T the set {n : vn ∈ T} is a member of N⋃.
Hence T is an infinite path. Take any family of clopen sets Es (s ∈ ω∗). Then

R
⋃

(Es) =
∑

T∈NR⋃
⋂
s∈T

Es

which is exactly the definition of the Souslin operation.

Example 2. From the definition of co- follow equalities

co-
⋃

=
⋂

and co-
⋂

=
⋃
.

Indeed. Nco-
⋃ consists of sets which have nonempty intersection with every

singleton. But there is only one such set: N. Hence, Nco-
⋃ = N⋃.

The second equality is a bit more involved. By pipelining definitions we have

x ∈ co-
⋂

({Es}s∈N)⇔ ∃S ⊂ N (S ∩ N 6= ∅ ∧ ∀s ∈ S x ∈ Es).

The smaller set S is the easier the right condition is. Therefore the right condition
is equivalent to ∃s ∈ N x ∈ Es. In other words x ∈

⋃
({Es}s∈N).



B.4 Proof of determinacy for Matryoshka games (Proposition 1)

Proposition 1. If G is a Matryoshka game with play labels AG and X ⊆ AG
then exactly one of the players has a winning strategy in G with promise X.

Proof. By reduction to the standard parity games: first, we can assume that we
play on the unravelling of the arena with additional loop-edges on elements of
FG . For a given promise X ⊆ AG we can set the priorities on FG such that the
position in the unravelling corresponding to f ∈ FG is winning for ∃ if and only
if the label of the unique play reaching this position belongs to X.

A winning strategy for P in the obtained game gives a X-winning strategy
for P in the original game.

B.5 Formal introduction of games Gk

Recall that a Matryoshka game is a tuple

G = {V G = V G∃ t V
G
∀ , F

G , EG , vGI , Ω
G ,AG , labelG}.

Let us define precisely all the elements:

– V G is a countable set of positions of the game,
– FG is a countable set of terminal positions of the game,
– EG ⊆ V G ×

(
V G ∪ FG

)
is the edge relation,

– vGI ∈ V G is the initial position,
– ΩG : V G → {i, . . . , k} ⊆ ω is the priority function,
– AG is a set of play labels,
– labelG : (V G)∗FG → AG is a function assigning to finite plays their play labels.

G0(∃, 0)

(∀, 0)
0

0 . . .1 . . .2 . . .

(∀, 0)
1

0 . . .1 . . .2 . . .

(∀, 0)
2

0 . . .1 . . .2 . . .

(∀, 0)
3

0 . . .1 . . .2 . . .

. . .

Fig. 4. Repeated Figure 1.

Game G0. Let the arena V G0 consist of V G0∃ = {e0} and V G0∀ = {a0, a1, . . .} and
let FG0 = {fn,m : n,m ∈ N}. Let EG0 contain pairs of the form (e0, an) and
(an, fn,m) for n,m ∈ N. Let AG0 = ω2. Note that all the plays of G0 are finite
and of the form π = (e0, an, fn,m). For such a play, let labelG0(π) = (n,m). Let
ΩG0 : V G0 → {0} be the constant function.



G
(P, i) 7→ (P̄ , i+ 1)

. . .

Fig. 5. The game co-G.

RG
G

· · ·

(∀, 2j)

. . .

G
· · ·

(∀, 2j)

. . .

G
· · ·

(∀, 2j)

. . .

· · ·

Fig. 6. Repeated Figure 2.

Game co-G. As defined in Section 4, the game co-G is obtained from G by
replacing the players and increasing all the priorities by 1.

Game RG. Formally, the set of positions V RG of RG is defined as {a0, a1, . . .}t
ω × V G . Each vertex an belongs to ∀ (i.e. an ∈ V RG∀ ). A vertex (n, v) ∈ ω × V G
belongs to a player P if and only if v ∈ V GP . RG has infinitely many terminal
positions f0, f1, . . . The priority function on ω× V G is the same as in G. All the
vertices an have priority 2j. The edges in RG are of the following forms:

– if (v, v′) ∈ EG with v, v′ ∈ V G then ((n, v), (n, v′)) ∈ ERG for n ∈ N,
– if (v, f) ∈ EG with v ∈ V G and f ∈ FG then ((n, v), an) ∈ ERG — instead

of a terminal position of G we move to the successive vertex of ∀,
– additionally, we add edges (an, (n+ 1, vGI )) ∈ ERG and (an, fn) ∈ ERG .

Let the initial position of RG be (0, vGI ).
The crucial part of the definition of the transformation R are the labels,

see (4). Consider a finite play π that reaches a terminal position fn of RG. Such
a play has lasted for n rounds until it reached the terminal position fn. In that
case, the play π is of the form:

a0π0a1π1 . . . πn−1anfn

where πi corresponds to a play in G. Let xi be the label assigned by G to the
play πi and let

labelRG(π) =
(
x0, x1, . . . , xn−1

)
.

B.6 Proof of Theorem 3

Theorem 3. For every k∈ω the basis NΘk of the Θk operation equals the family
promise(Gk)

def
={X⊆ Ak : ∃ has a winning strategy in Gk with promise X}.



Proof. The proof goes by induction. First take k = 0. Note that the following
family forms a basis of Θ0 =

⋃
◦
⋂
:

NΘ0 =
{
N ⊆ ω2 : ∃n∀m (n,m) ∈ N

}
.

Observe that the strategies of ∃ in G0 boil down to selecting the first number n.
Then ∀ selects the second number m and the play ends in a terminal position
with label (n,m). Therefore, the family of promises of winning strategies of ∃ in
G0 coincides with NΘ0

.
Now assume that NΘ = promise(G), we prove that Nco-Θ = promise(co-G).

Let A be the play labels in G. Observe that the following conditions are equiva-
lent:

X ∈ Nco-Θ

by the definition of co-Θ
∀X′∈NΘ X ∩X ′ 6= ∅

since NΘ is upward-closed
A \X /∈ NΘ

by the inductive assumption
∃ does not have a (A\X)-winning strategy in G

by the definition of co-G
∀ does not have a X-winning strategy in co-G

by determinacy (Proposition 1
∃ has a X-winning strategy in co-G

by the definition of promise(co-G)

X ∈ promise(co-G)

Now assume that NΘ = promise(G), we prove that NRΘ = promise(RG).
This will finish the inductive proof of the proposition. As above, let A equal
arena(G). Additionally, let Gi denote the sub-game of RG corresponding to the
i-th copy of G (formally, Gi contains vertices of the form (i, v)).

First assume that σ is a X-winning strategy for ∃ in RG. We need to show
that X ∈ NRG . Clearly ε ∈ X since ∀ can move directly from a0 to e0. Let
s̄ ∈ X. We need to show that {x : s̄x ∈ X} is an element of NG . Let i = |s̄| be
the length of s. Observe that s̄ ∈ X means that there exists a finite play π that
is consistent with σ that goes through the sub-games G0, . . . ,Gi−1 and then to
ai and ei, formally

π = a0π0a1π1 · · · ai−1πi−1aiei.

Consider the strategy of ∃ σ′ in G obtained as restricting σ to sequences that
extend a0π1 · · ·πi−1ai(i, vGI ), where (i, vGI ) is the initial position in the i-copy of
G. This strategy is winning with some minimal guarantee X ′ ⊆ A. Note that if
there is a play π′ consistent with σ′ such that labelG(π′) = x then s̄x ∈ X —



directly after the play π′ ∀ can decide to move from ai+1 to ei+1. Therefore, σ′
witnesses that {x : s̄x ∈ X} ∈ NG .

Now assume that X ∈ NRΘ. In particular X ⊆ A∗ and for every element
s̄ ∈ X we have {x : s̄x ∈ X} ∈ NG . We need to construct a X-winning strategy
σ of ∃ in RG. The strategy is defined inductively, between successive sub-games
Gi. The invariant says, that if a play π consistent with σ reaches the node ei
then labelRG(π) ∈ X. Assume that we have reached ai after a play π such that
the label of πei is s̄. By the invariant, we know that s̄ ∈ X. In particular, there
exists a winning strategy σ′ of ∃ in G with the guarantee {x : s̄x ∈ X}. Let σ
follow the decisions of σ′ until reaching a terminal position of G (i.e. the position
ai+1 in RG). We now prove that σ is X-winning. Let π be a play consistent with
σ. There are the following cases:
– π is a finite play and by the above invariant labelRG(π) ∈ X.
– π is an infinite play that stays from some point on in one of the sub-games
Gi. In that case π is winning for ∃ since it contains a winning play in G as a
suffix.

– π is an infinite play that passes through infinitely many sub-games Gi. In
that case all the vertices ai are on π so

lim sup
n→∞

Ω(π(n)) = 2n

and therefore π satisfies the parity condition.

B.7 Elaboration on two versions of Wω
i,k languages and proof of

their Wadge equivalence

First let us recall Definition 7 in the two variants.

Definition 8. As in the case of Wi,k let Wω
i,k be the trees in Trωi,k such that ∃

has a winning strategy and the following simple technical conditions are satisfied:
1. in the root there is a vertex (P, k) where P = ∃ if i = 0 and P = ∀ if i = 1,
2. for a vertex v ∈ ω2n on an even depth in the tree, if the label of v is of the

form (P, j) then the labels of all the vertices vl ∈ ω∗ for l ∈ ω are (P̄ , j),
see the picture below. In other terms, the players appear alternately and the
priorities are duplicated every second level.

The ω-branching game tree language is defined as the set Wω
i,k ⊆ Trωi,k of trees

which are winning for ∃.
Lemma 9. Dropping conditions 1. and 2. in Definition 8 defines a language
which is Wadge equivalent to Wω

i,k.

Proof. Let us start from an observation, that adding technical requirements re-
garding the same ranks on two subsequent levels 2n and 2n + 1 of a given tree
and requiring that player ∃ and ∀ move one after another in turns does not limit
generality from the point of view of Wadge reducibility. Namely, as illustrated by
Figure 7 we may modify arbitrary graph to fulfil the additional requirements.



7→

(∃, 3)

(∀, 1)

(∃, 2)

t1 t2 t3 t4

(∃, 3)

(∀, 3) (∀, 3)

(∃, 1) (∃, 1)

(∀, 1) (∀, 1) (∀, 1) (∀, 1)

f(t1) f(t2) f(t1) f(t2) f(t1) f(t2) f(t1) f(t2)

(∃, 2) (∃, 2)

(∀, 2) (∀, 2) (∀, 2) (∀, 2)

f(t3) f(t3) f(t4) f(t4) f(t3) f(t3) f(t4) f(t4)

Fig. 7. “Normalization” of game languages — the same technique works for both binary
and ω-branching trees.

B.8 Proof of Lemma 2

Lemma 2. For i < k the language Wi,k is Wadge equivalent to Wω
i+1,k. In

particular W0,1 ∼W Wω
1,1 and W1,3 ∼W Wω

0,1.

Proof. Let start with a reduction ofWω
i+1,k toWi,k. To encode infinite branching

we use a standard trick - each leftmost branch B in the binary tree is treated as
a one vertex V . Right children of vertices in B are treated as children of V . To
guarantee that a player P who can choose a child of V will always exit branch
B, we label vertices along B with the lowest possible priority loosing for P (i.e. i
or i + 1). One should notice, that such labelling does not increase lim sup of a
play.

The Wadge reduction of the language Wω
1,3 to W0,3 is shown in Figure 8

below.

(∀, 3)

t0 t1 t2 t3 t4

. . .

(∀, 3)

7→
(∀, 0)

(∀, 0)

(∀, 0)

f(t0)

f(t1)

f(t2)

f(t3)

...

Fig. 8. Reduction of Wω
1,3 to W0,3.



Technically more involved is a reduction of Wi,k to Wω
i+1,k. The proof below

is an adaptation of the proof of Lemmas IV.5 and IV.6 in [10]. Without loss of
generality let i = 0 (i.e. priority winning for ∃). A continuous reduction φ maps
a tree t ∈ Tri,k into φ(t) ∈ Trωi+1,k and is defined as follows. When we encounter
a vertex with priority greater than 0 it is copied without any change — we can
duplicate both of the children of this vertex infinitely many times, to make sure
that the obtained tree is ω-branching.

The situation is different when we encounter a vertex v with priority 0.
In this case vertex v′ = (∀, 1) with ω children is produced. Intuitively, since
priority 0 is loosing for ∀ he wants to visit vertices with higher priorities. Let τn
(n ∈ ω) be a list of all strategies of ∀ starting from v. The successive children
of v′ correspond to the strategies (τn)n∈N. In order to decide children of τn,
we consider possible choices of ∃ against strategy τn. This gives finitely many
options which we verbatim copy as children of τn, unless a priority of such child
is 0. Then we decide that ∀ looses and mark it as >. We will prove that φ is a
Wadge reduction by showing the following equivalence

t ∈ Wi,k if and only if φ(t) ∈ Wω
i+1,k.

The proof is based on the heuristic that if ∀ cannot reach a priority greater than
0 then he looses.

Assume first that σ is a winning strategy of ∃ on the tree t. We need to show
that ∃ wins on φ(t). We play according to σ on φ(t) until there appears a vertex
with priority 0. Assume now that ∀ selected a strategy τn. Since σ and τn define
a unique answer of ∃ in t we can select the counterpart of this answer in the
tree φ(t). Since σ is winning, the above strategy either reaches > or the parity
condition is satisfied.

Assume now that σ is a winning strategy of ∃ on φ(t) and towards a con-
tradiction assume that τ is a winning strategy of ∀ on t. We play these two
strategies against each other as far as the priority 0 is not reached in t. If 0
is reached, then against σ we play a finite approximation τn of τ which avoids
vertices of rank 0 (if every approximation of τ contains a 0-labelled leaf then
according to the König’s lemma we would be able to construct a path in τ con-
taining only 0-labelled vertices). If σ selects a leaf w of τn in φ(t), we mimic
the same gameplay in t. As a result the visited priorities in t and φ(t) must be
the same, but this contradicts our assumption that the strategies σ and τ are
winning for ∃ and ∀ respectively.

B.9 Precise definition of flatten and prioritiesMap

We define flatten and prioritiesMap using a natural Haskell data structure.
This is a NestedList, an abstraction of a list which naturally allows to consider
Ak, that is sequences of sequences of. . . of sequences.

-- run at http://www.fpcomplete.com/user/henryk/kolmogorovflatmaps
data NestedList a = Elem a | List [NestedList a]

deriving (Show)



-- straightforwardly define flatten
flatten :: NestedList a -> [a]
flatten (Elem x) = [x]
flatten (List x) = concatMap flatten x
-- prioritiesMap defines through auxialliary prioritiesMap’
prioritiesMap (x) = prioritiesMap’(x,0)

prioritiesMap’ :: (NestedList a, Int) -> [Int]
prioritiesMap’ (Elem a,n) = [n]
prioritiesMap’ (List (x:[]), n) = prioritiesMap’ (x,n+1)
prioritiesMap’ (List (x:y:xs),n) = prioritiesMap’ (x,0) ++

prioritiesMap’ (List( y:xs),n)
prioritiesMap’ (List [],n) = []

Code can be run locally on a computer or on-line on fpcomplete server; the
service allows on-line modifications, in particular playing with more examples at
the webpage

http://www.fpcomplete.com/user/henryk/kolmogorovflatmaps

B.10 Proof of Lemma 5

Lemma 5. Let L=Θk(Es) be a set obtained using the Θk operation applied to a
family of clopen subsets (Es)s∈Ak with Es ⊆ Y in a Polish space Y . Then, there
exists a continuous reduction f : Y → Trωk,2k−1 such that f−1

(
Wω
k,2k−1

)
= L.

Proof. Let t be the unravelling of the arena V ∪ F of the game Gk: nodes of t
correspond to finite paths in the graph (V ∪ F,E). We can assume that t ⊆ ω∗

since the arena V is countable. Let us additionally label t: if π is a finite path
in Gk that ends in a node v ∈ VP such that Ω(v) = j then let t(π) = (P, j). If π
ends in a terminal position of Gk then let t(π) = �.

By the definition, t is a partial function t : ω∗ ⇀ {∃,∀}×{k, . . . , 2k−1}∪{�}.
Additionally observe that the nodes of t that are labelled by � are leafs of t. For
nodes v ∈ V that are not ω-branching in Gk, we can duplicate the E-successors
of v infinitely many times to ensure that each non-� vertex of t has all the
children.

Let us define a function f that assigns to an element x ∈ Y the tree t′
obtained from t by replacing each node π labelled by � by the full ω-tree labelled
everywhere by:

– (∃,>) if x ∈ ElabelGk (π),
– (∃,⊥) otherwise.

Note that t′ ∈ Trωk,2k−1 and since the sets Es are clopen so the function f is
continuous. Additionally observe that since t′ is obtained by unravelling of Gk
so a strategy in one game can be interpreted as a strategy in the other one and
vice versa.

http://www.fpcomplete.com/user/henryk/kolmogorovflatmaps


Observe that x ∈ Gk(Es) if and only if ∃ has a winning strategy in Gk with
the promise {s : x ∈ Es} if and only if t′ ∈ Wω

k,2k−1. Therefore, f is a continuous
reduction as in the statement.



C Continuity of measures on Wi,k

In this section we study the relation between the measure of a set Wi,k and the
measures of it’s approximations Wα

i,k, see Theorem 6. We start with a formal
introduction of the notions used in the statement.

C.1 Ranks

First we formally introduce the approximations Wα
i,k. Let us introduce the fol-

lowing definitions, following in [13, Section 2.E]. An ω-forest is a prefix-closed
subset of ω+. The set of all ω-forests is denoted Tr(ω). An ω-forest is well-
founded if it has no infinite branch. The set of all well-founded ω-forests is
denoted WF ⊆ Tr(ω). With every well-founded ω-forest τ one can bind an or-
dinal rankWF(τ) called the rank of τ . The definition of rankWF(τ) is inductive:
rankWF(∅) = 0 and if τ is non-empty and τ0, τ1, . . . is the list of subforests of τ
rooted at successive roots of τ then

rankWF(τ) = sup
n∈N

rankWF(τn) + 1.

Since the set of nodes of an ω-forest is countable, so rankWF(τ) is smaller than
ω1 — the first uncountable ordinal. For an ω-forest τ that is not well-founded
we can define rank(τ) as ∞ — an additional value greater than all ordinals.

Let i ≤ j ≤ k for an odd j, t ∈ Wi,k, and ρ ⊆ dom(t) be a winning strategy
for ∃ on t. Consider the set of nodes Vj ⊆ dom(t) defined as

Vj =
{
v ∈ ρ : t(v) = (P, j) and

for every v′ � v we have t(v) = (P ′, j′) with j′ ≤ j
}
.

The set Vj with the prefix and lexicographic order is isomorphic to an ω-forest
τ . Since ρ is winning, so τ is well-founded. Let

rankj(t, ρ)
def
= rankWF(τ),

rank(t, ρ)
def
= sup

v∈ρ, i≤j′≤k, j′≡1 (mod 2)

rankj′(t�v, ρ�v),

rankj(t)
def
= inf

σ winning for ∃
rankj(t, σ).

Note that since t ∈ Wi,k and ρ is winning, all the above ordinals are defined
(i.e. not equal ∞). Now assume that k is odd and α is a countable ordinal. Let

Wα
i,k

def
=
{
t ∈ Wi,k : rankk(t) ≤ α

}
.

Fact 1. For i = 0 and k = 1 the rank rank1 is a co-analytic rank in the meaning
of [13].



Proof. Intuitively, the set W0,1 is equivalent to WF with preservation of ranks.
Formally, this fact follows from the construction of a Borel derivative, see [13,
Section 34.D and Theorem 34.10]. The construction is motivated by Defini-
tion 6.2.14 in [19].

First note that the set D0 of trees t ∈ W0,1 on which ∃ has a strategy that
visits at most once priority 1 is a Borel subset of Tr0,1: by Königs lemma it is
enough to have longer and longer finite strategies visiting 1 at most once.

Now, the derivative D inputs a tree t ∈ Tr0,1 and for every w ∈ dom(t): if
t �w∈ D0 then replace whole subtree of t under w with a fixed tree t0 labelled
everywhere with (∃, 0).

Clearly, such a derivative is monotone with respect to priorities and players
on the tree — it replaces some vertices of the form (P, i) with (∃, 0). The fixpoint
of the applications of D to t equals t0 if and only if t ∈ W0,1. The number of
applications of D to t until reaching t0 (denoted |t|D in [13, Section 34.D]) is
exactly rank1(t). Therefore, D is a Borel derivative and rank1 is a Π1

1-rank.

Lemma 10. All the sets Wα
i,k for i < k, with odd k and α < ω1 are measurable.

Proof. We prove in fact a stronger statement that for each α the set Wα
i,k is on

the (k+1)-th level of the R-hierarchy. The proof is inductive on α.
First observe that W0

i,k is the set of trees where ∃ can win without visiting
any node of priority k. Therefore, it continuously reduces to Wi,k−1 by making
the subtree under each node labelled by k loosing for ∃. So W0

i,k is on the k-th
level of the R-hierarchy.

The limit step is trivial, as it boils down to a countable union and each level
of the R-hierarchy is closed under countable unions and countable intersections
— these operations can be simulated by the R

⋃
◦
⋂

operation so the closure
follows from Lemma 3.

For the successor step we introduce a derivative in the spirit of the above
Fact 1. First let us fix a tree t0 that is labelled everywhere with (∃, k−1). Since k
is odd, so t0 is winning for ∃. Let D0 be the set of all trees t ∈ Tri,k where ∃ can
win without visiting any node of priority k except the root that may potentially
be labelled with k. Clearly, D0 ∼W W0

i,k. Let f be a function that inputs a tree
t ∈ Tri,k and replaces every subtree t �w∈ D0 by t0. The f -pre-image of each
clopen set is a boolean combination of clopens and D0, so it is a set on the
(k+1)-th level of the R hierarchy.

Therefore, by Lemma 4 the f -pre-image of any set on the (k+1)-th level of
the R hierarchy is also at this level. But

f−1
(
Wα
i,k

)
= Wα+1

i,k ,

what finishes the induction step.

C.2 The boundedness principle for (0, 1)–index

In this section we prove the first part of Theorem 6, namely the continuity
property for i = 0, k = 1.



Assume, that there is given a measure µ such that µ(W0,1) > 0. We will
show, that there exists α < ω1 such that µ(Wα

0,1) = µ(W0,1). Indeed, from the
inner regularity of µ follows, that there exists a Borel set G ⊆ W0,1 such that
µ(G) = µ(W0,1). Recall that by Fact 1, rank1 is a co-analytic rank on W0,1.
Therefore, the Boundedness Principle ([13, Theorem 35.23]) guarantees, that G
is contained in Wα

0,1 for some α < ω1. Hence

µ(G) ≤ µ(Wα
0,1) ≤ µ(W0,1) = µ(G).

C.3 Failure of the boundedness principle for higher ranks

In this section we show that the method from Section C.2 does not generalize
to higher indices. For a tree t ∈ Tr1,2 let us construct the dual tree t̄ ∈ Tr2,3 by
replacing a label (P, i) by (P̄ , i+ 1). Clearly, t ∈ W1,2 if and only if t̄ /∈ W2,3.

Now, consider the set of trees K ⊆ Tr1,3 of the form f(t)
def
= (∃, 1)(t, (̄t)) for

t ∈ Tr1,2, as shown at Figure C.3.

(∃, 1)

t t̄

Fig. 9. The tree f(t).

Note that t ∈ K if it satisfies a closed constraint: for each vertex of the
form dv for d ∈ {0, 1} and v ∈ {0, 1}∗, if t(dv) = (P, i) then t(d̄v) = (P̄ , i + 1).
Therefore, K ⊆ Tr1,3 is a compact set.

Observe that for each t ∈ Tr1,2 either t ∈ W1,2 or t̄ ∈ W2,3 therefore

K ⊆ W1,3.

Now consider rank3(t) for trees t ∈ K. Observe that if t ∈ W1,2 then ∃ can
win on f(t) by moving to the left subtree (i.e. t). Such a strategy does not visit
any 3, so rank3(t) = 0. Let t̄ ∈ W2,3 be a tree such that rank3(t̄) = η. Observe
that in that case t /∈ W1,2 so any winning strategy for ∃ in f(t) has to move to
t̄. In particular, in that case

rank3(f(t)) = rank3(t̄) = η.

Therefore, the set K is a witness that Boundedness Principle does not hold:
K is a compact subset of W1,3 such that

sup
t∈K

rank3(t) = sup
t∈W2,3

rank3(t) = ω1.



C.4 L. Harrington game

In this section we present an adaptation of a game by L. Harrington (see [13,
Theorem 36.20]). We start with a definition of a Harrington’s game in a generic
setup.

Let us fix a pair of Polish spaces X,Y . Assume that µ is a Borel measure on
X. Our aim is to design a game for verifying if the projection to X of a given
subset of X × Y is of µ-measure 0.

Let ι : 2ω → X × Y be a surjective function onto X × Y such that for
every open set U ⊆ X × Y the preimage ι−1(U) is a Borel set. Such a function
exists by [13, Theorem 16.5]. For technical reasons, it is convenient to represent
elements of X × Y by bits that are encoded by such a function ι. Let I0, I1, . . .
be an enumeration of finite unions of basic open sets in X.

Let us fix a set W ∈ X × Y , its projection L = πX(W ), and ε > 0. Consider
the following perfect information infinite duration game HG(ε): in round i

– Player II plays a number zi,
– Player I plays a bit bi.

Intuitively, Player I plays a sequence of bits that encode (via ι) a pair (x, y). His
aim is to produce a sequence from W . Player II plays indices of sets Iz0 , Iz1 , . . ..
His aim is to present a small cover of L.

Formally, the winning condition for Player I is the following:

1. either for some i we have

µ (Izi) > ε · 2−2i,

2. or the pair (x, y) = ι(b0b1 · · · ) satisfies

(x, y) ∈W and x /∈
⋃
i∈N

Izi

Note that the descriptive complexity of the winning condition depends mostly
on the set W , i.e. if W ∈ Π1

1 then the whole winning condition is also Π1
1.

The following proposition expresses the crucial property of the game HG.

Proposition 2. Let W ⊆ X × Y be any set in a product of two spaces and let
L = πX(W ). The following conditions are equivalent:

– L is of µ-measure 0,
– for every ε > 0 Player II has a winning strategy in HG(ε).

Proof. First assume that L is of µ-measure 0. Take any ε > 0 and find a cover
of L by a sequence of basic open sets J0, J1, . . . of measures summing up to ε.
We can inductively find a sequence of indices z0, z1, . . . such that⋃

i∈N
Izi =

⋃
i∈N

Ji ⊇ L and ∀i∈N µ (Izi) ≤ ε · 2−2i. (8)



Consider the strategy of Player II that does not depend on the bits played
by Player I and successively plays z0, z1, . . .. This strategy is winning because
of (8).

Now assume that Player II has a winning strategy in all the games HG(ε).
Take any ε > 0 and let σII : 2∗ → N be a winning strategy of Player II in HG(ε).
Consider the set

U =
⋃
w∈2∗

IσII(w).

Using Condition 1 we know:

∀w∈2∗ µ
(
IσII(w)

)
≤ ε · 2−2|w|

∀n∈N
⋃
w∈2n

µ
(
IσII(w)

)
≤ ε · 2−n∑

w∈2∗
µ
(
IσII(w)

)
≤ ε

What remains is to show that L ⊆ U . Assume contrary that there exists an
element (x, y) ∈ W such that x /∈ U . Consider the strategy σI of Player I that
plays bits b0, b1, . . . such that ι(b0b1 · · · ) = (x, y). Let α = (z0, b0, z1, b1, . . .) be
the play resulting from strategies σI and σII. Observe that this play satisfies
Condition 2: (x, y) ∈ W and x /∈ U ⊇

⋃
i∈N Izi . Therefore, α is winning for

Player I what contradicts that σII is winning for Player II.

Now we can consider what are the consequences of existence of a winning
strategy for Player I.

Lemma 11. If for some ε > 0 Player I has a winning strategy in HG(ε) then
there exists a Σ1

1 set S ⊆W such that

µ
(
πX(S)

)
> 0.

Proof. Let σI be a winning strategy for Player I. Let

S =
{
ι(b0b1 · · · ) : ∃(z0,z1,...) ∀i∈N µ (Izi) ≤ ε · 2−2i and

(b0, b1, . . .) is the response of σI to (z0, z1, . . .)
}
.

Clearly S ∈ Σ1
1(X × Y ). Since σI is a winning strategy, so by Condition 2

we know that S ⊆ W . Assume that µ (πX(S)) = 0. Similarly as in the proof of
Proposition 2 we can construct a strategy σII of Player II that enumerates a small
cover of πX(S). Let (z0, b0, z1, b1, . . .) be the play resulting from σI and σrII. By
the definition we know that (x, y) = ι(b0b1 · · · ) ∈ S, therefore x ∈

⋃
i∈N Izi so

this play is winning for Player II by Condition 2, a contradiction.

C.5 Proof of the second part of Theorem 6

Theorem 7 (Σ1
1 determinacy). Fix an index (i, k) and let µ be a Borel mea-

sure on Tri,k. Then
sup
α<ω1

µ
(
Wα
i,k

)
= µ (Wi,k) .



Note that all the sets in the above statement are measurable by Theorem 1
and Lemma 10. The rest of this section is devoted to Theorem 7.

Lemma 12. It is enough to prove Theorem 7 assuming that for all α < ω1 we
have

µ
(
Wα
i,k

)
= 0.

Proof. Let x be the supremum of the sequence µ
(
Wα
i,k

)
for α < ω1. Since the

length of this sequence is uncountable and the values are non-decreasing, there
exists α < ω1 such that

x = µ
(
Wα
i,k

)
.

If the measure of the complement of Wα
i,k is 0 then µ(Wi,k) = x and the

thesis holds. Consider a new measure µ′ on the same family of sets, defined as

µ′(A) = µ
(
A \Wα

i,k

)
.

Observe that since Wα
i,k is measurable (see Fact 10), the measure µ′ is a Borel

measure on Tri,k. By our assumption, the µ′-measure of all the sets Wα
i,k is 0

and it remains to prove that the µ′-measure of Wi,k is also 0.

Let us assume that Wi,k is not of µ-measure 0. Our aim is to show that for
some α < ω1 the set Wα

i,k is also not of µ-measure 0. Our plan is to construct
a special Harrington game. Then, by Σ1

1-determinacy and Lemma 11 we will
obtain an analytic set S ⊆ W . By the Boundedness Principle, this S will be
bounded with respect to an adequate rank on W and its projection to X will be
contained in some Wα

i,k.
Let us fix X to be the space of all game trees with priorities (i, k): X = Tri,k.

The space Y will be the product of three spaces:

– Runs — the space of strategies of ∃ on trees in Tri,k,
– Tr(ω) — the space of ω-trees,
– J = (ω∗)

2∗ — the space of functions from 2∗ (i.e. the domains of t ∈ Tri,k)
to ω∗ (i.e. the vertices of trees in Tr(ω)).

We will denote an element of X × Y by (t, ρ, τ, η) with t ∈ Tri,k, ρ ∈ Runs,
τ ∈ Tr(ω), and η ∈ J . Now we can define the winning setW ⊆ X×Y . The crucial
requirement in this definition will be that τ is a well-founded tree (i.e. τ ∈WF).
Also, we will need the following definition:

Definition 9. Let t ∈ Tri,k and u ≺ v be a pair of vertices of t. We say that u, v
are odd-dominating if both of them have the same odd priority in t and there is
no higher priority between them in t. Formally:
t(u) = (Pu, n) for a player Pu and an odd priority n,
t(v) = (Pv, n) for the same priority n,
for every w such that u ≺ w ≺ v the priority of w in t is at most n.

Let W ⊆ X × Y contain those tuples (t, ρ, τ, η) that satisfy the following
conditions:



1. τ ∈WF,
2. ρ is a strategy for Eve on t,
3. for every pair of vertices u ≺ v that are accessible by ρ, if u, v are odd-

dominating then
η(u) ≺ η(v).

Clearly, all the requirements of this definition, except the first one, are Borel.
The first condition is Π1

1.

Lemma 13. The projection ofW onto Tri,k isWi,k. Additionally, if (t, ρ, τ, η) ∈
W then

rankk(t) ≤ rankWF(τ). (9)

Proof. First observe that if (t, ρ, τ, η) ∈ W then ρ is a winning strategy of ∃
on t. Assume contrary that there exists a branch π ∈ 2ω of ρ such that the
limes superior j of priorities of t on π is odd. Therefore, there is a sequence
u0 ≺ u1 ≺ . . . of vertices of t on π such that for every i the pair ui, ui+1 is odd-
dominating. Therefore, by Condition 3 η(u0) ≺ η(u1) ≺ . . . is a witness that τ
contains an infinite branch, so τ /∈WF. A contradiction.

Now we prove Equation (9). Observe that rankk(t, ρ) ≤ rank(t, ρ). Let X be
the set of vertices of ρ of priority k. We can see (X,�) an infinitely branching
tree. Since k is the highest priority and k is odd, so every pair of vertices u ≺ v
in X is odd-dominating. Therefore, η �X is an embedding of (X,�) to τ , so

rankk(t, ρ) ≤ rankWF(τ).

Not take a tree t ∈ Wi,k. Let ρ be a winning strategy for ∃ on t. We want to
find τ , and η such that (t, ρ, τ, η) ∈W . Let

α = rank(t, ρ). (10)

Since ρ is a winning strategy, so α < ω1. Let τ ∈ WF be an ω-tree such that
rankWF(τ) > α. Now, using (10) we inductively construct η satisfying Condi-
tion 3. The induction invariant is that for every v ∈ ρ with t(v) = (Pv, nv) and
every odd j ≤ nv we have

rankj(t�v) < rankWF(τ �η(v)).

For η constructed this way we clearly have (t, ρ, τ, η) ∈W .

Now we consider the Harrington game HG(ε) with the winning set W ⊆
X×Y . The above lemma says that L = πX(W ) equalsWi,k. By our assumption
thatWi,k is not of µ-measure 0, Proposition 2 implies that Player I does not have
a winning strategy in HG(ε) for some ε > 0. By Σ1

1-determinacy it means that
Player II has a winning strategy in HG(ε). By Lemma 11, there is an analytic
set S ⊆W such that

µ (πX(S)) > 0.



Observe that the set of trees τ ∈ Tr(ω) that appear in S is also analytic — it is
the projection of S onto Tr(ω). Therefore, by the Boundedness Principle (see [13,
Theorem 35.23]) there is an ordinal α < ω1 such that for every (t, ρ, τ, η) ∈ S
we have rankWFτ < α. By Lemma 13, for every (t, ρ, τ, η) ∈ S there holds

rankk(t) ≤ rankWF(τ) < α.

Therefore, the projection πX(S) is contained in Wα
i,k and

µ
(
Wα
i,k

)
≥ µ (πX(S)) > 0.
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