DETERMINISATION OF HISTORY-DETERMINISTIC AUTOMATA

Denis Kuperberg¹, Michał Skrzypczak¹

History-deterministic automata

- non-deterministic
- parity ω -word automata
- there exists $\sigma \colon \mathbf{A}^* \to \mathbf{Q}$ satisfying: for every word $w \in L(A) \subseteq A^{\omega}$ the sequence of states $\sigma(w) \in Q^{\omega}$ $(\sigma(w)(i) = \sigma(w))$

Solution:

Open problem

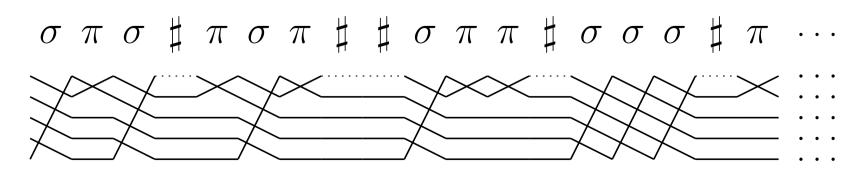
What is the state blow-up when determinising a history-deterministic automaton?

> exponential for co-Büchi automata polynomial for Büchi automata

Applications

- synthesis (Büchi, Landweber '69)
- branching time verification (Emerson, Sistla '84)
- derived languages (Niwiński, Walukiewicz '98)
- symbolic representation (Henzinger, Piterman '06)
- quantitative models (Colcombet, Löding '10)
- streaming functions (Bojańczyk, K. '14)
- . . .

Co-Büchi automata


is an accepting run of \mathcal{A} on w

Theorem 1. There are H-D automata A_n :

- $\bullet |\mathcal{A}_n| = \Theta(n) \ and \ \mathcal{A}_n \ is \ co\text{-}B\ddot{u}chi$
- if \mathcal{B} is deterministic and $L(\mathcal{B}) = L(\mathcal{A}_n)$ then $|\mathcal{B}| \geq 2^n$

History-deterministic automata are **succinct!**

Proof scheme: Language of permutations:

+ compactness for pumping the limitary behaviour.

Is A history-deterministic?

New complexity bounds:

- for co-Büchi: in **P**
- for Büchi: in **NP**
- for parity: at least as hard as parity games

 $(\mathbf{NP} \cap \mathbf{co} \cdot \mathbf{NP})$

Technical details at **arXiv.org** soon!

Institute of Informatics, University of Warsaw

Büchi automata

Theorem 2. Every \mathbf{H} - \mathbf{D} Büchi automaton \mathcal{A} admits \mathcal{B} :

- B is deterministic and Büchi
- $\bullet L(\mathcal{A}) = L(\mathcal{B}) \ and \ |\mathcal{B}| \le |\mathcal{A}|^2$

Polynomial determinisation procedure!

Proof scheme:

- residual languages and brutal powerset determinisation
- rank signatures of Walukiewicz
- ullet iterative normalization of ${\cal A}$
- dependency graph over the automaton