On the decidability of $\mathrm{MSO}+\mathrm{U}$ on infinite trees

M. Bojańczyk ${ }^{1}$ T. Gogacz ${ }^{2}$
H. Michalewski ${ }^{1}$ M. Skrzypczak ${ }^{1}$
${ }^{1}$ University of Warsaw
${ }^{2}$ University of Wrocław

ICALP 2014
Copenhagen
$\mathrm{MSO}+\mathrm{U} \operatorname{logic}($ Bojańczyk '04)

$$
\begin{gathered}
\mathrm{U} X . \varphi(X) \equiv \forall n . \exists X . \varphi(X) \wedge n<|X|<\infty . \\
\varphi(X) \text { holds for arbitrarily big finite sets }
\end{gathered}
$$

MSO+U logic (Bojańczyk '04)

$$
\begin{gathered}
\mathrm{U} X . \varphi(X) \equiv \forall n \cdot \exists X \cdot \varphi(X) \wedge n<|X|<\infty . \\
\varphi(X) \text { holds for arbitrarily big finite sets }
\end{gathered}
$$

Large expressive power: cost functions, distance automata, ...

$\mathrm{MSO}+\mathrm{U}$ logic (Bojańczyk '04)

$$
\cup X . \varphi(X) \equiv \forall n . \exists X . \varphi(X) \wedge n<|X|<\infty .
$$

$\varphi(X)$ holds for arbitrarily big finite sets
Large expressive power: cost functions, distance automata, ...

Example

The delays between request and response are uniformly bounded.

Satisfiability problem is φ true in some model for ω-words - open

Satisfiability problem is φ true in some model for ω-words - open

for infinite trees - see below

Satisfiability problem is φ true in some model
for ω-words - open

for infinite trees - see below

Compositionality

MSO+U admits finite index for natural Myhill-Nerode equivalences

Satisfiability problem is φ true in some model
for ω-words - open

for infinite trees - see below

Compositionality
MSO+U admits finite index for natural Myhill-Nerode equivalences
\rightsquigarrow "finitarily: $\mathrm{MSO}+\mathrm{U} \equiv \mathrm{MSO}$ "

Main result

under a set-theoretic assumption (\star)

$\mathrm{MSO}+\mathrm{U}$ is undecidable over infinite trees

Main result
under a set-theoretic assumption (\star)

$\mathrm{MSO}+\mathrm{U}$ is undecidable over infinite trees

(\star): there exists a well-order \preceq on 2^{ω} s.t.

$$
\preceq \text { is projective i.e. } \preceq \in \boldsymbol{\Sigma}_{n}^{1}\left(2^{\omega} \times 2^{\omega}\right)
$$

Main result
under a set-theoretic assumption (\star)

$\mathrm{MSO}+\mathrm{U}$ is undecidable over infinite trees

(\star): there exists a well-order \preceq on 2^{ω} s.t.

$$
\preceq \text { is projective i.e. } \preceq \in \boldsymbol{\Sigma}_{n}^{1}\left(2^{\omega} \times 2^{\omega}\right)
$$

Independent of axioms of Zermelo-Fraenkel set theory (ZFC)

Main result
under a set-theoretic assumption (\star)

$\mathrm{MSO}+\mathrm{U}$ is undecidable over infinite trees

(\star): there exists a well-order \preceq on 2^{ω} s.t.

$$
\preceq \text { is projective i.e. } \preceq \in \boldsymbol{\Sigma}_{n}^{1}\left(2^{\omega} \times 2^{\omega}\right)
$$

Independent of axioms of Zermelo-Fraenkel set theory (ZFC)
\rightsquigarrow uncoditional undecidability remains open

Relative consistency

M. Bojańczyk, T. Gogacz, H. Michalewski, M. Skrzypczak

On the decidability of MSO $+U$ on infinite trees

Relative consistency

If $\quad \mathrm{ZFC}$ has a model then $\mathrm{ZFC}+(\star)$ has a model

Relative consistency

If ZFC has a model then $\mathrm{ZFC}+(\star)$ has a model
If mathematics is consistent then (\star) is true in some world

Relative consistency

If $\quad \mathrm{ZFC}$ has a model then $\mathrm{ZFC}+(\star)$ has a model

If mathematics is consistent then
(\star) is true in some world ($\mathrm{MSO}+\mathrm{U}$ is undecidable there)

Relative consistency

If ZFC has a model then $\mathrm{ZFC}+(\star)$ has a model

If mathematics is consistent then (\star) is true in some world ($\mathrm{MSO}+\mathrm{U}$ is undecidable there)
\rightsquigarrow no algorithm for MSO+U over infinite trees with correctness proof in ZFC

Main tool: topology

M. Bojańczyk, T. Gogacz, H. Michalewski, M. Skrzypczak

On the decidability of MSO +U on infinite trees

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Projective hierarchy
$\boldsymbol{\Sigma}_{1}^{1}=$ projections of Borel sets

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Projective hierarchy
$\boldsymbol{\Sigma}_{1}^{1}=$ projections of Borel sets
$\boldsymbol{\Pi}_{1}^{1}=$ complements of $\boldsymbol{\Sigma}_{1}^{1}$ sets (= co-projections of Borel sets)

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Projective hierarchy
$\boldsymbol{\Sigma}_{1}^{1}=$ projections of Borel sets
$\boldsymbol{\Pi}_{1}^{1}=$ complements of $\boldsymbol{\Sigma}_{1}^{1}$ sets (= co-projections of Borel sets)
$\boldsymbol{\Sigma}_{2}^{1}=$ projections of $\boldsymbol{\Pi}_{1}^{1}$ sets

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Projective hierarchy
$\boldsymbol{\Sigma}_{1}^{1}=$ projections of Borel sets
$\boldsymbol{\Pi}_{1}^{1}=$ complements of $\boldsymbol{\Sigma}_{1}^{1}$ sets (= co-projections of Borel sets)
$\boldsymbol{\Sigma}_{2}^{1}=$ projections of $\boldsymbol{\Pi}_{1}^{1}$ sets

Main tool: topology

Borel sets $=$ simple sets (σ-field generated by open sets)

Projective hierarchy

$$
\boldsymbol{\Sigma}_{1}^{1}=\text { projections of Borel sets }
$$

$\boldsymbol{\Pi}_{1}^{1}=$ complements of $\boldsymbol{\Sigma}_{1}^{1}$ sets (= co-projections of Borel sets)
$\boldsymbol{\Sigma}_{2}^{1}=$ projections of $\boldsymbol{\Pi}_{1}^{1}$ sets

$$
\exists_{X_{1}} \forall_{X_{2}} \exists_{X_{3}} \text { (Borel condition) } \rightsquigarrow \quad \boldsymbol{\Sigma}_{3}^{1} \text { set }
$$

Outline

M. Bojańczyk, T. Gogacz, H. Michalewski, M. Skrzypczak

On the decidability of MSO +U on infinite trees

Outline

0. Introduce:

$$
\text { projective MSO }=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}}
$$

Outline

0. Introduce:

$$
\begin{gathered}
\text { projective } \mathrm{MSO}=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \\
\text { e.g. } \exists_{X \in \boldsymbol{\Sigma}_{7}^{1}} \forall_{Y \in \boldsymbol{\Sigma}_{6}^{1}} X \neq Y
\end{gathered}
$$

Outline

0. Introduce:

$$
\begin{gathered}
\text { projective } \mathrm{MSO}=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \\
\text { e.g. } \exists_{X \in \boldsymbol{\Sigma}_{7}^{1}} \forall_{Y \in \boldsymbol{\Sigma}_{6}^{1}} X \neq Y
\end{gathered}
$$

1. Reduce: projective MSO over $2^{\leq \omega} \longrightarrow \mathrm{MSO}+\mathrm{U}$ over trees

Outline

0. Introduce:

$$
\begin{gathered}
\text { projective } \mathrm{MSO}=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \\
\text { e.g. } \exists_{X \in \boldsymbol{\Sigma}_{7}^{1}} \forall_{Y \in \boldsymbol{\Sigma}_{6}^{1}} X \neq Y
\end{gathered}
$$

1. Reduce: projective MSO over $2^{\leq \omega} \longrightarrow \mathrm{MSO}+\mathrm{U}$ over trees
2. Assuming (\star) prove that projective MSO over $2^{\leq \omega}$ is undecidable

Outline

0. Introduce:

$$
\begin{gathered}
\text { projective } \mathrm{MSO}=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \\
\text { e.g. } \exists_{X \in \boldsymbol{\Sigma}_{7}^{1}} \forall_{Y \in \boldsymbol{\Sigma}_{6}^{1}} X \neq Y
\end{gathered}
$$

1. Reduce: projective MSO over $2^{\leq \omega} \longrightarrow \mathrm{MSO}+\mathrm{U}$ over trees
2. Assuming (\star) prove that projective MSO over $2^{\leq \omega}$ is undecidable

Projective MSO vs. Set Theory

Outline

0. Introduce:

$$
\begin{gathered}
\text { projective } \mathrm{MSO}=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \\
\text { e.g. } \exists_{X \in \boldsymbol{\Sigma}_{7}^{1}} \forall_{Y \in \boldsymbol{\Sigma}_{6}^{1}} X \neq Y
\end{gathered}
$$

1. Reduce: projective MSO over $2^{\leq \omega} \longrightarrow \mathrm{MSO}+\mathrm{U}$ over trees
2. Assuming (\star) prove that projective MSO over $2^{\leq \omega}$ is undecidable

Projective MSO vs. Set Theory
"every Gale-Stewart game with a $\boldsymbol{\Sigma}_{n}^{1}$-winning set is determined"

Outline

0. Introduce:

$$
\begin{gathered}
\text { projective } \mathrm{MSO}=\mathrm{FO}+\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \\
\text { e.g. } \exists_{X \in \boldsymbol{\Sigma}_{7}^{1}} \forall_{Y \in \boldsymbol{\Sigma}_{6}^{1}} X \neq Y
\end{gathered}
$$

1. Reduce: projective MSO over $2^{\leq \omega} \longrightarrow \mathrm{MSO}+\mathrm{U}$ over trees
2. Assuming (\star) prove that projective MSO over $2^{\leq \omega}$ is undecidable

Projective MSO vs. Set Theory
"every Gale-Stewart game with a $\boldsymbol{\Sigma}_{n}^{1}$-winning set is determined" Decidability of projective $\mathrm{MSO} \Rightarrow$ Projective Determinacy fails

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.
\rightsquigarrow for every n there is $L_{n} \subseteq A^{\omega}$ definable in MSO +U s.t.:
L_{n} is complete for $\boldsymbol{\Sigma}_{n}^{1}$ w.r.t. continuous reductions

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.
\rightsquigarrow for every n there is $L_{n} \subseteq A^{\omega}$ definable in MSO +U s.t.:
L_{n} is complete for $\boldsymbol{\Sigma}_{n}^{1}$ w.r.t. continuous reductions

$$
\boldsymbol{\Sigma}_{n}^{1}=\left\{f^{-1}\left(L_{n}\right): f \text { continuous }\right\}
$$

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.
\rightsquigarrow for every n there is $L_{n} \subseteq A^{\omega}$ definable in MSO +U s.t.:
L_{n} is complete for $\boldsymbol{\Sigma}_{n}^{1}$ w.r.t. continuous reductions

$$
X \in \boldsymbol{\Sigma}_{n}^{1} \quad \text { iff } \quad \exists_{f \text { continuous }} X=f^{-1}\left(L_{n}\right)
$$

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.
\rightsquigarrow for every n there is $L_{n} \subseteq A^{\omega}$ definable in MSO +U s.t.:
L_{n} is complete for $\boldsymbol{\Sigma}_{n}^{1}$ w.r.t. continuous reductions

$$
X \in \boldsymbol{\Sigma}_{n}^{1} \quad \text { iff } \quad \exists f \text { continuous } X=f^{-1}\left(L_{n}\right)
$$

Reduction

$$
\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \quad \cdots \quad x \in X
$$

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.
\rightsquigarrow for every n there is $L_{n} \subseteq A^{\omega}$ definable in MSO +U s.t.:
L_{n} is complete for $\boldsymbol{\Sigma}_{n}^{1}$ w.r.t. continuous reductions

$$
X \in \boldsymbol{\Sigma}_{n}^{1} \quad \text { iff } \quad \exists f \text { continuous } X=f^{-1}\left(L_{n}\right)
$$

Reduction

$$
\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} \quad \cdots \quad x \in X
$$

$\exists_{\bar{f} \text { encoding a continuous function }}$

1. Reduction: projective $\mathrm{MSO} \longrightarrow \mathrm{MSO}+\mathrm{U}$

Theorem (Hummel S. 2012)
$\mathrm{MSO}+\mathrm{U}$ goes arbitrarily high in projective hierarchy on ω-words.
\rightsquigarrow for every n there is $L_{n} \subseteq A^{\omega}$ definable in MSO+U s.t.:
L_{n} is complete for $\boldsymbol{\Sigma}_{n}^{1}$ w.r.t. continuous reductions

$$
X \in \boldsymbol{\Sigma}_{n}^{1} \quad \text { iff } \quad \exists f \text { continuous } X=f^{-1}\left(L_{n}\right)
$$

Reduction

$$
\begin{array}{ccc}
\exists_{X \in \boldsymbol{\Sigma}_{n}^{1}} & \cdots & x \in X \\
\downarrow & & \downarrow
\end{array}
$$

$$
\begin{aligned}
\exists_{\bar{f} \text { encoding a continuous function }} \cdots & x
\end{aligned}{\in \bar{f}^{-1}\left(L_{n}\right)}^{\bar{f}(x)} \in \mathcal{L}_{n} .
$$

2. Undecidability of projective MSO

M. Bojańczyk, T. Gogacz, H. Michalewski, M. Skrzypczak

2. Undecidability of projective MSO

Theorem (Shelah 1975, Gurevich Shelah 1982)
The MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.
2. Undecidability of projective MSO

Theorem (Shelah 1975, Gurevich Shelah 1982)
The MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.
Shelah [Annals of Math. 102 (1975) p. 410]:
"Aside from countable sets, we can use only a set constructible from any well-ordering of the reals."
2. Undecidability of projective MSO

Theorem (Shelah 1975, Gurevich Shelah 1982)
The MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.
Shelah [Annals of Math. 102 (1975) p. 410]:
"Aside from countable sets, we can use only a set constructible from any well-ordering of the reals."
(\star): there exists a well-order \preceq on 2^{ω} s.t.

$$
\preceq \text { is projective i.e. } \preceq \in \boldsymbol{\Sigma}_{n}^{1}\left(2^{\omega} \times 2^{\omega}\right)
$$

2. Undecidability of projective MSO

Theorem (Shelah 1975, Gurevich Shelah 1982)
The MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.
Shelah [Annals of Math. 102 (1975) p. 410]:
"Aside from countable sets, we can use only a set constructible from any well-ordering of the reals."
(\star): there exists a well-order \preceq on 2^{ω} s.t.

$$
\preceq \text { is projective i.e. } \preceq \in \boldsymbol{\Sigma}_{n}^{1}\left(2^{\omega} \times 2^{\omega}\right)
$$

Theorem (Bojańczyk Gogacz Michalewski S. 2014)
Assuming (\star), the projective MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.
2. Undecidability of projective MSO

Theorem (Shelah 1975, Gurevich Shelah 1982)
The MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.
Shelah [Annals of Math. 102 (1975) p. 410]:
"Aside from countable sets, we can use only a set constructible from any well-ordering of the reals."
(\star): there exists a well-order \preceq on 2^{ω} s.t.

$$
\preceq \text { is projective i.e. } \preceq \in \boldsymbol{\Sigma}_{n}^{1}\left(2^{\omega} \times 2^{\omega}\right)
$$

Theorem (Bojańczyk Gogacz Michalewski S. 2014)
Assuming (\star), the projective MSO theory of $\left(2^{\omega}, \leq\right)$ is undecidable.

Proof:
Shelah's proof (reformulated and rewritten).

Topological complexity vs. decidability

Topological complexity vs. decidability

Conjecture (Shelah 1975)
The MSO theory of $\left(2^{\omega}, \leq\right)$ with quantifiers ranging over Borel sets is decidable.

Topological complexity vs. decidability

Conjecture (Shelah 1975)
The MSO theory of $\left(2^{\omega}, \leq\right)$ with quantifiers ranging over Borel sets is decidable.

Theorem (Rabin 1969)
The MSO theory of $\left(2^{\omega}, \leq\right)$ with quantifiers ranging over F_{σ} sets is decidable.

Summary

M. Bojańczyk, T. Gogacz, H. Michalewski, M. Skrzypczak

On the decidability of MSO +U on infinite trees

Summary

No reasonable decidability of $\mathrm{MSO}+\mathrm{U}$ over infinite trees.

Summary

No reasonable decidability of MSO+U over infinite trees.

Conjecture

 $\mathrm{MSO}+\mathrm{U}$ over infinite trees is undecidable in ZFC.
Summary

No reasonable decidability of $\mathrm{MSO}+\mathrm{U}$ over infinite trees.

Conjecture
$\mathrm{MSO}+\mathrm{U}$ over infinite trees is undecidable in ZFC.

Open problem
Is MSO+U decidable over ω-words?

Summary

No reasonable decidability of MSO+U over infinite trees.

Conjecture $\mathrm{MSO}+\mathrm{U}$ over infinite trees is undecidable in ZFC.

Open problem
Is MSO+U decidable over ω-words?
[relation with MSO+inf over profinite words (Toruńczyk 2012)]

