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The setting — regular languages

Finite words — minimal det. automata, semigroups.

Infinite words — det. automata, Wilke algebras.
Finite trees — minimal det. automata, forest algebras.
Infinite trees — non-det. automata, (hyper)clones?

In all the cases: Monadic Second-Order logic.

Motivating problem
Except decidability, little is known about regular languages of
infinite trees.
No simple algebras for infinite trees.
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Outline
Thin trees: structures in-between words and trees.
Thin forest algebra: Wilke algebra ⊕ forest algebra.
Effective characterisations.
Topological properties: thin trees are much poorer than all
trees.

Finite alphabet A.
Infinite, finitely branching, labelled trees t (leafs allowed).
Regular languages L (those definable in MSO logic).
Also, weak regular languages (definable in weak MSO logic).
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Definition
A tree is thin if it has only countably many infinite branches.

THIN

...

THICK

...
...

...
...

A comb The full binary tree
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Lemma (Cantor, Bendixson [1882])
A tree is either:

thin — has countably many infinite branches,
thick — contains a full binary tree as a minor.

THIN

...

THICK

...
...

...
...
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Lemma (Cantor, Bendixson [1882])
A tree is either:

thin — has countably many infinite branches,
thick — contains a full binary tree as a minor.

Corollary
Being a thin tree is MSO-definable.

THIN

...

THICK

...
...

...
...
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Diagram
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Diagram
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Structural induction
rank(t) — a measure of the complexity of t.

t1

rank(t1) = 1

t2

rank(t2) = 2

t3

rank(t3) = 3

. . . tω

rank(tω) = ω

t1
t2

t3
t4

A thin tree consists of a spine and subtrees of smaller rank along it.

Cannot assign rank to a thick tree.
Every thin tree t has rank(t) < ω1.
The spine need not be the leftmost branch!
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Thin forest algebra

Wilke algebra
b

a

b

a

c

b

c

...
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Thin forest algebra

Wilke algebra
b

a

b

a

c

b

c

...

v1

v2

h

v1 · v2 · h
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Thin forest algebra

Wilke algebra
b

a

b

a

c

b

c

...

v1

v2

h

v1 · v2 · h
⊕ For the sake of algebra

Use forests instead of trees!
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Thin forest algebra

Wilke algebra
b

a

b

a

c

b

c

...

v1

v2

h

v1 · v2 · h
⊕

For the sake of algebra
Use forests instead of trees!

Forest algebra

a b a

c a bb a

a c c b
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Thin forest algebra

Wilke algebra
b

a

b

a

c

b

c

...

v1

v2

h

v1 · v2 · h
⊕

For the sake of algebra
Use forests instead of trees!

Forest algebra

a b a

c a bb a

a c c b
h

v

v · h

Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak Regular languages of thin trees 8 / 16



Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak Regular languages of thin trees 9 / 16



Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak Regular languages of thin trees 9 / 16



Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak Regular languages of thin trees 9 / 16



Effective characterisations

L = L(A) −→ SL

a representation of L the canonical finite algebra

Check if L is: −→ Verify equations in SL:

closed under arbitrary h + v = v + h
permutations of siblings

closed under well-founded g + h = h + g
permutations of siblings

Intermediate step
For every forests s and t check:

s + t ∼L t + s (Myhill-Nerode style equivalence)
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Theorem
A regular language of thin trees is closed under bisimulational
equivalence iff its syntactic algebra satisfies identities

h + v = v + h

h + h = h

(v∞ + v)∞ = v∞

Remark
For thick trees no such equational characterisation is known!
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Theorem
The following conditions are equivalent for a regular language of
thin trees L:

1 L is weak MSO-definable among all trees,
2 exists M ∈ N such that every tree t ∈ L has rank at most M ,
3 L is not co-analytic (Π1

1)-hard among all trees,
4 the syntactic morphism for L satisfies condition

if h = v(w + h)∞ or h = v(h + w)∞ then h = ⊥.
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Descriptive complexity

Theorem
Every regular language of thin trees is co-analytic (Π1

1) among all
trees.

Conjecture in all trees (a gap property):

Borel and regular =⇒ weak MSO-definable

Corollary
A regular language of thin trees is either:

definable in weak MSO among all trees,
Π1

1-complete among all trees.
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...
Σ1

2 Π1
2∆1

2

Σ1
1 Π1

1∆1
1...

Σ0
ω+1 Π0

ω+1

Σ0
ω Π0

ω

...
Σ0

2 Π0
2

Σ0
1 Π0

1

Borel

finite levels
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ω+1 Π0

ω+1

Σ0
ω Π0

ω
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2 Π0
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Summary
Structures in-between words and trees.
Nice (simple) algebras.
Equational characterisations of various properties.
Collapse of the complexity comparing to all trees.

Open problems
Decidability of the weak MSO-definability among thin trees?
Is it possible to extend these techniques/results to all trees?
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Effective characterisations
Effective (equational) characterisations of regular languages of thin
trees that are:

open in the standard topology,
commutative (in two flavours),
invariant under bisimulation (in two flavours),
weak MSO-definable among all trees.

Descriptive complexity
Every regular language of thin trees is:

co-analytic (Π1
1) among all trees,

recognisable by a non-det. (1,3)-automaton among all trees,
recognisable by an unambiguous automaton among thin trees,
not harder than Borel sets (as a subset of thin trees).

Thank you for your attention!
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