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—— Abstract

A nondeterministic automaton is called unambiguous if it has at most one accepting run on
every input. A regular language is called unambiguous if there exists an unambiguous automaton
recognizing this language. Currently, the class of unambiguous languages of infinite trees is not
well-understood. In particular, there is no known decision procedure verifying if a given regular
tree language is unambiguous. In this work we study the self-dual class of bi-unambiguous
languages — languages that are unambiguous and their complement is also unambiguous. It
turns out that thin trees (trees with only countably many branches) emerge naturally in this
context.

We propose a procedure P designed to decide if a given tree automaton recognizes a bi-
unambiguous language. The procedure is sound for every input. It is also complete for languages
recognisable by deterministic automata. We conjecture that P is complete for all inputs but
this depends on a new conjecture stating that there is no MSO-definable choice function on thin
trees. This would extend a result by Gurevich and Shelah on the undefinability of choice on the
binary tree.

We provide a couple of equivalent statements to our conjecture, we also give several related
results about uniformizability on thin trees. In particular, we provide a new example of a language
that is not unambiguous, namely the language of all thin trees. The main tool in our studies are
algebras that can be seen as an adaptation of Wilke algebras to the case of infinite trees.
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1 Introduction

Infinite trees form a rich class of models, one infinite tree may encode whole set of finite words
or a strategy in an infinite duration game. Therefore, the decidability of Monadic Second-
Order (MSO) logic over infinite trees [19] is often called the mother of all decidability results.
The proof of this decidability result follows a similar line as in the case of finite words [27]
— we find a model of automata that are equivalent in expressive power with MSO logic and
have decidable emptiness problem.

The proof of Rabin’s theorem deals with nondeterministic automata as deterministic ones
have strictly smaller expressive power. It is one of the main reasons why many problems
about regular languages of infinite trees are very hard. For example, no algorithm is known
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Unambiguity and uniformization problems on infinite trees

to decide the parity index in the class of all regular tree languages. On the other hand,
there are many results for the restricted class of deterministic languages [11, 15, 16, 17, 13].
Unambiguous automata can be seen as a natural intermediate class between deterministic
and nondeterministic ones. An automaton is unambiguous if it has at most one accepting
run on every input. In some settings [25, 3] unambiguous automata admit faster algorithms
than general nondeterministic automata.

The unambiguous automata do not capture the class of all regular languages of infinite
trees. As shown in [5], the language L; of trees containing at least one letter b cannot be
recognised by any unambiguous automaton. The proof uses a result by Gurevich and She-
lah [8] stating that there is no MSO-definable choice function on the full binary tree (see [5]
for a simpler proof of this result). To the authors’ best knowledge, the non-definability of
choice has been so far the only method to show that a tree language is ambiguous (i.e. not
unambiguous).

The class of unambiguous languages of infinite trees is not well-understood. In partic-
ular, there is no effective procedure known that decides whether a given nondeterministic
automaton recognises an unambiguous language. Additionally, unambiguous languages lack
some natural properties. As witnessed by the language Ly, a complement of an unambiguous
(and even deterministic) language may be ambiguous. Also, as shown in Proposition 2 of
this work, a sum of two deterministic languages may be ambiguous.

Due to the above reasons we concentrate on the class of languages such that both the
language and its complement are unambiguous. We call these languages bi-unambiguous. An
easy argument shows that this class is effectively closed under boolean operations. Moreover,
the class is rich enough to contain languages beyond the o-algebra generated by ITi sets
(see [9]). In particular, there are bi-unambiguous languages that are topologically harder
than all deterministic languages.

Our motivating problem is to find an effective procedure that verifies if a given regular
tree language is bi-unambiguous. Unfortunately, we are unable to solve this problem in full
generality. We have a candidate P for such a procedure and we prove that P is sound —
if P returns YES then the language is bi-unambiguous. Also, P is complete for determ-
inistic languages — if L is deterministic and bi-unambiguous then P returns YES. The
completeness of P in the general case relies on a new conjecture (Conjecture 1 below).

Interestingly, the class of thin trees (trees containing only countably many branches,
see [12, 21, 2]) emerges naturally in this context. The crucial technical tool of the procedure
P can be seen as an application of the algebra designed for thin trees [10, 2] in the setting
of all trees. For this purpose a class of prophetic thin algebras is introduced. Basing on
algebraic observations we show that P is complete if the following conjecture holds.

» Conjecture 1 (Undefinability of a choice function on thin trees). There is no MSO formula in
the language of trees ¢(z, X) such that for every non-empty set X C {l,r}* that is contained
in a thin tree, p(z, X) holds for exactly one vertex  and such a vertex = belongs to X.

To the authors’ best knowledge the above conjecture is new. It is a strengthening of the
result of Gurevich and Shelah [8] as we restrict the class of allowed sets X.

We find this conjecture interesting in its own right. A number of equivalent statements
is provided. Also, it turns out that, assuming Conjecture 1, the class of finite prophetic thin
algebras has many good properties (e.g. it is a pseudo-variety of algebras corresponding
exactly to the class of bi-unambiguous languages).

Conjecture 1 can be seen as an instance of a more general problem of uniformization. We
provide some related results on uniformizability on thin trees. In particular, we show that
there exists some non-uniformizable formula on thin trees. It can be seen as an alternative
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to [8] answer to Rabin’s Uniformization Problem. Also, we show that the language of all thin
trees is ambiguous, thus providing an essentially new example of an ambiguous language.
We begin by introducing some basic definitions and notions. In Section 3 we define the
procedure P and show its properties. Section 4 is devoted to the analysis of the choice
problem on thin trees. In Section 5 we study related uniformization problems on thin trees.

2 Basic notions

2.1 Trees

For technical reasons we work with ranked alphabets A = (N, L) where N (like nodes)
contains binary symbols and L (like leafs) contains nullary symbols. We assume that both
sets N and L are finite and nonempty. We say that ¢ is a tree over the alphabet (N, L) if
t is a function from its nonempty domain dom(t) C {l,r}* into N U L in such a way that
dom(t) is prefix-closed and for every vertex w € dom(¢) either:

w is an (internal) node of t (i.e. wl,wr € dom(¢)) and ¢(w) € N, or

w is a leaf of t (i.e. wl,wr ¢ dom(t)) and t(w) € L.

The set of all trees over an alphabet A is denoted as Tra. A tree containing no leaf is
full. If t € Try is a tree and w € dom(t) is a vertex of ¢ then by ¢ [,€ Tra we denote the
subtree of ¢ rooted in w. By =< we denote the prefix-order on elements of {I,r}<%.

A sequence 7 € {l,r}¥ is an infinite branch of a tree t if for every w < 7 we have that
w € dom(t). An element d € {I,r} is called a direction, the opposite direction is denoted as
d. The empty sequence € is called the root of a tree ¢. If 7 is an infinite branch of a tree ¢
and w £ 7 but w is a child of a vertex on 7 then we say that w is off 7.

A tree t € Try is thin if there are only countably many infinite branches of t. The set
of all thin trees is denoted by Th4. A tree that is not thin is thick. A tree is regular if it
has only finitely many different subtrees. For a € N by a(t;,t,.) € Tra we denote the tree
consisting of the root € labelled by the letter a and two subtrees t;,t,. € Try respectively.

A multi-context over an alphabet A = (N,L) is a tree ¢ € Tr(y ruqmy). A vertex
w € dom(c) such that ¢(w) = O is called a hole of c. For every tree t € Tr4 the composition
of ¢ and t, denoted c -t € Tr 4, is obtained by plugging copies of ¢ in all the holes of c.

If a multi-context ¢ has exactly one hole not in the root then it is called a context. The
set of all contexts over the alphabet A is denoted as Cony. The set of all contexts over A
that are thin as trees is denoted by ThCon,. For t € Try and w € dom(t), by t[0/w] we
denote the context obtained from ¢ by putting the hole in w.

Let t4 € Try and M be a ranked alphabet. We say that tj; € Trys is a labelling of t4 if
dom(tpr) = dom(t4). In that case we define the tree (t4,tpr) € Traxas in the natural way.

2.2 Automata

A nondeterministic parity tree automaton is a tuple A = (Q, A4, 6, I,Q) where
Q is a finite set of states,
A = (N, L) is a ranked alphabet,
6 = o U g is a tramsition relation: do C Q X @ x N x @ contains transitions for nodes
(¢,q1,0a,q-) and §g C Q x L contains transitions for leafs (q,b),
I C Q is a set of initial states,
Q: Q — N is a priority function.
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A run of an automaton A on a tree t € Try4 is a labelling p of ¢ over the ranked alphabet
(Q, Q) such that for every vertex w of ¢

if w is a node of ¢ then (p(w), p(wl), t(w), p(wr)) € da,

if w is a leaf of ¢ then (p(w), t(w)) € do.

A run p is consistent if for every infinite branch 7 of ¢ the lim sup of values of € on states
along 7 is even: limsup,,_,.. Q(p(7[,)) =0 mod 2. The state p(e) is called the value of p.

Similarly one can define a run p on a context ¢ with the hole w, the only difference is
that there is no constraint on the value p(w) in the hole of c.

A run p is accepting if it is consistent and p(e) € I. A tree ¢ € Tryu is accepted by A
if there exists an accepting run p of A on t. The set of trees accepted by A is called the
language recognised by A and is denoted by L(A). A language L C Tra is reqular if there
exists an automaton recognising L.

We say that an automaton A is deterministic if I = {q;} and for every state ¢ € Q
and letter a € N there is at most one transition (g, q;,a,q,) € d2. An automaton A is
unambiguous if for every tree t € L(A) there is exactly one accepting run of A4 on ¢t. A
language L C Tr4 is deterministic (resp. unambiguous) if there exists a deterministic (resp.
unambiguous) automaton recognising L. A language that is not unambiguous is called
ambiguous. A deterministic language is, by the definition, unambiguous. A language L is
bi-unambiguous if both L and Tr4 \ L are unambiguous.

We finish this section with an observation showing that unambiguous languages are not
closed under finite union.

» Proposition 2. There exist deterministic languages L1, Ly such that L, U Ly is ambiguous.

2.3 Logic

We use the standard notion of Monadic Second-Order (MSO) logic (see [26]). The syntax of
this logic allows quantification over elements and subsets of the domain, boolean connectives,
predicates for the letters in a given alphabet, and two relations [-child, r-child.

For a given MSO formula <p(13) over an alphabet A = (N, L) with n parameters Py, ..., P,
by L(¢(P)) we denote the set of trees over the alphabet (N x {0,1}", L x {0,1}") that
satisfy ¢ when parameters P are decoded from their characteristic functions.

The crucial property of MSO logic is expressed by the following theorem.

» Theorem 3 (Rabin [19]). A language L C Tr 4 is reqular if and only if there exists an MSO
formula ¢ such that L = L(yp). There are effective procedures translating MSO formulas into
equivalent automata and vice versa.

3 Bi-unambiguous languages

In this section we concentrate on the following decision problem.

» Problem 4. The input is a nondeterministic parity tree automaton A. The output should
be YES if the language L(.A) is bi-unambiguous. Otherwise, the output should be NO.

We construct a procedure P with the following properties.
» Theorem 5. Let A be a nondeterministic tree automaton.

1. P(A) terminates.
2. If P(A) = YES then L(A) is bi-unambiguous.
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3. IfL(A) is deterministic and P(A) = NO then L(A) is not bi-unambiguous'.
4. If Conjecture 1 is true and P(A) = NO then L(.A) is not bi-unambiguous.

Recall that it is decidable whether a given regular tree language is recognisable by a
deterministic tree automaton (see [17]). Therefore, the above assumption that L(A) is
deterministic can be effectively checked given some representation of L(A). The rest of this
section is devoted to defining P and showing the above theorem.

3.1 Thin algebra

The crucial tool in the construction of the procedure P is a variant of thin forest algebra [2],
called thin algebra. Thin algebra can be seen as a natural extension of Wilke algebra [28, 30]
and Wilke tree algebra [29] to the case of infinite trees.

Let us fix a ranked alphabet A = (N, L). A thin algebra over A is a two-sorted algebra
(H,V) with a number of operations:

u-v eV foruveV,

v-he HforveV,heH,

v>® € H forveV,

Node(a,d,h) € V for a € N, d € {l,r}, and h € H,

Leaf(b) € H for b € L.

Note that the first three operations are the same as in the case of Wilke algebras. The
last two operations allow to operate on trees. For simplicity, we write a(J,h) instead
of Node(a,l,h) and a(h,0) instead of Node(a,r, h). Similarly, b() stands for Leaf(b) and
a(hy, hy) € H denotes the result of a(h;,0) - h,.

The axioms of thin algebra are axioms of Wilke algebra and one additional axiom:
a(d, hy) - by = a(hy,O) - k.

» Fact 6. Let (H,V) be a thin algebra and let (v;);en be any sequence of elements of V.
There exists a unique value [[, v; € H for which: if jo < j; < ... is a sequence of numbers
and s,e € V are types such that:

Vo« ... Vj, =S,

foralli > 0wvj41-...-v5,, =e€
then s-e> =[], v;. Also, the following holds [[,~,vi = vo - [[;5 vi-

Proof. The same as in the case of Wilke algebra, see [18]. <

It is easy to verify that the pair (Tr4, Cona) has a natural structure of a thin algebra.
In particular, the operation ¢* constructs the tree ¢* from a context ¢ by looping the hole
of ¢ to the root of c¢. The subalgebra of (Tru,Cony) consisting of thin regular trees and
thin regular contexts is free in the class of thin algebras over the alphabet A. The algebra
(Tra,Conyb) is not free.

A homomorphism «: (H,V) — (H',V’) between two thin algebras over the same al-
phabet A is defined in the usual way: « should be a function mapping elements of H into
H' and elements of V into V' that preserves all the operations of thin algebra. Such a
homomorphism is surjective if «(H) = H' and a(V) = V.

Since (Tr 4, Cony) is not free in the class of thin algebras, we need to define one additional
requirement for homomorphisms a:: (Try, Cong) — (H,V). Let A = (N, L) and put ALUH =

! What is equivalent to ambiguity of the complement of L(.A).
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(N,LU H). Consider any tree ¢ € Tray and t € Try. We say that ¢ is an extension of ¢
if dom(c) C dom(¢) and for every w € dom(c) either:

c(w) € NUL and c(w) = t(w),

c(w) € H and c¢(w) = a(t [y)-
That is, ¢ is supposed to agree with ¢ on all the letters in N U L and whenever ¢ declared
some type h € H in a leaf w then the subtree ¢ [, has a-type h (i.e. a(t],)=h).

» Definition 7. We say that a: (Tra,Cony) — (H,V) is compositional if there exists a
function &: Tra,g — H such that if ¢ € Try is an extension of ¢ € Tr 4,y then a(c) = a(t).

Let L C Tru be a language of trees. We say that a homomorphism «: (Tr4, Cong) —
(H,V) recognises L if a is compositional and there is a set F' C H such that L = a~(F).

» Fact 8. Since every context ¢ € Cony can be obtained as a finite combination of trees
t € Try4 using the operation Node, if a1, ag: (Tra, Cong) — (H, V) are two homomorphisms
that agree on Tr4 then a; = as.

The following theorem introduces the notion of syntactic morphism for a given language.
It is an adaptation of a similar theorem for the case of thin forest algebras, see [10] for a
deeper explanation. For the sake of completeness, a sketch of a proof is given in Appendix A.

» Theorem 9. For every regular tree language L there exists a syntactic morphism for L:
a finite thin algebra S, = (H,V) (called a syntactic algebra of L) and a homomorphism
ar: (Tra,Cony) — Si such that:

ay, s surjective, compositional, and recognises L,

for every h € H the language Ly, := a ' ({h}) is regular,

if a: (Tra,Cong) — S is surjective and recognises L then there is exactly one homo-

morphism B: S — Sp such that foa = af.

A syntactic algebra Sy, and languages Ly, can be effectively computed basing on a mon-
deterministic automaton recognising L.

Note that by the last bullet, all syntactic morphisms for a given language are isomorphic
— there are homomorphisms S that make the respective diagrams commute. Therefore, a
syntactic morphism can be seen as a unique representation of a language.

An intermediate step in this proof requires a definition of some finite thin algebra S4 =
(H4,Vy4) that recognises the language L(A) for a given automaton A. The constructed
algebra is called the automaton algebra for A. The definition of S 4 is the same as in [10].
The homomorphism into S4 that recognises L(.A) is based on the following operation that
will be used later:

Qa(t)={qeQ: 3, pis a consistent run of A on t with value ¢} C 2@, (1)

If A is known from the context, we write just Q(t). By 7.4(t) we denote the labelling of ¢
defined 7.4(t)(w) = Qa(t ).

What is important in Theorem 9 is that we explicitly fix the homomorphism «y,. Usually
(e.g. in the case of monoids) there is a unique such homomorphism for a fixed interpretation
of the alphabet. It turns out that this is not the case for thin algebras and all binary trees.
Therefore, to fully describe a given language we need an algebra Sy, a set FF C H, and a
homomorphism ay, (it can be represented by the languages Ly,).
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3.2 Prophetic algebras

The situation when there are multiple homomorphisms from all trees into a given thin
algebra comes from the fact that the algebra may not be prophetic. In this section we
formally introduce this notion.

Let (H,V) be a thin algebra over an alphabet A = (N, L). Let t € Trs be a tree. A
labelling 7 € Tr(g gy of t is a marking of t by types in H if:

for every node w of t we have 7(w) = t(w)(r(wl), 7(wr)),

for every leaf w of ¢ we have 7(w) = t(w)().
A marking 7 is consistent if it is consistent on every infinite branch 7 of ¢t. Let m = dpd; . ..
and let wg < wy < ... be the sequence of vertices of ¢ along w. The sequence of types of
contexts v; = Node(t(w;),d;, T(w;d;)) is called the decomposition of T along w. Now, T is
consistent on 7 if for every i € N we have

r(wi) =[] v (2)

Jj=i

Informally speaking, a marking 7 is consistent along 7 if the types of 7 along 7 agree
with the types that can be computed using [] basing on the types of vertices that are off .
By the definition of a marking, it is enough to require (2) for infinitely many 7 € N in the
definition of consistency.

Note that if a homomorphism «: (Tru,Cona) — S is fixed, for every tree t € Tr the
marking 7, (t)(w) := a(t],) (called the marking induced by a on t) is consistent.

» Example 10. Fix the alphabet A, = ({n},{b}). Let L, C Try, contain exactly these
trees which have at least one leaf. One may verify that the syntactic morphism for L; can
be defined as follows: Hy, = {ha,hs}, Vi, = {va, v}, and ap, (t) = hy (resp. ar,(c) = vp)
if and only if a tree ¢ (resp. a context ¢) contains any leaf (not counting the hole of c).

Let ¢,, be the full binary tree equal everywhere n. Observe that ¢,, does not belong to L,
and the marking 7, Ly (t,) induced by ar, on t, equals h, in every vertex. Consider another
marking 7’ of ¢, that equals h; everywhere. Note that 7’ is consistent — it looks like a
consistent marking along every branch. Therefore, ¢ has two consistent markings.

Going further, one can construct a compositional homomorphism «': (Tra,,Conga,) —
(Hp,,Vr,) that assigns hy to the tree ¢,. Therefore, there are two distinct compositional
homomorphisms from (Try,, Conga,) to (Hz,, Vi,).

Recall that the language L; used above is known to be ambiguous, see [14].
The following fact follows from [2], the proof goes via induction on rank of thin trees.

» Fact 11. If t € Try4 is a thin tree and (H,V) is a finite thin algebra over the alphabet A
then there exists exactly one consistent marking 7 of ¢.

The following definition is crucial for the procedure P. The term prophetic is motivated
by [6].

» Definition 12. We say that a thin algebra (H, V) over an alphabet A is prophetic if for
every tree t € Tr4 there exists at most one consistent marking of ¢ by types in H.

Note that if @: (Tra,Cony) — S is a homomorphism and S is prophetic then, for every
tree t € Tra, the only consistent marking of ¢ is the marking induced by «. In particular,
there is at most one homomorphism from (Tr4, Con4) into S, see Fact 8.

Since the property that a given finite thin algebra is prophetic can be expressed in MSO
over the full binary tree, so we obtain the following fact.
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» Fact 13. It is decidable whether a given finite thin algebra (H, V') is prophetic.

» Fact 14. By the definition, a subalgebra of a prophetic thin algebra is also prophetic.
Similarly, a product of two prophetic thin algebras is also prophetic.

3.3 Semi-characterisation

The following theorem gives a connection between bi-unambiguous languages and prophetic
algebras.

» Theorem 15. A language L C Tr 4 is bi-unambiguous if and only if there exists a surjective
homomorphism «a: (Tra,Cony) — (H,V) that recognises L such that (H,V) is a finite
prophetic thin algebra over the alphabet A.

First assume that L is a bi-unambiguous language. Let A, B be a pair of unambiguous
automata recognising L and Try \ L respectively. We describe how to construct a finite
prophetic thin algebra (Hy, V) recognising L.

The first step can be expressed as the following fact.

» Fact 16. Assume that A is an unambiguous automaton over an alphabet A and ¢ € Tr 4.
Assume that 7 is a consistent marking of ¢ by types in the automaton algebra S 4. Then
there is at most one run p of A on ¢ such that p(e) € I and Yy cdom(r) p(w) € T(w).

Using the above observation and properties of the automaton algebra, we can entail
that for every consistent marking 7 of a given tree ¢ and for every g € 74(t)(e) there is a
consistent run of A on ¢t with value q. Therefore, for every consistent marking 7 of ¢ we
have Vy,cdom(t) T(w) € 7a(t)(w). Our aim is to put some additional constraints on 7 that
imply equality in the above formula. This is obtained by the second step of the reasoning,
as expressed in the following lemma. The idea to use pairs of sets of states in this context
was suggested by Igor Walukiewicz.

» Lemma 17. Let A, B be a pair of unambiguous automata recognising L and Tra \ L
respectively. Let R = {(Qa(t),Qp(t)): t € Tra}. Then the set R ordered coordinate-wise
by inclusion is an antichain.

Now let ¢t € Tr and assume that we have consistent markings 7y, 75 of ¢ with respect to
algebras S4, Sp respectively. Assume that for every w € dom(t) we have (71 (w), 72(w)) € R.
Then 71 (w) C 74(¢)(w), T2(w) C 75(t)(w), and by the above lemma 7 = 74(¢t), 7" = 75(t).
This shows that the product of algebras S4 and Sg is prophetic.

The following lemma implies the opposite direction of Theorem 15.

» Lemma 18. Let a: (Try, Cong) — (H, V) be a compositional homomorphism into a finite
prophetic thin algebra (H,V) and hg € H. The language Ly, = a~*(ho) is unambiguous.

Using this lemma, if o recognises a language L then L and Trs \ L are finite disjoint
unions of unambiguous languages Ly, so L is bi-unambiguous.

The construction of an unambiguous automaton C recognising L goes as follows: let C
guess some marking 7 of a given tree ¢ by types in H. Then, C verifies that the root is
labelled by hg and the marking 7 is consistent. Since consistency of a marking is a branch-
wise w-regular condition, so it can be verified by a deterministic top-down automaton. Since
(H,V) is prophetic, so the only possible consistent marking of ¢ is the marking induced by
a. So C has at most one accepting run on ¢ and it accepts ¢ if and only if a(t) = ho.

Theorem 15 implies the following lemma, that can also be proved without use of algebra.

» Remark. The class of bi-unambiguous languages is closed under boolean operations and
language quotients ¢~ - L = {t: c-t € L} for contexts c.
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3.4 The procedure P

Now we can formally define our procedure P. This procedure consists of three steps:
1. Read a nondeterministic automaton A recognising a regular tree language L.

2. Compute the syntactic thin algebra Sy, of L.

3. Answer YES if Sy is prophetic, otherwise answer NO.

By Theorem 9 and Fact 13 both operations undertaken by P are effective. Therefore, P
is well-defined and always terminates. Note that if S, is prophetic then, by Theorem 15, the
language L is bi-unambiguous. Therefore, Item 2 of Theorem 5 holds. The only remaining
possibility of failure of the procedure P is when L is bi-unambiguous but the syntactic algebra
St is not prophetic. Our aim is to exclude this possibility. In general, Conjecture 1 implies
that the syntactic algebra of a bi-unambiguous language is prophetic, see Remark 4.1. This
shows that Item 4 of Theorem 5 holds. The following theorem implies Item 3 of Theorem 5.

» Theorem 19. If L is deterministic and bi-unambiguous then the algebra Sy, is prophetic.

The rest of this section is devoted to proving this theorem. Let D be a deterministic
tree automaton recognising L C Trs. A state ¢ € Qp is nontrivial if there is a tree t not
accepted by D from ¢ (i.e. there is no consistent run of D on ¢ with value ¢). Let t € L
be a tree and p be the accepting run of D on ¢. Let Tp(t) C {I,r}* be the set of vertices
w € dom(t) such that p(w) is a nontrivial state of D. Note that Tp(t) is a prefix-closed
subset of dom(¢). We start with the following lemma.

» Lemma 20. If D is a deterministic tree automaton and Tra \ L(D) is unambiguous then
for every tree t € L(D) the set Tp(t) is thin.

Proof. Assume contrary and fix a regular tree ¢ € L such that T = Tp(¢) is thick. Let
p be the run of D on ¢t. Let A by an unambiguous automaton recognising Tr4 \ L(D).
Now observe that for every w € T there exists a tree t,, not accepted by D from the state
p(w). Let X C T be any prefix-free set. Let t(X) be the tree obtained from ¢ by plugging
simultaneously subtrees ¢,, under w for every w € X. Note that if X # () then ¢(X) ¢ L(D)
— the run p does not extend to accepting run under any w € X. Therefore, we obtain

t(0) ¢ L(A) and Vxcr (X is prefix-free and nonempty = ¢(X) € L(A)). (3)

Now we construct an automaton A for the language Ly (see Example 10). The transitions
of A simulate transitions of A on T. Whenever A reaches a leaf, it simulates the behaviour
of A on the respective tree t,,. Since A is unambiguous, so is A. And, by (3) L(A) = L.
This gives us a contradiction with the fact that L; is ambiguous. |

» Fact 21. Let D be a deterministic automaton and ¢ € L(D) C Tra. Assume that ¢’ € Tra
is a tree satisfying w € dom(¢') and #'(w) = t(w) for every w € Tp(t). Then t' € L(D).

Proof. The accepting run of D on vertices in Tp(t) can be extended to t' by triviality of
the states outside Tp(¢). <

Now we can finish the proof of Theorem 19.

Proof. Assume contrary that the syntactic algebra S, of L is not prophetic. Let ¢ be a tree
and 7,7 be a pair of distinct consistent markings of ¢t. Let h = 7(¢) and h' = 7'(¢). We
can assume that h # h' (otherwise instead of ¢ we take ¢ [, where w is a node for which
7(w) # 7'(w)). Since h # h' so there exists a multi-context ¢ such that (by symmetry)
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c-t€ Landc-t ¢ L. Let wy,ws,... be the list of holes of ¢. Since ¢-t € L so we can
consider the set T = Tp(c-t) C {I,r}*.

By Lemma 20 we know that 7" is thin, in particular 7; := T'[,,, is thin for every . Let
t; be the tree obtained from ¢ by substituting some tree of ar-type 7'(w) instead of ¢ [, for
every minimal w ¢ Tj. Since 7} is thin and ay-types of subtrees of t; agree with 7/ outside T;
so ar(t;) = ' — we use the fact that 7T} is thin. Let £ be the tree obtained from ¢ by putting
t; instead of the hole w;. Then, by compositionality of oy, we obtain that ar(t) = ar(c-t'),
sot ¢ L. But ¢-t and t agree on Tp(t) so by Fact 21 ¢ € L, a contradiction. <

4  (Un)definability of choice on thin trees

In this section we study Conjecture 1, we show a couple of equivalent statements and prove
some of its consequences (in particular Item 4 of Theorem 5). We start by formulating the
choice problem as a instance of a more general question.

» Definition 22. Let (X, P) be a MSO formula on A-labelled trees with monadic paramet-
ers X and P = Py,..., P,. We say that ¢(X, P) is an uniformization of o if the following
conditions are satisfied for every tree t, values of parameters P, and sets X7, Xo C dom(¢):

(3x ex.P)) & (3x v(x.P))

w(X17P) = QO(XMP)
(v Py ne(Xe P)) = Xi=X;

That is, whenever it is possible to pick some X satisfying ¢(X, ﬁ) then 1) chooses exactly
one such X. For simplicity, we allow a (possible empty) list of additional parameters P and
we assume that the first variable is the one that is supposed to be uniformized.

Now, Conjecture 1 says that the following formula does not have uniformization:

CHOICE(z, X) := the given tree is thin and = € X.

A simple interpretation argument shows that Conjecture 1 is equivalent to the non-
uniformizability of the following simpler formula.

LEAF — CHOICE(z) := the given tree is thin and x is a leaf.

The following proposition expresses the crucial technical condition, allowing to entail
properties of thin algebras using Conjecture 1.

» Proposition 23 (assuming Conjecture 1). Assume that «: (H,V) — (H',V’) is a surjective
homomorphism between two finite thin algebras. Let ¢ be a tree and 7’ be a consist-
ent marking of ¢ by H’. Then there exists a consistent marking 7 of ¢ by H such that

vadom(t) a(r(w)) = T/(’U)).

Sketch of the proof: assume contrary and fix a regular pair (t,7’) such that there is no
marking 7 as above. Consider the standard automaton-pathfinder game, where the auto-
maton proposes a marking 7 and the pathfinder picks directions to show that 7 does not
satisfy the above conditions. Since there is no such 7, so pathfinder has a finite memory
winning strategy o. Now, given a thin tree ¢ we can define the unique consistent marking
7 that satisfies a(7) = 7’ on t. The play resulting in pathfinder playing ¢ and automaton
playing 7 must end in a leaf of ¢. <
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The second important tool in our analysis enables to make a connection between uniformized
relations and induced markings. A formal definition of a transducer and a proof of the
following theorem are given in Appendix C.

» Theorem 24. Assume that La C Tra,Ly C Traxa are regular languages of trees
for two ranked alphabets A, M such that La is a projection of Ly onto A. Assume that
Viaera iyeten (ta,ty) € Ly, Then, there exist:

a compositional homomorphism «: (Tra,Cona) — S into a finite thin algebra S,

a deterministic finite state transducer that reads the marking induced by o on a given

tree tao and outputs the labelling tyr such that (ta,tyr) € L, whenever such tyy exists.

Now we can present two algebraic statements that are equivalent to Conjecture 1.

» Theorem 25. The following conditions are equivalent:

1. Conjecture 1 holds.

2. For every finite thin algebra (H,V') over an alphabet A = (N, L) and every treet € Tra
there exists a consistent marking of t by types in H.

3. For every finite thin algebra (H,V') over the alphabet Ay = ({n},{b}) there exists a
consistent marking of the full tree t,, € Tra, by types in H.

Note that in the above theorem algebras (H, V) come without any homomorphism from
(Tra, Conya), so there is no notion of the induced marking.

Proof. First we show 1 = 2. Let (H, V) be a finite thin algebra over an alphabet A = (N, L).
Let (H', V') = ({ho}, {vo}) be the singleton thin algebra with b() = hg for every b € L. There
is a unique homomorphism «: (H,V) — (H',V'). Take any tree t € Truy. Let 7’ be the
consistent marking of ¢ that is constant equal hg on dom(¢). By Proposition 23 there exists
a consistent marking of ¢ by types in H.

Of course Item 3 follows from Item 2.

For 3 = 1 we assume that ¢ (z) is an MSO formula uniformizing LEAF — CHOICE.
Using Theorem 24 we find a deterministic transducer 7 that reads types of subtrees of a
given thin tree (with respect to some homomorphism « into a finite thin algebra (H,V))
and outputs directions towards the chosen leaf. Let (H’,V’) be the subalgebra of (H,V)
containing a-types of (Ths, ThCony). By Item 3 there is a consistent marking 7 of the full
tree t,, by types in H'. We can consider the sequence of directions 7 given by T on (¢,, 7).
Since t does not have any leaf, so 7 is infinite. Now, we can substitute all subtrees that are
not on 7 by thin trees of the respective types given by 7. The result is a thin tree ¢’ such
that the directions produced by 7 do not reach any leaf of # — a contradiction. <

4.1 Prophetic thin algebras

It turns out that (assuming Conjecture 1) the class of finite prophetic thin algebras has
a number of nice properties. Most of them can be read as properties of the class of bi-
unambiguous languages. To emphasise that we work under the assumption of Conjecture 1,
we explicitly put it as a pre-assumption in the statements.

» Theorem 26 (Conjecture 1). Let (H,V) be a prophetic thin algebra over an alphabet
A. There exists a unique homomorphism a: (Tra,Cony) — (H,V). Additionally, « is
compositional.

11
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Proof. The uniqueness of the homomorphism was observed in Section 3.2. By Theorem 25
and the fact that (H, V) is prophetic, every tree t € Tr4 has exactly one consistent marking
7¢ by types in H. Let us define a(t) = m(e). Clearly a is a compositional homomorphism
— if ¢t is an extension of ¢ then the consistent marking 7 must agree with the types in the
leafs of c. |

» Theorem 27 (Conjecture 1). Let 5: S — S’ be a surjective homomorphism between two
finite thin algebras. If S is prophetic then S’ is also prophetic.

Proof. First fix the homomorphism «: (Tr4,Cong) — S given by Theorem 26. Note that
Boa: (Tra,Cony) — (H,V) is a compositional homomorphism. Assume that S’ is not
prophetic, so there exists a tree ¢t with two consistent markings o, ¢’ by types of S’. Without
loss of generality we can assume that o is the marking induced by o « and o’(€) # o(e).
Let 7 be the marking by types in S induced by « on t. Observe that pointwise (1) = o.
By Proposition 23 there exists a consistent marking 7’ of ¢ such that pointwise 5(7') = ¢’.
Therefore, 7,7’ are two distinct consistent markings of ¢ by types in H — a contradiction. <«

The following remark ends the proof of Item 4 of Theorem 5.
» Remark (Conjecture 1). If L C Tr, is bi-unambiguous then Sy, is prophetic.

Proof. Since L is bi-unambiguous so by Theorem 15 there exists a surjective homomorphism
a: (Tra,Cony) — (H,V) that recognises L such that (H,V) is a finite prophetic thin
algebra. Since ST is a syntactic algebra of L so there exists a surjective homomorphism
B: (H,V) — Si. By Theorem 27 we obtain that Sy, is also prophetic. <

The next statement shows that prophetic thin algebras form a robust class from the
point of view of universal algebra (see [4] for an introduction to this field). The proof
follows directly from Theorem 27 and Fact 14.

» Remark (Conjecture 1). The class of finite prophetic thin algebras is a pseudo-variety: it
is closed under homomorphic images, subalgebras, and finite direct products.

5 Uniformizability results on thin trees

In this section we study Conjecture 1 in the context of related uniformization problems on
thin trees. One of the notions we concentrate on are skeletons of thin trees, introduced in [2].

» Definition 28. Let t € Tr4 be a tree. We say that o C dom(t) is a skeleton of t if € ¢ o
and the following conditions are satisfied:
if w € dom(t) is an internal node of ¢ then o contains exactly one of the vertices wi, wr,
if 7 is an infinite branch of ¢ then all but finitely many vertices on 7 belong to o.
We identify a set 0 C dom(t) with its characteristic function o € Tr{0,13,70,13)- By SKEL(0)
we denote the MSO formula expressing the above properties.

The following proposition expresses the crucial property of skeletons, see [2].
» Proposition 29 ([2]). A tree ¢ is thin if and only if there exists a skeleton of ¢.

Note that a thin tree may have multiple skeletons. The main idea behind skeletons is that
they provide decompositions of thin trees: every skeleton o of a thin tree t defines the main
branch of o that follows o from the root of ¢t and along this branch simpler thin trees are
plugged. The second bullet in the definition of skeletons means that such a decomposition
is well-founded — we can go off the main branch only finitely many times.
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5.1 Non-uniformizability

In this section we give the following two negative results.
» Theorem 30. There is no MSO formula uniformizing SKEL(o).
» Theorem 31. The language Tha, C Tra, of thin trees over the alphabet Ay is ambiguous.

The above theorem can be seen as complementing the following theorem from [2] (ad-
justed to the case of trees instead of forests).

» Theorem 32 (Theorem 12 from [2]). For every regular language L C Tra that contains
only thin trees there exists a nondeterministic automaton A such that L(A)NThy = L and
A has at most one accepting run on every thin tree.

Therefore, every regular tree language containing only thin trees is unambiguous relat-
iwely to thin trees. But, by Theorem 31, it is the best we can get: even the language of all
thin trees is ambiguous among all trees.

The proofs base on two observations, first of them is the existence of transducers, see
Theorem 24. The second ingredient is a weaker version of Item 2 in Theorem 25. It is
motivated by a similar result on preclones, see [1].

» Theorem 33. For every finite thin algebra (H, V') over an alphabet A = (N, L) there exists
a thick tree t € Try4 and a consistent marking T of t by types in H.

The proof uses Green’s relations [7] in the monoid V of a given thin algebra to find an
appropriate idempotent e € V' that enables to construct a tree ¢ . The constructed tree is
thick but it is not full — many subtrees of ¢ are thin and contain leafs.

Now we can present a sketch of the proof of Theorem 30.

Proof. Assume that (o) is a uniformization of SKEL(c). Using Theorem 24 we find: a
homomorphism a: (Tru, Cony) — (H,V) info a finite thin algebra and a transducer 7. Let
(H', V') be the subalgebra of (H,V) that is the image of (Th4, ThCon,4) under .

Using Theorem 33 we construct a thick tree ¢t with a consistent marking 7 by types in
H'. We run the transducer T on (¢, 7) what results in a labelling ¢5; of ¢. Since ¢ is not thin
so it has no skeleton. Therefore, one of the conditions for skeletons is not satisfied by ¢5;.
Assume that there exists a branch 7 of ¢ such that ¢); labels infinitely many vertices on =
by 0. The other possibility is similar but simpler. Now we can plug thin trees of types given
by 7 along 7 obtaining ¢’. By the construction, ¢’ is thin and 7 equals along 7 the marking
of ¢ induced by «. Therefore, we can run 7 on (', 7,(t)) obtaining a result t}, that agrees
with tpy on 7. It is a contradiction since 7 is supposed to produce a correct skeleton for
every thin tree and ¢/, violates assumptions of skeleton on 7. |

5.2 Degrees of uniformization

In this section we study relationships between uniformization problems on thin trees. The
results of this section were found as answers to questions posed by Alexander Rabinovich.
The following definition is motivated by degrees of selection studied in [22].

» Definition 34. We say that a formula p(X, ]3) has higher degree of uniformization than
¢'(Y, R) (denoted ¢/ (Y, R) <uni ©(X, P)) if there exists a formula ¢ (Y, R) that is defined
in MSO extended by an additional predicate U(X,P) and (Y, R) uniformizes o(Y, R)
whenever U is interpreted as any relation uniformizing o(X, 13)

13



14

Unambiguity and uniformization problems on infinite trees

» Fact 35. The relation =<,,; is transitive and reflexive. If ¢'(X, 13) =uni @Y, ﬁ) and
(Y, R) is uniformizable then so is ¢’ (X, P).

We say that ¢ is on thin trees if ¢ is satisfied only on thin trees. The following theorem
implies that SKEL(¢) is maximal with respect to <,,; among MSO formulas on thin trees.

» Theorem 36. For every formula (X, ﬁ) on thin trees there exists a formula ¢'(X, P, o)
that uniformizes p(X, P,o) := (X, P) A SKEL(0).

The proof is based on the fact that every MSO-definable relation on w-words is uniform-
izable, see [24, 12, 20]. Since every skeleton gives a decomposition of a given tree as disjoint
branches, so we can uniformize the given formula ¢ independently on these branches. By
well-foundedness of skeletons the result is well-defined. The above theorem can also be
derived from the proof of Theorem 6.7 in [12] but in a less explicit way.

It turns out that uniformization of SKEL(c) is connected with definability of well-
orderings on thin trees. We say that a formula ¢ (z,y) defines well-order on thin trees
if for every thin tree t € Tr 4, the relation <y defined as (x <y y < ¥(z,y)) is a linear order
on dom(t) and there is no infinite descending sequence of <. In the rest of this section we
show that uniformizations of skeletons and definable well-orderings are equivalent — it is
possible to define one of them basing on the other.

One direction is simple : the structure of a skeleton gives a natural lexicographic well-
order of vertices of a given thin tree. The other direction is a bit more involved: given any
definable well-order of a given thin tree t we need to define a skeleton of .

» Theorem 37. If there exists an MSO-definable well-order on thin trees then there exists
a uniformization of SKEL(c).

The following remark follows from Theorem 30 and Theorem 37. It should be connected
with a result of [5] stating that the MSO theory of the full binary tree extended with any
well-order is undecidable.

» Remark. There is no MSO formula 1 (z,y) that defines well-order on thin trees.
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A  Thin algebra

First, let us write explicitly all the axioms of thin algebra (we assume that h, h;, h, € H and
u,v,w € V):

1. (u-v)-w=u-(v-w),

(w-v)-h=u-(v-h),

(uv)™® = u(vu)™,

(v™)*° = v for every n > 1,
a(h;,0) - h, = a(d, k) - hy.

aORLbd

Let R4 be the set of all regular thin trees over a ranked alphabet A = (N, L). Let Cy
be the set of all regular thin contexts over A. Note that (R4, C4) has the natural structure
of a thin algebra over A.

» Fact 38. (R4,Ca) is the free algebra in the class of thin algebras over the alphabet A.
Proof. See [10] for the proof of this fact in the context of forests. <
The rest of this section is devoted to showing the following theorem.

» Theorem 9. For ecvery regular tree language L there exists a syntactic morphism for L:
a finite thin algebra S, = (H,V) (called a syntactic algebra of L) and a homomorphism
ar: (Tra,Cony) — Si such that:

ar, 1S surjective, compositional, and recognises L,

for every h € H the language Ly, := aj ' ({h}) is regular,

if a: (Trq,Cong) — S is surjective and recognises L then there is exactly one homo-

morphism B: S — Sp such that foa = af.

A syntactic algebra Sy, and languages Ly;, can be effectively computed basing on a non-
deterministic automaton recognising L.

A syntactic algebra Sy, of a given language L can be constructed using standard tools of
universal algebra (namely the congruence ~,). What remains is to show that the constructed
algebra is finite. For this purpose we provide some homomorphism a:: (Tr4,Conys) — (H,V)
that recognises L (see Theorem 41 of [10]) and such that (H, V) is a finite thin algebra. Then,
by the universal property of the syntactic algebra, Sy, is a surjective image of (H, V), thus
Sy, is finite.

Let us define a relation ~7, on the sets Try and Cony. We assume that ¢,¢' € Try,
¢, € Cony, and D denotes the set of all multi-contexts over the alphabet A.

t~pt <= foreveryde D wehave (d-teL<d-t €L)
c~pc << foreveryd€ D and s € Try we have (d-(c-s) € L& d- (¢ -s) € L)
» Fact 39. The relation ~, is a congruence on (Tr 4, Con 4) with respect to the operations of

thin algebra. Moreover, if a: (Tra, Cona) — (H, V') recognises L then (by compositionality
of @)

alt) =at’) =t~ t' and a(c) = a(d) = ¢~ ¢ (4)

We define S;, = (Hp,Vy) as the quotient of (Tra,Cong) by the relation ~j defined
above. Since ~ is a congruence, so Sy, has a structure of thin algebra. We define oy as
the quotient morphism of ~.
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Now we construct some finite thin algebra recognising L. Let A be a nondeterministic
automaton over an alphabet A with states @ such that A recognises L. Assume that A uses
priorities {0, ..., k}. First, recall the definition of Q4(t) from (1):

Qa(t)={g€Q: 3, pis a consistent run of A on ¢ with value ¢} C 2.

Similarly, if ¢ is a context over A then let A 4(¢) contain those pairs (¢, 4,p) € @x{0, ..., k}x
@ such that there exists a consistent run p of A on ¢ with the value ¢, the value in the hole
p, and the maximal priority on the path from the root to the hole equal 7.

Now consider the function

@t (Tra, Cong) = (22,20% (011 %Q)

that assigns to a tree t € Try the set Q4(¢) and assigns to a context ¢ € Cony the set
AA(C).

» Fact 40. The function a4 induces uniquely the structure of thin algebra on its image
Sy = (Ha,Vy4) C (29,29%10:k} Q) iy such a way that a4 becomes a compositional
homomorphism of thin algebras. Moreover, a4 recognises L(A), since

L(A) =a' ({he Ha: hNIA£0}).

The algebra S 4 along with the homomorphism a4 defined above is called the automaton
algebra for A. The following lemma presents an important feature of this algebra.

» Lemma 41. Assume that A is a nondeterministic tree automaton over an alphabet A,
t € Tra is a tree, and T is a consistent marking of t by types in H4. Let ¢ € QA be a state
of A. The following conditions are equivalent:
q€(e)
There exists a Tun (possibly not consistent) p of A on t with value q such that for every
vertex w € dom(t) we have p(w) € T(w). Additionally, for every infinite branch m of t
there exists a run pr as above that is consistent on .

Proof. First assume that ¢ € 7(¢). We inductively show that there exists a run of A on ¢
satisfying p(w) € 7(w). Assume that ¢t = a(t;,t,) for a pair of trees t;,t.. Let h = 7(e),
hy = 7(1), and h, = 7(r). We need to find a transition (g, q,a,q.) € 85 such that ¢ € Iy
and ¢, € h,.. Let t],t.. be trees that are mapped by a4 to hy, h, respectively. Observe that

0 r
q € h=a(h, hy) = aa(a(t,t)),

therefore there exists a consistent run with value ¢ on a(t;,t.). The first transition used by
this run gives us the states ¢; € hy, g, € h,.. Note that if w is a leaf of t and ¢ € 7(w) then
(g,t(w)) € do, so the constructed run is also consistent in leafs.

Using the above observation, it is enough to construct a run p along 7 that satisfies
plw) € 7(w) for every w that is off 7 — it will extend to a run on the subtree t [,.
The existence of such a run follows from the definition of operations of thin algebra, see
Section 4.4.1 of [10] — the fact that ¢ € 7(€) comes from the fact that for every Ramsey
decomposition s - e* of the contexts along the branch 7, there is a loop of transitions in
s - €% starting in g and satisfying the parity condition.

Now assume that the second bullet of the statement is satisfied. We want to show that
q € 7(e). If the tree t is finite then ¢ € 7(¢) by induction on the height of ¢. Otherwise,
there exists an infinite branch 7 of ¢ and similarly as above, any run p, consistent on 7 is a
witness that ¢ € h. <
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» Lemma 42. The automaton morphism aa: (Tra, Cong) — (Ha, V) can be computed ef-
fectively basing on A. The syntactic algebra St for L = L(A) and the unique homomorphism
B: (Ha,Va) — Sp are computable effectively basing on ar,.

Proof. The homomorphism a4 and the structure of thin algebra of (H 4, V1) can be written
by hand, see Section 4.4.1 from [10].

The homomorphism S can be computed using Moore’s algorithm, see Lemma 23 of
the cited thesis. The construction is similar to the minimisation of a finite deterministic
automaton: we mark pairs of elements of H4 and V4 as non-equivalent. We start with all
the pairs in F'x (H4\ F) where a ;' (F)) = L. Then we iteratively add a pair (s, s’) whenever
there is an operation of thin algebra (with some parameters fixed) that maps s, s’ into r,r/
respectively and (r, ) is a marked pair. After a finite number of steps no new pair can be
marked and the set of non-marked pairs is a congruence ~ on (H4,V4). 8 can be defined
as the quotient morphism induced by ~. |

B Characterisations

B.1 Semi-characterization

Let us recall the theorem we prove in this section.

» Theorem 15. A language L C Tr 4 is bi-unambiguous if and only if there exists a surjective
homomorphism «: (Tra,Cong) — (H,V) that recognises L such that (H,V) is a finite
prophetic thin algebra over the alphabet A.

In this section we implicitly assume that automata are pruned: every state g of an
automaton A is productive and reachable: there exists a context ¢, a tree ¢, and an accepting
run p of A on ¢ -t such that the value of p in the hole of ¢ is ¢q. Every automaton can be
made pruned by removing some states. The result recognises the same language and this
removal does not influence unambiguity.

» Lemma 43. Let A be an unambiguous automaton and let as: (Tra,Cong) — Sy be
the automaton morphism for A (see Appendixz A). Let h = a(hy, h,) for a triple of types
h,hi,h. € Ha and a letter a € A. Then for every q € h there exists exactly one transition
of the form (q,qi,a,q) € 62 such that q; € hy and g, € h,.

Proof. At least one such a transition exists by Lemma 41. Assume that there are two
transitions as in the statement.

Let ¢ be a context that has an accepting run p with value ¢ in the hole. Let ¢;,¢,. be
trees of a4-types respectively hj, h,.. In that case the tree ¢ - a(t;,t,) has two different
accepting runs: both these runs equal p on ¢, then use two distinct transitions in the hole
of ¢, and extend to consistent runs on t;,t,. by the fact that h;, h, are a4-types of t;,t,
respectively. |

» Lemma 44. Lett € Try be a tree and (H,Vy) be the automaton algebra for an unam-
biguous automaton A. Assume that T is a consistent marking of t by elements of H 4. Then,
for every vertex w € dom(t) we have T(w) C TA(t)(w).

Proof. Without loss of generality we can assume that w = e¢. We take any state ¢ € 7(e)
and construct a run p of A on t with value ¢ inductively, using Lemma 43. What remains
is to show that p is consistent.
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Take any infinite branch « of t. By Lemma 41 there exists a run p, on ¢ that is consistent
on 7. But Lemma 43 shows inductively that for every w < 7 we have p(w) = pr(w). So,
since p, is consistent on 7 so p is also consistent on 7. Therefore, ¢ € Q4(¢) what implies
that ¢ € 74(¢)(e). <

Let A, B be two unambiguous automata such that L(A) = L and L(B) = Tra \ L.
Let a4, 5S4 and ag, S be the respective automaton morphisms. Consider the surjective
homomorphism ay : (Tra, Cong) — (Hy, Vi) obtained as the product of the above algebras:
Hy C Hy x Hg and Viy C V4 x Vg — we restrict to those pairs (hg, hp) and (v4,vg) that
are realised by some trees and forests.

We aim to show the following lemma that intuitively states that there is a trade-off
between types in H 4 and Hp. Note that the set R defined below equals Hy.

» Lemma 17. Let A, B be a pair of unambiguous automata recognising L and Tra \ L
respectively. Let R = {(Qa(t),Qg(t)): t € Tra}. Then the set R ordered coordinate-wise
by inclusion is an antichain.

Proof. Assume contrary, by the symmetry, that:
there are h = (ha, hg),h' = (W4, h) € Hy,
ha C h./A and hp C h/B’
there exists a state ¢’ € by but ¢’ ¢ ha.

Let t,#' be trees such that ay(t) = h and ay(t’) = b’ and let ¢ be a context with
an accepting run p’ of A that has value ¢’ in the hole of c¢. Note that by the definition
¢t € L(A) — the run p’ can be extended to t'.

Consider two cases:

1. ¢-t € L(A). Let p be the accepting run of A that witnesses that. Let ¢ be the value of p
in the hole of ¢. Then q € hg C h/y. Then we have two accepting runs of A on c-t': first
one equal p on ¢ and then extended to ¢’ by the assumption that ¢ € h/y and second one
equal p’ on ¢ and then extended to t' by the assumption that ¢’ € h/,. A contradiction.

2. c¢-t € L(B). Let p be the accepting run of B that witnesses that. Let ¢ be the value of
p in the hole of ¢. Then g € hy C h'y. So we can construct an accepting run of B on
¢+t by using p on ¢ and extending it to ¢’. So ¢-t’ € L(B) — a contradiction, since we
assumed that languages of A and B are disjoint.

<

» Lemma 45. Let ay, (Hy, Vi) be the homomorphism constructed above for a pair of un-
ambiguous automata A,B. Then if T is a consistent marking of a given tree t by types in
Hy; then it equals the marking 1o, induced by ay on t.

Proof. Take any vertex w € dom(¢). By Lemma 44 we have 7(w) C 74, (w) coordinate-wise
and 7(w) € R. Using Lemma 17 we obtain that 7(w) = 74, (w). <

» Fact 46. The homomorphism «a; defined above is surjective, compositional, and recognises
L(.A), the algebra (Hy, Vi) is prophetic.

Proof. ay is surjective by the definition and compositional since avy and ag are. It recog-
nises L because a4 recognises L. Lemma 45 implies that (Hy, Vi) is prophetic. <

What remains is to show the following lemma.

» Lemma 18. Let a: (Tra,Cony) — (H,V) be a compositional homomorphism into a finite
prophetic thin algebra (H,V) and hg € H. The language Ly, = a~*(hg) is unambiguous.
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Proof. The desired automaton C is build as a product of two automata A and D. The
automaton D is deterministic and computes the priorities of states of C. First we describe
the automaton 4. Let the alphabet A = (N,L), Qo = H x L, Q2 = H x N x H, and
Q = QoUQ2. Let us define J: Q — H as J(h,b) = h and J(hy,a, h,.) = a(hy, h,). Intuitively
J(q) is the value of a state ¢ € Q. Let I = {g € Q : J(q) = ho}. Now dy consists of all
pairs ((h,b),b) such that b() = h and 0 consists of all pairs ((hi,a, hy),q,a,q,) such that
J(qi) = hy and J(q,) = h,..

Let t € Try be any tree. It is easy to verify that there is a 1-1 correspondence between
runs p of A on ¢t and markings 7, by types in H. A state (h;,a,h,) in a node w € dom(t)
denotes that t(w) = a and the marking 7, equals h; and h, in wl, wr respectively. What
remains is to verify that the marking 7, is consistent. Let m = dod; ... be an infinite branch
of t and let ¢g,q1,... be the sequence of states of p on 7. Since every state ¢; contains
types of both subtrees under 7 [; so basing on qq, q1,... we can define the decomposition
Vg, V1, - . . of 7, along 7 (see Section 3.2). Now, the condition expressed by (2) is w-regular (see
Fact 6). Therefore, there exists a deterministic parity automaton D that reads a sequence
of directions m = (d;);en and states (¢;)i;en and verifies that the marking encoded by (g;):en
is consistent on the branch 7.

Now, let C guess a run of A4 on a given tree and then run D independently on all the
branches of t. Let the priorities of C equal priorities of D. By the construction, every
consistent run p of C encodes a consistent marking 7, of ¢. And vice versa: every consistent
marking can be encoded into a consistent run.

Since the algebra (H, V) is prophetic, so there is at most one accepting run of C on every
tree. Therefore, C is unambiguous. t € Ly, if and only if there exists a consistent marking
of ¢ with value hgy, what is equivalent to the existence of an accepting run of C on t. So
L(C) = Lho~ |

B.2 Deterministic case

The crucial technical part of the deterministic case is expressed by the following lemma
(using notions from Section 3.4).

» Lemma 20. If D is a deterministic tree automaton and Tra \ L(D) is unambiguous then
for every tree t € L(D) the set Tp(t) is thin.

Proof. In the proof of this theorem the language L; mentioned in Introduction is used. It
is known that this language is ambiguous.

Assume contrary that there exists a regular tree to € L(D) such that T = Tp(ty) is not
thin. We identify T with a labelling of tg by {0,1}. Let po be the accepting run of D on t.
Since tg, T, po are regular so they are obtained as the unfolding of a finite graph G. Since
T is not thin and G is finite, so for some vertex w € G, the copies of w in the unfolding are
all contained in T and are not contained in a thin tree. By fixing two distinct loops from w
to w in G we obtain the following situation: there exists a context ¢y and a multi-context
¢ with two holes w;, w, such that ty equals ¢y -c%oo, where c%‘x’ is the tree obtained from co
by looping both holes to the root. Let W C dom(t) be the set of all copies of the root of c;
under this unfolding.

Let ¢ be the state of p in w and t,, be a tree that is not accepted by D from the state gq.
Let A be an unambiguous automaton recognising the complement of L(D). We construct
an unambiguous automaton B recognising the language L, see Example 10.

Intuitively, each run of B on a tree ¢ € Try, encodes a run of A on a modification of
the tree t. Note that each vertex w € {l,r}* corresponds to a vertex w € W C dom(tg) —
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we follow the unfolding of ¢ - ¢3°° going to the hole w; or w, depending on the successive
letters of w. For every tree t € Tra, let ¢ denote the tree obtained from ¢y by putting t,,
under all vertices w for w that is a leaf of ¢. If ¢t = ¢,, is the full binary tree without any leaf
then t = ty. Otherwise, ¢ contains the subtree t,, under some vertex w € W and therefore
is not accepted by D.

Assume that the automaton A uses priorities K = {0,1,...,k}. Let Q8 = Q4 x K,
08(q,i) = i, and let

I® = {(g,0): there is an accepting run of A on c¢q with value ¢ in the hole}
65 = {((g,4),b) : there is a consistent run of A on t,, with value ¢}
65 = {((¢,9), (q,i1),n, (qr,ir)) : there exists a consistent run p of A on ¢y with:

value ¢ in the root and values ¢, ¢, in w;, w,, such that

i1, i, are the maximal priorities used by p on paths to w;, w, respectively}

The following list of conditions shows that B is an unambiguous automaton recognising
Ly, what finishes the proof.

1. If p is an accepting run of B on a tree t € Try, then there exists an accepting run p of
A on t.

2. If p # p’ are two distinct accepting runs of B on a tree ¢t € Tra, then p # p.

3. If A has an accepting run on ¢ then B has an accepting run on t.

The first two observations come from the definition of the transition relation of B —
each transition of B used in a run p can be simulated by a run of A on a copy of ¢;. The
lim sup of priorities along branches of p and p agree. Moreover, if p uses a state (¢,7) in a
vertex w then the run p uses ¢ in w and the maximal priority on the appropriate path is i.
Therefore, two distinct accepting runs of B imply two distinct accepting runs of A. For the
last bullet assume that p is a run of A on a tree t. Then we can find a respective transitions
of B to build a run of B on t. Again, the resulting run is accepting because the priorities
are correctly calculated. |

C Transducer for an uniformized relation

Let A= (N, L), M = (Ms, My) be a pair of ranked alphabets. Let B = NUL. A transducer
from A to M is a deterministic device T = (Q, d, qr) such that:

Q is a finite set of states,

qr € @ is an initial state,

¢ is a pair of functions ds, dg,

02: Q@ X BXx N x B — @ x My x @ determines transitions in internal nodes,

do: Q x L — My determines transitions in leafs.

4 S

Note that a transition in an internal node w takes three letters as the input: the letter
in wl, w, and wr.

For every tree t € Tra a transducer T defines inductively the labelling 7 (¢) of ¢ by
letters in M. The definition is inductive. We start in w = € in the state g;. Assume
that the transducer reached a vertex w € dom(t) in a state ¢. If w is a leaf then we put
T(t)(w) = dp(g, t(w)). Otherwise, let a;, a,a, be letters of ¢ in wi, w, wr respectively. Then
let d2(q,a;,a,a.) = (q,m,q), put T(¢t)(w) = m, and continue in wl,wr in states q, g,
respectively.
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» Fact 47. The value T (t)(w) in a vertex w € dom(t) depends on the letters of ¢ in vertices
of the form v, vl,vr for v < w. That is, if £,t’ agree on all vertices v, vl,vr for v < w then

T(t)(w) = T ) (w).

» Theorem 24. Assume that Ly C Tra, Ly C Traxa are regular languages of trees
for two ranked alphabets A, M such that L, is a projection of Ly onto A. Assume that
Vesera Ntyeten (a,tar) € Las. Then, there exist:

a compositional homomorphism a: (Tra, Cony) — S into a finite thin algebra S,

a deterministic finite state transducer that reads the marking induced by « on a given

tree ta and outputs the labelling tyr such that (ta,tar) € Ly, whenever such tyy exists.

» Example 48. Let A be an unambiguous tree automaton. Let L4 = L(A) and Lj; contain
pairs (t, p) where p is an accepting run of A on ¢ € Try. Then, the above theorem states
that there exists a transducer that reads the marking induced by some homomorphism « on
a given tree t € L(A) and produces the accepting run of A on t.

A simple proof of the above theorem can be given using the composition method (see [23]).
This proof was suggested by Mikolaj Bojanczyk as a simplification of an earlier proof given
by the authors. However, since we are focused on automata, we only sketch it here and
give a longer self-contained proof below. Assume that there is an MSO formula defining
language Lj; that has quantifier depth n. Let |M| = k and let a: (Tra, Cony) — (H,V)
be a homomorphism that recognises all the (n+k+1)-types of MSO over A. In a vertex w
the transducer T can store in its memory the (n+m+1)-type of the currently read context.
Then, given (n+k+1)-types of both subtrees under w, it can compute the (n+k)-type of
the tree t[x := w| with the current vertex w denoted by an additional variable z. The
(n+k)-type of t[x := w] is enough to ask about the truth value of the following formulas
(for every a € My):

there is a labelling s € Lps of t[z := w] such that tp(x) = a.

If there is any such labelling ¢,;, then the above formula is true for exactly one letter a € Ms.
The transducer T outputs this letter in w and proceeds in wl, wr updating the type of the
context.

The rest of this section is devoted to an automata-based proof of Theorem 24.

Let A be some nondeterministic tree automaton recognising the language Ljy;. Let @ be
the set of states of A. Consider a modification A of the automaton A where letters of M
used in transitions are removed. Formally, A is a projection of A from the alphabet A x M
to A. Note that L(A) = L4. Let us fix the alphabet G = (2%, 2%).

Let a4 be the automaton morphism into the automaton algebra (H 4, V) for A. Let
ta € Try be atree. Let 7(t4) = 77(ta) be the marking induced by the automaton morphism
a g on ty, that is 7(ta)(w) = Qa(ta [w)-

The construction goes as follows. The input alphabet is A x G. The set of states Q7 of
T is 29. The state ) € Q7 is a sink state reached if the given tree does not belong to L 4.

The invariant for non-sink states is: if 7 is in a vertex w and it have assigned letters
m, € M to all vertices v < w then the state S, of 7 in w satisfies:

S, = {q € Q : exists an accepting run of A on t4 using letters m, in vertices v < w}. (5)

We will show that the invariant can be preserved. Let us fix a moment during the
computation of 7: we are in a vertex w € dom(t4). We can assume that w is an internal
node of t4. We have already assigned letters m, € M to all nodes v < w. The marking
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T(ta) gives us sets Qui, Qur C @ in nodes wl, wr respectively. The current state of 7 is a
set of states S, C Q.
Consider the following set of letters:

Py = {m € Mo 2 3(gq,(ta(w)m)gryesst 4 € Sw A € QuiNgr € QW} :

If P, = () then let 7 fall in a sink state () € 29 and from that point on output some fixed
letters (of arity 2 and 0 respectively) (mg,mg) € M. We will show that during the run of 7
on any tree t4 € L, the sets P, are nonempty. But first we show the following lemma.

» Lemma 49. The set P, contains at most one letter.

Proof. Let t(w) = a. Assume contrary that there are two letters m,m’ € P,. Consider
the respective transitions (g, ¢, (a,m),¢,) and (q,q], (a,m’),q,.). Since q,q' € Sy, so by (5)
there are two accepting runs p, p’ of A on t4[(J/w] that assign letters m,, to v < w and have
values g, ¢’ respectively in the hole w.

For d € {l,r} let tq,t, € Trp be trees and pq, p); be consistent runs of A that witness
that qq, ¢/, € Quad, i.e. pq is a consistent run of A on (ta [wd,tq) with value gq, similarly for
tas P> da-

Consider now two trees over the alphabet A x M x @Q:

t= (tA[D/’lU],p) : (avmv Q)((tA rwl;tl»pl); (tA rwrathpr));
t/ = (tA[D/UJ],,O/) ' (a7m/a q/)((tA r’wlatg) p;)a (tA rw“t;?p’/r))
Note that:

both t,t' equal t4 on the A’th coordinate,

they differ in vertex w on the M’th coordinate,

the Q’th coordinate of ,t’ denotes an accepting run of A on the A x M coordinates.
Therefore, we have a contradiction: ¢4 has two different labellings t7,t}, (one with m and
the other with m’ in w) such that (ta,tp) € Ly and (ta,th,) € L. <

Let 7T select as the letter m,, the only element of P, whenever P, # 0. By the definition
of P, the invariant (5) holds in the vertices wl, wr.

Now take any tree t4 € L4 and consider the result tg = T (ta,7(ta)). Let tar be the
unique labelling of ¢4 such that (ta,ta) € Las. Let p be an accepting run of A on (t4,tar).
We show inductively that tg = t;; what finishes the proof. Let w be a node of t4 and
assume that for all v < w we have tg(v) = tpr(v). Let (q,q, (a,m),q,) be the transition
used by p in w. By the definition of P, this transition is a witness that m € P,,. Therefore,
P, is not empty and tg(w) = m =ty (w).

D Choice hypothesis

D.1 Choice vs. leaf-choice

» Lemma 50. CHOICE(z, X) has an uniformization if and only if LEAF — CHOICE(x)
has.

Since the set of leafs of a thin tree is definable, so any uniformization of CHOICE(z, X)
can be used to define a uniformization of LEAF — CHOICE(z). For the other direction we
show how to MSO-interpret any set X contained in a thin tree as a set of leafs of a thin
tree.
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Take a set X C dom(¢) for a thin tree t. Without loss of generality we can assume that X
is prefix-free, otherwise we can start by restricting to minimal elements of X. Now consider
the upward closure X of X defined as

X ={vedom(t): Jyex v 2w}

We say that a vertex w € X is branching if wl,wr € X. Similarly, a vertex w € X is a
leaf if wl,wr ¢ X (equivalently if w € X). Let us consider the set ¥ C X that contains
all branching vertices of X and all leafs of X. Note that Y is MSO-definable from X and
Y with the prefix and lexicographic orders (treated as a relational structure) is isomorphic
to the set of vertices of some thin tree ¢'. The leafs of ¢’ correspond to the elements of
X. Therefore, we can use uniformization of LEAF — CHOICE(x) to choose a leaf of ¢’ by
interpreting this formula on Y.

D.2 Taking preimages

Now we show a technical statement that is used in the following parts.

» Proposition 23 (Conjecture 1). Assume that a: (H,V) — (H', V') is a surjective homo-
morphism between two finite thin algebras. Let t be a tree and 7' be a consistent marking of

t by H'. Then there exists a consistent marking T of t by H such that ¥ y,cdom(t) o(T(w))
7 (w).

Assume contrary. Since all the above properties are MSO-definable so we can find a
regular tree with a marking (¢o,7’) such that there is no consistent marking 7 of ¢y by
H that satisfies the equation from the statement. Let G be a finite graph such that the
unfolding of G from gy € G equals (to,7'). Abusing the notation, we denote by w € G the
vertex of G that corresponds to a vertex w € dom(tg).

Let T' C dom(tp) be the set of vertices w € dom(¢g) such that ¢ [, is a thick tree. By
Fact 11 we know that T is nonempty — otherwise ¢y would be thin and both H, H would
have exactly one consistent marking of tg.

Consider the following perfect information game G with players 3 and V. The arena of

gis

{(h,g) e HxG: a(h)=1'(g)} U{e}.

The initial position is e. From € player 3 can move to one of the positions (h,go) € G.
Then, a sequence of rounds is played. Assume that a given round starts in a position (h, g).

If g is a leaf of ¢y then the game ends. Otherwise:
first 3 gives a pair of types h;, h, € H such that

to(g)(hu, he) =h A a(l) =7'(gl) A a(h.)=1'(gr),
then V picks a direction d € {l,r} and the game proceeds in the position (hg, gd).

If a play reaches a position (h,g) such that g is a leaf of ¢ then 3 wins if and only if
Leaf(to(g)) = h. An infinite play is winning for 3 if the marking defined by the played types
hi, h, along the path 7 they followed in t( is consistent.

» Fact 51. Winning strategies for 3 in G are in 1-1 correspondence with consistent markings
7 of tg that satisfy «(r) = 7/ pointwise.
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Proof. Every strategy induces a function 7: dom(tg) — H and if it is winning then o is
a consistent marking. By the definition of the arena, such marking satisfies a(r) = 7’
pointwise.

Similarly, every consistent marking 7 as in the statement induces a strategy: first
play 7(e), then inductively ensure that after obtaining directions dy,dy,...,d, from V the
reached position (h,g) satisfies h = 7(dod; ...d,). When asked for a pair of types play
(t(dody .. .dpl), 7(dody . .. dyr)). If a leaf is reached then by the consistency of 7 we know
that 3 wins. Otherwise, an infinite path is followed and since 7 is consistent so is the
marking. <

Note that G is a finite arena and the winning condition for 3 is w-regular. Therefore, the
game is determined. Since we assumed that there is no appropriate consistent marking so V
has a finite memory strategy in G. Let us fix such a strategy o.

Overview Our aim is to take a thin tree ¢ € Try, and interpret it as a thin subset ¢ of
dom(tg). Then, using Fact 11, we can compute the unique marking 7 of ¢ by types in H
in such a way that the image of T by « equals 7/ pointwise. Finally, we run the strategy o
against 7 what results in a path 7 in ¢. 7 has to reach a vertex corresponding to a leaf of ¢,
otherwise 7 is winning for 3.

A vertex w € T is branching if both wl,wr belong to T. Let W C T be the set of
branching vertices in T'. By the definition of T', for every vertex w € T there exists w’ € W
such that w < w’ — otherwise T'[,, is a single infinite branch and therefore ¢ [, is thin.

Let ¢: {l,r}* — W be the unique bijection that preserves the prefix and the lexicograph-
ical order.

Let us fix some type P(h') € H for every b’ € H' in such a way that a(P(h')) = h' — it
is possible by the fact that « is surjective. We can encode types P(h') in our construction
since there are finitely many h' € H'.

Let AUH = (N,LU H) be the extension of the alphabet by types in H. Note that we
can treat the algebra (H, V') as an algebra over the alphabet AU H by putting Leaf(h) = h.

Let t € Tr4, be a thin tree. Note that since G is finite so the labelling ¢t of ¢ by vertices
of G such that w € dom(t) is labelled by «(w) € G is MSO-definable. We define a thin tree
t over the alphabet A Ll H such that dom(t) C dom(tg). For w € dom(¢):

if w < t(w’) for some w’ € dom(t) then w € dom(t) and t(w) = to(w),

if w = 1(w’) for some leaf w’ of ¢t then w € dom(t) and t(w) = P(7'(w)),

if w ¢ T but the maximal prefix w’ of w that belongs to T satisfies w’ < t(w”) for some

w” € dom(t) then w € dom(t) and t(w) = to(w),

otherwise w ¢ dom(t).

Note that t is a thin tree over the alphabet A. Intuitively, ¢ consists of the upward-closure
T of «(dom(t)) and all the thin subtrees of tg of the form ¢ [, such that the sibling of w is
in 1.

By Fact 11 there is a unique consistent marking 7 of ¢ by types in H. Note that if w
is a leaf of ¢ and t(w) € H then a(t(w)) = 7/(w). Therefore, since ¢ is thin and « is a
homomorphism, so we obtain that for every w € dom(t) we have a(7(w)) = 7/(w). Again,
by finiteness of G we can encode the marking 7 as a labelling ¢, of ¢ in an MSO-definable
way.

Now we consider the play 7 € {I,7}=% that results in 3 playing 7 (see Fact 51) and V

playing o. If the play reaches a vertex w € dom(¢) such that w = «(w’) for a leaf w’ of ¢
then the play stops — 3 is unable to produce successive types. Basing on labellings tg and
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t; of ¢ the play m can be simulated in MSO on ¢ (the strategy o has finite memory and the
graph G is finite).
Consider the following cases:
m reached a leaf w of #y. In that case 3 wins 7 since the marking 7 is consistent.
Contradiction to the fact that ¢ is a winning strategy of V.
7 is an infinite play. In that case the marking given by 3 is consistent along 7 since it
comes from a consistent marking 7. So again 3 wins the play and we have a contradiction.
m reached a vertex w € dom(t) such that w = ¢(w’) for a leaf w’ of t. In that case w’ is
the selected leaf of w’.

Therefore, the only possible situation is that 7 ends in a vertex corresponding to a leaf
of t. Since all the labellings of our construction depend only on the tree ¢, so there is
exactly one such leaf. Since the whole construction is MSO-definable on ¢ so there exists an
MSO formula (x) that says that z is the leaf pointed by the play m. Therefore, 1)(z) is a
uniformization of LEAF — CHOICE(x) and we have a contradiction with Conjecture 1.

D.3 Markings on all trees

Let us recall the statement of the theorem.

» Theorem 25. The following conditions are equivalent:

1. Conjecture 1 holds.

2. For every finite thin algebra (H,V') over an alphabet A = (N, L) and every treet € Tra
there exists a consistent marking of t by types in H.

3. For every finite thin algebra (H,V') over the alphabet Ay = ({n},{b}) there exists a
consistent marking of the full tree t,, € Tra, by types in H.

What remains is to formally prove the implication 3 = 1. Assume for a contradiction
that ¢(x) is a formula uniformizing LEAF — CHOICE(z) — for every thin tree t € Try,
there exists exactly one vertex w € dom(¢) such that ¢t = ¢(w) and this vertex is a leaf of ¢.

Let M = ({I,r, T},{b}). Let Lps be the language over the alphabet A, x M that contains
a tree (ta,tyr) if the following are satisfied:
ta is a thin tree,
the leaf of t4 selected by v is w,
all leafs of t); are labelled by b,
ty(v) = T for all internal nodes v € dom(t) except those that v < w,
for v < w we have t;(v) = d where d € {l,r} satisfies vd < w.

Ll o

Note that Ljs is a regular tree language and

ViaeThs, Fereten (ta,tar) € L.

Using Theorem 24 there exists a transducer 7 that reads t4 and 7,(t4) for a compos-
itional homomorphism «: (Tra,Cony) — (H,V) and outputs the only labelling ¢y of ¢4
such that (ta,trs) € L. By the definition of Lj; we have the following fact.

» Fact 52. For every thin tree t4 the path indicated by letters {l,7} in T (ta, 7o (t4)) leads
to a leaf w of t4. Moreover, t4 = ¥ (w).

Let (H', V') be the subalgebra of (H, V') that is the image of (Thy,, ThCony,) under a.
Let 7 be a consistent marking of the full tree ¢, by types of H'. Let 7 € {I,7}=% be the
sequence of directions output by 7 when run on (¢,,7).



M. Bilkowski and M. Skrzypczak

First assume that 7 is an infinite branch of ¢,,. Consider a tree ¢’ that results in plugging
a thin tree of type 7(w) under w for every vertex w that is off 7. Note that ¢’ is thin and
To(t') equals 7 for every w < 7 and for every w that is off w. Therefore, the run of 7 on
(t',74(t")) is the same as on t for every w < 7 (see Fact 47). So T labels an infinite branch
of t' by letters {l,r}, a contradiction.

If 7 is finite then the same argument holds — we can change subtrees along 7 and
subtrees under the last vertex of m obtaining a thin tree on which the sequence of letters
{l,r} does not reach any leaf.

E Results on nonuniformizability

E.1 Ambiguous union of two deterministic languages

» Proposition 2. There exist deterministic languages L1, Lo such that L1 ULy is ambiguous.

Proof. Let Ly be the language consisting of all trees over the alphabet ({n},{b}) and Lo
be the language consisting of all trees over the alphabet ({n},{c}). Clearly both these
languages are deterministic over the alphabet A = ({n},{b,c}). We will show that the
language L = L1 U Lo over the alphabet A is ambiguous.

Assume contrary that L is unambiguous and A is an unambiguous automaton recognising
L. Let t, be the full tree whose all nodes have letters n. By the definition ¢, belongs to
L. Let p be the only accepting run of A on t¢,. Since A has only finitely many states there
must be two distinct nodes wy and wsy of ¢,, such that:

wy and wy are incomparable with respect to the prefix-order,

p(w1) = p(w2) =: .

If the automaton A was able to accept some tree containing b and some tree containing
¢ both from the state ¢, then A would accept a tree containing both b and ¢. Assume by

symmetry that A4 does not accept from ¢, any tree containing node with b.
Let ¢ be a context created from the tree ¢,, by inserting the hole in the node wi. Let

Qv

Q. = {q¢ QA : exists an accepting run of A on ¢ with value ¢ in the hole}

{q e QA : A accepts from ¢ some tree with a leaf b}

Let us define F' = Q, N Q. and observe that ¢, ¢ Q» 2 F. Since A is unambiguous so
the tree t, is not accepted from any state belonging to F' — otherwise A would have two
accepting runs on c - t,, one with value ¢, in w; and the other with value in w; belonging
to F.

Now we construct an automaton A from the automaton A by removing all transitions
over the letter ¢ and by setting F as the set of initial states. The alphabet of A is ({n}, {b}).

Let Lj, be the language over the alphabet ({n},{b}) of all trees containing at least one
letter b. We claim that L(A) = L;. As noted above t,, ¢ L(A) so it is enough to show that
every tree t € Ly is accepted by A. Take t € Ly and observe that ¢ -t € L;. Therefore,
there exists a run p of A on t that is consistent and the value of p belongs to Q. and to Qy.
Therefore, t € L(A).

By a similar reasoning A is unambiguous — otherwise there would be two accepting
runs of A on a tree of the form c-t. Therefore, we obtain a contradiction since L; is an

ambiguous language (as shown in [5]). <
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E.2 A marking of a thick tree

In this section we prove the following theorem.

» Theorem 33. For every finite thin algebra (H,V') over an alphabet A = (N, L) there exists
a thick tree t € Try and a consistent marking T of t by types in H.

During the proof we extensively use facts about Green’s relations (see [7]). Note that by
the first axiom of thin algebra (see Appendix A) set V with the operation - is a semigroup.

First we can restrict ourselves to the subalgebra of (H,V) containing these types that
are represented by thin trees and thin contexts (we use the fact that L is nonempty and we
consider the subalgebra generated by {b() : b€ L}). Let e be an idempotent in the lowest
J-class of V. Let G be the H-class of e (i.e. the intersection of £- and R-class of e). We
know that G is a group because it contains an idempotent (see Proposition 2.4 in Annex A
of [18]).

» Lemma 53. For every v € V we have (eve)™® = e™.

Proof. Note that eve is R- and L-comparable to e. Since e is in the lowest J-class of V' so
eve ~ e and therefore eve is H-equivalent with e, hence eve € GG. Therefore, since e is the
only idempotent of G we have (eve)™ = ((eve)*)™ = e™. <

Let ¢; be a thin context of type e. Let a € N be any letter. We define a multi-context
co over the alphabet A:

co=c1-a(cn-Oc-0).

Let wy, w, be the positions of the two holes put explicitly in the above definition. Let us
consider the tree t that is obtained from cy by putting trees ¢$° instead of wy,w,. This
tree is thin, let 7 be the unique consistent marking of ¢ restricted to co. Note that 7(w;) =
T(w,) = e>.

Let s; = a(d,e*®) and s, = a(e>,d). Note that

T(e) =e-s-e-e* = (esie) - (es;e)™ = (ese)™ = e™.

Let (T, 7) be the tree obtained from (co, 7) by looping vertices w;, w, back to the root of
¢ Since 7(w;) = 7(w,) = 7(€) = > so T is a marking of T

Consider any infinite branch 7 of T'. If m does not pass through infinitely many copies
of the root of cs then 7 is from some point on contained in one copy of ¢o. In that case 7 is
from some point on consistent (by consistency of 7). Consider the other case and take any
vertex w < m. Without loss of generality we can assume that w is a copy of the root of cs.
Therefore, we can group the decomposition of 7 in 7" in the following way:

(esape) - (esaqy€) - (esq,€) - ...,

for some dy,d,... € {l,r}.

Let s-v°° be a Ramsey decomposition of the above infinite product. In that case s = exe
and v = eye for some x,y € V. Therefore, s - v>® = (exe) - (eye)™ = (exe) - (exe)>® =
(exe)™ = . So the types along 7 are consistent.
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E.3 Negative results

Using the thick tree constructed in the above section, we can show two negative results.
Both rely on the transducers described in Appendix C.

» Theorem 30. There is no MSO formula uniformizing SKEL(o).

Proof. Assume contrary and consider a transducer 7 that, given a thin tree t4 and the
marking 7,(ta) constructs the labelling t¢ € Trg that encodes a skeleton of t4. Let «
be into a finite thin algebra (H,V) and let (H',V’) be the subalgebra that is the image
of (Thu, ThConga). Let (t,7) be a thick tree with a consistent marking by types in H'.
Consider the result tg = 7 (¢,7). By Proposition 29 tg does not encode a skeleton of t.

First assume that there exists an infinite branch 7 of ¢ such that infinitely many vertices
w < 7 does not belong to tg. Let ¢’ be the tree obtained by putting a thin tree of type 7(w)
under vertex w for every w that is off . Note that ' is thin. Let 7/ be the only consistent
marking of t'. Let tiy = T (t',7"). By the definition, if w < 7 or w is off 7 then 7/(w) = 7(w).
By Fact 47 for every w < 7 we have t'y(w) = tg(w), so t'y also does not encode a skeleton of
t’. A contradiction.

Now assume that tg does not satisfy the local constraint of skeletons in some vertex w.
The proof of this case is essentially the same — it is enough to substitute finitely many
subtrees along the path leading to w and both subtrees under w. |

» Theorem 31. The language Tha, C Tra, of thin trees over the alphabet Ay is ambiguous.

Proof. The proof follows the same line as the above one. We assume that A is an unam-
biguous automaton recognising Th,,. We define Ly, as the language of pairs (¢, p) where
t is a tree and p is an accepting run of A on ¢. The relation defined by L, is uniformized
so we can construct a transducer 7 as above. We consider a thick tree with a respective
marking (¢,7) and construct a run p = T (¢,7) of A on t. Since t ¢ Thy, so p is not an
accepting run. The rest of the proof is the same as above: either p violates local constraints
or is not consistent along some branch of ¢. In both cases we can define a thin tree ¢’ such
that the run constructed by 7 on (¢, 7,(t)) is not accepting. <

F Relative definability

F.1 Uniformizability modulo skeletons
In this section we prove the following theorem.

» Theorem 36. For every formula o(X, P) on thin trees there exists a formula ¢'(X, P, o)
that uniformizes ¢(X, P,c) := p(X, P) A SKEL(0).

The crucial tool is the following theorem (see [20] for a proof in the case of infinite words).
For technical reasons we unify here the results about finite and infinite words. Therefore,
we work with formulas evaluated in the set <% for an unranked alphabet 3. We call such
formulas formulas over ¥-words.

» Theorem 54. If (X, ﬁ) is an MSO formula over X-words then there exists a formula
Y'(X, P) that uniformizes 1. The formula ¢’ can be computed effectively basing on 1.

Let t be a thin tree and o be a skeleton of t. Let w € dom(t) be an internal node of ¢
such that w ¢ . Then o [,, is a skeleton of ¢ [, and there exists a unique branch 7 of ¢ [,
that always follows o: inductively pick this child of the current node that belongs to o [,,.
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Such a branch is called the main branch of o from w. This branch may be finite and end in
a leaf of ¢ [,, or be infinite. All the vertices that are off the main branch do not belong to
O [w-

Let a: (Trar,Congs) — (H,V) be the syntactic morphism of L(¢(X, P)). Let F C H
be such a set that L(p(X,P)) = a~}(F). To simplify the notation we assume that there
is some fixed order < on the elements of H — the only purpose of this order is to pick a
minimal element from every nonempty set.

Let B: Try — 2 be defined as follows:

ﬁ(t) = {h € H: Engom(t) Oé(t,X) = h} .

Let Z = B(Tra) C 2H. Observe that for every z € Z the language 5~ !(z) is MSO-definable.
Therefore, we can express in MSO that §(t) = z for a given tree t € Try and z € Z.

We use two alphabets here: A encodes parameters P while A’ additionally encodes a set
X. Assume that ¢ is a thin tree over the alphabet A encoding parameters P. Our aim is to
uniquely define a set X C dom(t) that satisfies (X, P).

First, if 8(t)NF = 0 then there is no X C dom(t) satisfying ¢(X, P). So our formula can
be false for every X C dom(t). Otherwise we aim to construct a set X such that a(X, P)
is the minimal with respect to < element hqy of 5(¢t) N F. The following lemma finishes the
proof — it enables us to uniquely define a set X such that a(t, X) = ho.

» Lemma 55. Assume that t € Tra is a thin tree labelled by parameters P. Leth e B(t)
be a fized type and let o be a skeleton of t. There exists an MSO formula n(X, P, o) that
defines a unique set X C dom(t) and this set X satisfies a(t, X) = h.

The idea is to construct formulas 1, for every h € H and prove their properties by
induction on the structure of a given skeleton . The formula )}, is supposed to uniformize
some appropriate relation along the main branch of o. The result of this uniformization
tells us:

which vertices on the main branch should belong to X,

what should be the a-types of subtrees along this main branch.

Let us consider the following alphabets (assuming that P=r,..., P,):
Y={lre} x{0,1}"x Z, ¥ =({0,1} x H) x X.

Intuitively, a word over ¥ encodes a branch of ¢t with labels P and B-types of the subtrees.
Y additionally adds information about X and a-types along this branch.

Let m = dyds . .. be a finite or infinite branch of a thin tree t. We show how to inductively
construct a word Wy (¢) over the alphabet X. The length of Wy (¢) is the same as the length
of m. We aim at defining the i’th letter of W, (¢) for i € N. Assume that w; = dp...d;_1.
The first case is that w; is an internal node of ¢:

Wa(0)(i) = (di, P(w). B (1,0, )
If w; is a leaf of ¢ then
W (£)(i) = (e,ﬁ(wi),H) .

Similarly, if a set X is given, we can define a word W/ (¢, X) by equations (for an internal
node and for a leaf respectively):

Wi, X)(1) = ((X(wi),atly,g, X 1)), We(t)(D),
Wit, X)(@) = ((X(wi),ho), Wr(t)(i)) (ho here is any fixed element of H)
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We say that a word W' over X/ is proper if for every letter (except the last one if exists)
(x,h,d,z, B) of W' we have h € z, the last letter (if exists) has direction equal e, and all
the previous letters have directions [, r. Observe that every proper word W’ describes some
branch 7, a- and B-types of subtrees along m, and a characteristic function of a set X on
m. Therefore, using the operations of the algebra (H,V) we can define the unique value
a(W') € H in such a way that for every thin tree ¢, branch 7 of ¢, and X C dom(t) we have
a(W!(t, X)) = alt, X).

Let us define the language M}, of all proper words W’ over ¥’ such that a(W’') = h.
Observe that M), is an w-regular language of words over Y. Let Nj be an MSO-definable
uniformization of M), — for every word W over X there is at most one word W’ over X’
such that W’ extends W and W' € N,.

Now we are in position to define the formula )y, (X, ]3, o). Let it express that:

t is a thin tree, o is a skeleton of ¢, and

there exists a consistent marking 7 of (¢, X) by types in H such that:

7(€e) = h and

for every vertex w € dom(¢) \ ¢ we have

if 7 is the main branch of o from w,

if W =W/ (t|w, X [w) is the word encoding 7 in (¢ [, X [w),

then W' € Nr(w)-

We explicitly present the marking 7 by writing (¢, 7) = ¢¥n (X, P, ) to denote that fact that
the above conditions are satisfied.

» Fact 56. Assume that (¢,7) = ¥ (X, P,o). Then a(t, X) = h. Moreover, if w € dom(t)\ o
then o [, is a skeleton of ¢ [,, and

(t “)7 T rw) ): 7;[}7—(11;) (X rwa ]3 [w, g rw)~

We finish the proof of Lemma 55 by showing the following invariants. We assume here
that ¢ is a thin tree, o is a skeleton of ¢, and ¢ is labelled by parameters P. We implicitly
assume that X, X7, X5 are subsets of the domain of t.

Invariants:

I1 If h € B(t) then there exists a set X C dom(t) such that ¢ = 1, (X, P, o).
12 If t = ¢pu (X1, P,o) and t = p(Xs, P, o) then X = X',

The proofs of these statements go by induction on the structure of a skeleton ¢. Such an
induction requires only one step (see [2]): assume that 7 is the main branch of ¢ from the
root of ¢, assume that the induction thesis holds for subtrees of (¢,0) rooted in all vertices
that are off m, prove that the induction thesis holds for (¢, o).

Proof of 11

Let h € B(t) and 7w be the main branch of o from the root of ¢. Let Wi (t) be the word
encoding 7 in ¢. Since h € B(t) so there is some X’ C dom(t) such that h = a(t,X’) =
a(WEL(t, X)) so WL(t,X') € Mj,. Therefore, there exists a word W’ that extends W, and
W' € Nj. Let w be a vertex that is off 7 and let h,, be the type assigned to w by W’.
Since W’ is a proper word, so h,, € B(t],). By the inductive assumption, there exists a set
Xy C dom(t[,,) such that ¢, E ¥n, (Xw, Plw,o lw)- Let

X ={wv €dom(t): wisoff mand v € X, } U{mr[i: W(i)=(1,...)},

that is X is the union of sets X,, and the set encoded by W’ on .
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Let 7 be the only consistent marking of (¢, X). We show that (¢,7) = ¢, (X, P,o). By
the choice of X, we know that if w is off 7 then 7(w) = «(t [, X [w) = hy. By the definition
of Nj, we obtain that a(W’) = a(t, X) = h, in particular 7(e¢) = h. By the choice of X,, and
Fact 56 we know that for every w € dom(¢) \ o that is not the root of ¢ the conditions of 1
are satisfied. Let w = € be the root of . By our construction and the choice of W’ we have
W' =W_.(t, X) € N, — the last bullet in the definition of vy, is satisfied.

Proof of 12

Assume that (¢,71) | ¢n(X1, P,o) and (t,72) = ¥n(X2, P,o). Let 7 be the main branch
of o in ¢ from the root and let W = W (t) encode this branch. Let W] = W/ (¢, X1) and
Wi = W/, (t,Xs2). Note that both W{, W} extend W. By the definition of ¢, since Ny,
is a uniformization of M), so W| = Wj. In particular, for every w that is off 7 we have
71(w) = T2 (w) and for every w < 7 we have w € X; & w € Xs.

Assume for contradiction that X; # Xo and let (by the symmetry) w € X; \ X2. By the
above observation, there is a vertex u that is off  such that u < w. Let h' = 71 (u) = 72(u).

By Fact 56 we know that t [,&= ¥p (X1 [us P [u,0 ) and ¢ (o= Yp (X2 [, P lus 0 Tu)-
Therefore, by the inductive assumption we know that X; [,= X5 [, a contradiction.

F.2 From skeleton to a well-order

In this section we show that there exists a formula that defines a well-order on every thin
tree t € Tr4, when any skeleton o of ¢ is given as a parameter.

Let o(z,y,0) hold if z < y or the following conditions are satisfied:

T Fy

u is the longest common prefix of x and y,

d.,d, are directions such that ud, < = and ud, =y,

the vertex ud, belongs to o.

By the definition, ¢ is an MSO (and even FO) formula.

» Lemma 57. For every thin tree t and skeleton o of t, the order <, defined by ¢ with
parameter o is a well-order on dom(t).

Proof. Let us fix a skeleton o of a thin tree t. Clearly <, is a linear order on dom(t).
Assume contrary, that there exists a sequence yo >, y1 >, ... of vertices of ¢. Since there
are finitely many vertices z < y for a fixed y, so we can restrict to a subsequence of (y;)ien
that is prefix-free. Then, by Konig’s lemma, we can pick a subsequence (x;);cn of (¥;)ien in
such a way that:

there exists a sequence of vertices wyg < wy < ...,

there exists a sequence of directions d; such that w;d; < w;41,

In that case, since x; >, x;41 S0 we obtain that w;id; € o S0 w;d; ¢ o. Therefore, the
infinite branch passing through (w;);en is a witness that o is not a skeleton — infinitely
many times o does not contain a vertex on m. <

F.3 From well-order to skeletons

» Theorem 37. If there exists an MSO-definable well-order on thin trees then there exists
a uniformization of SKEL(c).
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Assume that ¢(z,y) is an MSO formula defining well-order on thin trees.

Note that ¢ is a formula over the alphabet Ay = ({0,1}2,{0,1}?), where the first co-
ordinates encode vertex x while the second encode y. There exists a finite thin algebra
(Hg,Vg) over As recognising L(p). Let the syntactic morphism for ¢ be a.

For a thin tree t and a vertex x € dom(t), by (¢, {z},0) and (¢,0, {x}) we denote the tree
over the alphabet A5 that results from augmenting ¢ with respective labellings: 0 stands for
the constant-zero labelling and {«} stands for a labelling that is 0 except the vertex x where
it is 1.

Observe that since « is a homomorphism, so for every tree ¢, internal node w € dom(t),
and vertices wl = =, wr < y we have

O‘(tv {JJ}, {y}) = a(t[D/w])7 0, O) ’ (t(w)a 0, O) (a(t rwla {‘T} fwz, 0)7 a(t [wry 0, {y} rwr)) : (6)

Similarly in the case wr < z, wl < y. What is important here is that the relative order of
vertices in two incomparable subtrees depends on finite information about these vertices.

» Definition 58. Let ¢ be a thin tree, w € dom(¢) be an internal node and {wy, w2} be the
two children of w. Let Z(w1, ws) hold if

Elyth vxtwl 90(177 y)

Note that the formula Z is MSO-definable. Clearly it is impossible that both Z(w, ws)
and Z(ws, wy) hold. The following lemma states that every two siblings are comparable with
respect to =.

» Lemma 59. Let t be a thin tree, w € dom(t) be an internal vertex, and {wy, w2} be the
two children of w. Then either Z(wy,ws2) or Z(wa,wr).

Proof. Assume contrary. Since ¢ defines a linear order so the negation of E(wq, ws) states
that Vysw, Jzsw, ©(y, ). We can build a sequence xo = wi, 1 = wa, T2 > w; ... in such a
way that o(2;, z;+1) holds for every ¢ € N. Since Hg is finite so for some i < j we have

a(t rw1 ) {x%}’ 0) = a(t rw1 ) {x2j}a 0)'

Therefore, since ¢(z2;, z2i4+1) holds so by (6) also ¢(x2;, z2;+1) must hold. But it con-
tradicts the fact that ¢ defines an order, because also ¢ (241, z2;) holds. |

Therefore, for every pair of siblings {wi, w2} exactly one of the formulas =(wq,ws),
E(wa, w1 ) holds.

Let (o) hold if € ¢ o and for every internal node w and direction d we have: if Z(wd, wd)
then o contains wd and not wd. Note that for every thin tree there is exactly one set o
satisfying 1(0). Since Z is an MSO formula, so the above definition of ¢ is also expressible
in MSO. To finish the proof we need to prove the following lemma.

» Lemma 60. For every thin tree t the set o defined by v is a skeleton of t.

Proof. By the definition o does not contain the root and contains exactly one from every
pair of siblings.

Let 7 be an infinite branch of . Assume that infinitely many times o does not contain
a vertex on 7. It means that there are infinitely many vertices wo < w; < ... along 7 such
that w;d; € o and w;d; < 7. By the definition of o we know that for every ¢ we have

E(wid;, wid;).
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Using the definition of = we can find a sequence of vertices y; = w;d; in such a way that

vﬂfiqudi (p(x, yZ)

But, since y;11 = w;+1 = w;d; by the construction, so ¢(yit+1,y;) holds, what means that
Yi+1 <o Yi. Therefore, (y;);cn is a decreasing sequence showing that the order defined by ¢
is not a well-order. |

It may be worth noticing that in this proof we use the fact that the well-order is given
by a formula. It is unclear whether one can define a skeleton of a thin tree ¢ basing on any
well-order on ¢ (given as an auxiliary predicate < (x,y)).
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