Descriptive complexity vs. decidability for MSO

Michał Skrzypczak

University of Warsaw

Journées d'Informatique Fondamentale de Paris Diderot 25'th April 2013, Paris

 $w = a a a a b c c b \in \{a, b, c\}^*$

 $w = a a a a b c c b \in \{a, b, c\}^*$

Regular expressions

$$(aa)^* \ b \ (b \mid c)^*$$

$$w = a \ a \ a \ a \ b \ c \ c \ b \ \in \{a, b, c\}^*$$

Regular expressions

Finite automata

$$(aa)^* \ b \ (b \mid c)^*$$

$$w = a \ a \ a \ a \ b \ c \ c \ b \ \in \{a, b, c\}^*$$

Regular expressions

Finite automata

$$(aa)^* \ b \ (b \mid c)^*$$

Monadic Second-Order logic

$$\exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \ \dots$$

$$w = a \ a \ a \ a \ b \ c \ c \ b \ \in \{a, b, c\}^*$$

Regular expressions

$$(aa)^* \ b \ (b \mid c)^*$$

Monadic Second-Order logic

$$\exists_x \ b(x) \land \forall_{y < x} \ a(y) \land \dots$$

w = (a) - (a) - (a) - (b) - (c) - (c) - (b)

w = (a) - (a) - (a) - (b) - (c) - (c) - (b)

$\psi = \exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \exists_P \ x \in P \ \land \dots$

Monadic Second-Order logic

$$\psi = \exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \exists_P \ x \in P \ \land \dots$$

Monadic Second-Order logic

$$\psi = \exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \exists_P \ x \in P \ \land \dots$$

$$w = \quad \underbrace{a} - \underbrace{a} - \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{c} - \underbrace{b}$$

$$\psi = \exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \exists_P \ x \in P \ \land \dots$$

Language defined by ψ

$$L(\psi) = \{ w \in A^* : w \text{ satisfies } \psi \}$$

$$w = \quad \underbrace{a} - \underbrace{a} - \underbrace{a} - \underbrace{a} - \underbrace{b} - \underbrace{c} - \underbrace{b}$$

$$\psi = \exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \exists_P \ x \in P \ \land \dots$$

Language defined by ψ

$$\mathcal{L}(\psi) = \{ w \in A^* : w \text{ satisfies } \psi \}$$

Satisfiability problem

Given an MSO formula ψ decide whether $L(\psi) \neq \emptyset$?

$$w = (a) - (a) - (a) - (b) - (c) - (c) - (b)$$

$$\psi = \exists_x \ b(x) \land \forall_{y < x} \ a(y) \ \land \exists_P \ x \in P \ \land \dots$$

Language defined by ψ

$$\mathcal{L}(\psi) = \{ w \in A^* : w \text{ satisfies } \psi \}$$

Satisfiability problem

Given an MSO formula ψ decide whether $L(\psi) \neq \emptyset$?

Formula is a declarative definition of the language. Automata are more operational.

 $L = (a \mid b \mid c)^* \ abc \ (a \mid b \mid c)^*$

$$L = (a \mid b \mid c)^* abc (a \mid b \mid c)^*$$

Deterministic automaton — only one transition to use

$$L = (a \mid b \mid c)^* \ abc \ (a \mid b \mid c)^*$$

Non-deterministic automaton — many possible transitions

$$L = (a \mid b \mid c)^* abc (a \mid b \mid c)^*$$

Non-deterministic automaton — many possible transitions

$$L = (a \mid b \mid c)^* abc (a \mid b \mid c)^*$$

Non-deterministic automaton — many possible transitions

Run of an automaton

$$w = a \quad b \quad b \quad a \quad b \quad c \quad c$$

$$\rho = q_I \longrightarrow q_I \longrightarrow q_I \longrightarrow q_a \longrightarrow q_b \longrightarrow q_c \longrightarrow q_c$$

A run ρ is accepting if it ends in a final state.

$$L = (a \mid b \mid c)^* abc (a \mid b \mid c)^*$$

Non-deterministic automaton — many possible transitions

Run of an automaton

$$w = a \quad b \quad b \quad a \quad b \quad c \quad c$$

$$\rho = q_I \rightarrow q_I \rightarrow q_I \rightarrow q_I \rightarrow q_a \rightarrow q_b \rightarrow q_c \rightarrow q_c$$

A run ρ is accepting if it ends in a final state.

Language recognised by the automaton

deterministic : $\{w \in A^* : \text{ the run of } \mathcal{A} \text{ on } w \text{ is accepting}\}$

$$L = (a \mid b \mid c)^* abc (a \mid b \mid c)^*$$

Non-deterministic automaton — many possible transitions

Run of an automaton

$$w = a \quad b \quad b \quad a \quad b \quad c \quad c$$

$$\rho = q_I \rightarrow q_I \rightarrow q_I \rightarrow q_I \rightarrow q_a \rightarrow q_b \rightarrow q_c \rightarrow q_c$$

A run ρ is accepting if it ends in a final state.

Language recognised by the automaton

Theorem (Büchi [1960], Elgot [1961], Trakhtenbrot [1962])

For $L \subseteq A^*$ the following conditions are (effectively) equivalent: • $L = L(\psi)$ for an MSO formula ψ ,

Theorem (Büchi [1960], Elgot [1961], Trakhtenbrot [1962])

For $L \subseteq A^*$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic automaton \mathcal{B} ,

Theorem (Büchi [1960], Elgot [1961], Trakhtenbrot [1962])

For $L \subseteq A^*$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic automaton \mathcal{B} ,
- $L = L(\mathcal{A})$ for a deterministic automaton \mathcal{A} .

Such a language is called regular.

Theorem (Büchi [1960], Elgot [1961], Trakhtenbrot [1962])

For $L \subseteq A^*$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic automaton \mathcal{B} ,
- L = L(A) for a deterministic automaton A.

Such a language is called regular.

Crucial step - determinization

Given a non-deterministic automaton compute an equivalent deterministic one (via powerset construction).

Theorem (Büchi [1960], Elgot [1961], Trakhtenbrot [1962])

For $L \subseteq A^*$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic automaton \mathcal{B} ,
- $L = L(\mathcal{A})$ for a deterministic automaton \mathcal{A} .

Such a language is called regular.

Crucial step - determinization

Given a non-deterministic automaton compute an equivalent deterministic one (via powerset construction).

Deciding satisfiability

Take ψ , compute an equivalent automaton \mathcal{A} , check if \mathcal{A} accepts some word.

 ψ — MSO formula (many quantifiers inside)

 $\psi - \mathsf{MSO} \text{ formula (many quantifiers inside)}$ $\mathcal{A} - \mathsf{deterministic automaton}$ $\psi' = \exists_{\rho} \ (\rho \text{ is a run of } \mathcal{A}) \land (\rho \text{ is accepting})$

— MSO formula (many quantifiers inside) ψ deterministic automaton $\psi' = \exists_{\rho} (\rho \text{ is a run of } \mathcal{A}) \land (\rho \text{ is accepting})$

no set quantifiers here

— MSO formula (many quantifiers inside) deterministic automaton ψ' $= \exists_{\rho} \ (\rho \text{ is a run of } \mathcal{A}) \ \land \ (\rho \text{ is accepting})$ no set quantifiers here $\exists_{\vec{X}} (\ldots) - \text{existential formula}$

·(a)--(b)-(c) $(c) - (b) - \cdots \in A^{\omega}$ w =(a)(a)a

$$w = (a)-(a)-(a)-(b)-(c)-(b)-\cdots \in A^{\omega}$$

 $\omega\text{-language}$ defined by ψ — the same definition

$$\operatorname{L}(\psi) = \{w \in A^\omega: w ext{ satisfies } \psi\}$$
 .

$$w = (a)-(a)-(a)-(b)-(c)-(b)-\cdots \in A^{\omega}$$

 $\omega\text{-language}$ defined by ψ — the same definition

$$\mathrm{L}(\psi) = \left\{ w \in A^\omega : \; w \; \mathsf{satisfies} \; \psi
ight\}.$$

What about automata?

When an infinite run ρ is accepting? There is no *last* state!

$$w = (a)-(a)-(a)-(b)-(c)-(b)-\cdots \in A^{\omega}$$

 ω -language defined by ψ — the same definition

$$\mathrm{L}(\psi) = \left\{ w \in A^\omega : \; w \; \mathsf{satisfies} \; \psi
ight\}.$$

Büchi automata

A run of a Büchi automaton is accepting if it visits a final state infinitely many times.
Infinite words

$$w = \quad \textcircled{a} - \textcircled{a} - \textcircled{a} - \textcircled{b} - \textcircled{c} - \textcircled{b} - \cdots \quad \in A^{\omega}$$

 $\omega\text{-language}$ defined by ψ — the same definition

$$\mathrm{L}(\psi) = \left\{ w \in A^\omega : \; w \; \mathsf{satisfies} \; \psi
ight\}.$$

Büchi automata

A run of a Büchi automaton is accepting if it visits a final state infinitely many times.

Parity automata

Each state q has priority $\Omega(q) \in \mathbb{N}$.

A run ρ of a parity automaton is accepting if:

the highest priority visited infinitely often is even.

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

• $L = L(\psi)$ for an MSO formula ψ ,

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- L = L(B) for a non-deterministic Büchi automaton B,

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic Büchi automaton \mathcal{B} ,
- L = L(A) for a deterministic parity automaton A.

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- L = L(B) for a non-deterministic Büchi automaton B,
- L = L(A) for a deterministic parity automaton A.

Such a language is called ω -regular.

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- L = L(B) for a non-deterministic Büchi automaton B,
- L = L(A) for a deterministic parity automaton A.

Such a language is called ω -regular.

Original proof (Büchi)

Only Büchi automata, no determinization, direct complementation:

given \mathcal{A} compute \mathcal{B} such that $L(\mathcal{B}) = A^{\omega} \setminus L(\mathcal{A})$.

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- L = L(B) for a non-deterministic Büchi automaton B,
- L = L(A) for a deterministic parity automaton A.

Such a language is called ω -regular.

Modern proof — determinization

Given a non-deterministic Büchi automaton compute an equivalent deterministic parity automaton.

Theorem (Büchi [1962], McNaughton [1966], ...)

For $L \subseteq A^{\omega}$ the following conditions are (effectively) equivalent:

- $L = L(\psi)$ for an MSO formula ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic Büchi automaton \mathcal{B} ,
- $L = L(\mathcal{A})$ for a deterministic parity automaton \mathcal{A} .

Such a language is called ω -regular.

Modern proof — determinization

Given a non-deterministic Büchi automaton compute an equivalent deterministic parity automaton.

Problems

Powerset construction is not enough to determinize! Deterministic Büchi automata are too weak. Determinization procedure is complicated. Using non-deterministic Büchi automata and complementation Decidability of $L(\psi) \neq \emptyset$.

Equivalence continued

Using non-deterministic Büchi automata and complementation

Decidability of $L(\psi) \neq \emptyset$.

Every MSO formula over infinite words is equivalent to:

- an existential formula $(\exists_{\vec{X}} (\ldots))$,
- a universal formula $(\forall_{\vec{X}} (\ldots)).$

Equivalence continued

Using non-deterministic Büchi automata and complementation

Decidability of $L(\psi) \neq \emptyset$.

Every MSO formula over infinite words is equivalent to:

- an existential formula $(\exists_{\vec{X}} (\ldots)),$
- a universal formula $(\forall_{\vec{X}} (\ldots)).$

Verification of interactive systems

- model a system as a finite automaton,
- \bullet write an MSO formula ψ specifying allowed behaviours,
- \bullet construct an automaton ${\cal B}$ recognising bad behaviours
- check for emptiness of \mathcal{B} .

Using non-deterministic Büchi automata and complementation

Decidability of $L(\psi) \neq \emptyset$.

Every MSO formula over infinite words is equivalent to:

- an existential formula $(\exists_{\vec{X}} (\ldots))$,
- a universal formula $(\forall_{\vec{X}} (\ldots)).$

Verification of interactive systems

- model a system as a finite automaton,
- \bullet write an MSO formula ψ specifying allowed behaviours,
- \bullet construct an automaton ${\cal B}$ recognising bad behaviours
- check for emptiness of \mathcal{B} .

Using deterministic parity automata

Even more: memoryless winning strategies, Wagner hierarchy, ...

Infinite trees — labellings of the full binary tree

Infinite trees — labellings of the full binary tree

Trees are expressive

One infinite tree can encode:

• an arbitrary set of finite words,

One infinite tree can encode:

- an arbitrary set of finite words,
- all futures of a non-deterministic system,

One infinite tree can encode:

- an arbitrary set of finite words,
- all futures of a non-deterministic system,
- a strategy in an infinite-duration game.

One infinite tree can encode:

- an arbitrary set of finite words,
- all futures of a non-deterministic system,
- a strategy in an infinite-duration game.

Regular tree languages?

Those definable in MSO logic.

One infinite tree can encode:

- an arbitrary set of finite words,
- all futures of a non-deterministic system,
- a strategy in an infinite-duration game.

Regular tree languages?

Those definable in MSO logic.

What about decidability?

Given ψ check if there is a tree satisfying ψ ?

Theorem (Rabin [1969])

The satisfiability problem is decidable for MSO formulæ over infinite trees.

Theorem (Rabin [1969])

The satisfiability problem is decidable for MSO formulæ over infinite trees.

Theorem (Rabin [1969])

The satisfiability problem is decidable for MSO formulæ over infinite trees.

$$L(\mathcal{A}) = \left\{ t : \prod_{\text{run } \rho} \bigvee_{\text{branch } \pi} \rho \text{ is accepting on } \pi \right\}$$

The following conditions are (effectively) equivalent for a language of trees *L*:

• $L = L(\psi)$ for an MSO formula over trees ψ ,

The following conditions are (effectively) equivalent for a language of trees *L*:

- $L = L(\psi)$ for an MSO formula over trees ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic parity tree automaton \mathcal{B} .

The following conditions are (effectively) equivalent for a language of trees *L*:

- $L = L(\psi)$ for an MSO formula over trees ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic parity tree automaton \mathcal{B} .

Such L is called regular tree language.

The following conditions are (effectively) equivalent for a language of trees *L*:

- $L = L(\psi)$ for an MSO formula over trees ψ ,
- $L = L(\mathcal{B})$ for a **non-deterministic** parity tree automaton \mathcal{B} .

Such L is called regular tree language.

It is the best we can have...

1) **Deterministic** top-down automata are strictly weaker.

The following conditions are (effectively) equivalent for a language of trees *L*:

- $L = L(\psi)$ for an MSO formula over trees ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic parity tree automaton \mathcal{B} .

Such L is called regular tree language.

It is the best we can have...

Deterministic top-down automata are strictly weaker.
 Non-deterministic Büchi tree automata do not recognise all regular tree languages.

The following conditions are (effectively) equivalent for a language of trees *L*:

- $L = L(\psi)$ for an MSO formula over trees ψ ,
- $L = L(\mathcal{B})$ for a non-deterministic parity tree automaton \mathcal{B} .

Such L is called regular tree language.

It is the best we can have...

 Deterministic top-down automata are strictly weaker.
 Non-deterministic Büchi tree automata do not recognise all regular tree languages.

Proof of 2)

Pumping argument **OR** descriptive complexity argument...

Idea

How many set quantifiers need to appear in a definition of $L \subseteq X$:

$$L = \{x : \varphi\}?$$

(We don't restrict φ to MSO, it can be any formula of arithmetic.)

Idea

How many set quantifiers need to appear in a definition of $L \subseteq X$:

$$L = \{x : \varphi\}?$$

(We don't restrict φ to MSO, it can be any formula of arithmetic.)

How to compare descriptive complexity of languages?

As for NP: known complete sets and appropriate reductions.

Idea

How many set quantifiers need to appear in a definition of $L \subseteq X$:

$$L = \{x : \varphi\}?$$

(We don't restrict φ to MSO, it can be any formula of arithmetic.)

How to compare descriptive complexity of languages?

As for NP: known complete sets and appropriate reductions.

Better than NP

The hierarchy is strict: for every n there is a set L that requires n set quantifiers: $\underbrace{\exists \forall \dots \exists \forall}_n$.

Any machine recognising L gives an upper bound on the descriptive complexity of L.

Any machine recognising L gives an upper bound on the descriptive complexity of L.

Example

If ${\mathcal M}$ is a non-deterministic $\omega\text{-word}$ machine with a Borel acceptance condition then

 $\mathcal{L}(\mathcal{M}) = \{ w : \exists_{\rho} (\rho \text{ is a run}) \land (\rho \text{ is accepting}) \}$

Any machine recognising L gives an upper bound on the descriptive complexity of L.

Example

If ${\mathcal M}$ is a non-deterministic $\omega\text{-word}$ machine with a Borel acceptance condition then

$$\mathcal{L}(\mathcal{M}) = \{ w: \ \exists_{\rho} \left(\rho \text{ is a run} \right) \land \left(\rho \text{ is accepting} \right) \}$$

Borel

Borel

Any machine recognising L gives an upper bound on the descriptive complexity of L.

Example

If ${\mathcal M}$ is a non-deterministic $\omega\text{-word}$ machine with a Borel acceptance condition then

$$\mathcal{L}(\mathcal{M}) = \{ w: \exists_{\rho} \left(\rho \text{ is a run} \right) \land \left(\rho \text{ is accepting} \right) \}$$

Any machine recognising L gives an upper bound on the descriptive complexity of L.

Example

If ${\mathcal M}$ is a non-deterministic $\omega\text{-word}$ machine with a Borel acceptance condition then

$$\mathrm{L}(\mathcal{M}) = \{w: \; \exists_{
ho} \, (
ho \; \mathsf{is a run}) \land (
ho \; \mathsf{is accepting}) \}$$

existential

Note

All additional features allowed in \mathcal{M} : counters, stacks, tapes, ...

Research plan

Look for examples of languages requiring many set quantifiers. Derive some undefinability / undecidability results.
Research plan

Look for examples of languages requiring many set quantifiers. Derive some undefinability / undecidability results.

Playground

Extensions of MSO logic.

Research plan

Look for examples of languages requiring many set quantifiers. Derive some undefinability / undecidability results.

Playground

Extensions of MSO logic.

Behind the scenes

Theorem (Gurevich, Shelah [1982])

The MSO theory of $(\mathbb{R}, <)$ is undecidable.

Research plan

Look for examples of languages requiring many set quantifiers. Derive some undefinability / undecidability results.

Playground

Extensions of MSO logic.

Behind the scenes

Theorem (Gurevich, Shelah [1982])

The MSO theory of $(\mathbb{R}, <)$ is undecidable.

Conjecture (Shelah [1975])

The MSO theory of $(\mathbb{R}, <, \mathbf{Borel})$ where set quantifiers range over Borel subsets of \mathbb{R} is decidable.

There is a regular tree language that is not recognised by any non-deterministic Büchi tree automaton.

There is a regular tree language that is not recognised by any non-deterministic Büchi tree automaton.

Original proof

A pumping argument.

There is a regular tree language that is not recognised by any non-deterministic Büchi tree automaton.

Modern proof

Show that if \mathcal{B} is a non-deterministic Büchi tree automaton then there is an existential formula of arithmetic φ such that

 $\mathcal{L}(\mathcal{B}) = \{t: \varphi\}.$

There is a regular tree language that is not recognised by any non-deterministic Büchi tree automaton.

Modern proof

Show that if \mathcal{B} is a non-deterministic Büchi tree automaton then there is an existential formula of arithmetic φ such that

 $\mathcal{L}(\mathcal{B}) = \{t: \varphi\}.$

Find a regular tree language that requires a universal set quantifier.

There is a regular tree language that is not recognised by any non-deterministic Büchi tree automaton.

Modern proof

Show that if \mathcal{B} is a non-deterministic Büchi tree automaton then there is an existential formula of arithmetic φ such that

 $\mathcal{L}(\mathcal{B}) = \{t: \varphi\}.$

Find a regular tree language that requires a universal set quantifier. For example:

$$\begin{cases} t: & \forall \\ \text{branch } \pi \end{cases} \text{ almost all letters on } \pi \text{ are } a \end{cases}$$

Our victim: asymptotic extensions of MSO

Our victim: asymptotic extensions of MSO

Idea (Bojańczyk [2004])

Extend MSO with an additional quantifier U such that

 $U_X \ \psi(X) \iff \psi(X)$ holds for arbitrarily big finite sets X.

Extend MSO with an additional quantifier U such that

 $U_X \ \psi(X) \iff \psi(X)$ holds for arbitrarily big finite sets X.

Related work (Bojańczyk, Colcombet, ...)

 $\omega\text{-B},\ \omega\text{-S},\ \omega\text{-BS}$ automata, regular cost functions, domination games, asymptotic MSO, . . .

Extend MSO with an additional quantifier U such that

 $U_X \ \psi(X) \iff \psi(X)$ holds for arbitrarily big finite sets X.

Related work (Bojańczyk, Colcombet, ...)

ω-B, ω-S, ω-BS automata, regular cost functions, domination games, asymptotic MSO, . . .

Extend MSO with an additional quantifier U such that

 $U_X \ \psi(X) \iff \psi(X)$ holds for arbitrarily big finite sets X.

Related work (Bojańczyk, Colcombet, ...)

 $\omega\text{-B},\ \omega\text{-S},\ \omega\text{-BS}$ automata, regular cost functions, domination games, asymptotic MSO, . . .

Open problem [2004]

Is MSO+U decidable over infinite words / trees?

Extend MSO with an additional quantifier U such that

 $U_X \ \psi(X) \iff \psi(X)$ holds for arbitrarily big finite sets X.

Related work (Bojańczyk, Colcombet, ...)

 $\omega\text{-B},\ \omega\text{-S},\ \omega\text{-BS}$ automata, regular cost functions, domination games, asymptotic MSO, . . .

Open problem [2004]

Is MSO+U decidable over infinite words / trees?

Theorem (Bojańczyk, Toruńczyk [2012])

Satisfiability problem of *weak* MSO+U is decidable over infinite trees.

Theorem (Hummel, S. [2010])

There is an ω -word language definable in MSO+U that requires at least one universal set quantifier.

This language is not recognised by any non-deterministic machine with a Borel acceptance condition.

Theorem (Hummel, S. [2010])

There is an ω -word language definable in MSO+U that requires at least one universal set quantifier.

This language is not recognised by any non-deterministic machine with a Borel acceptance condition.

Theorem (Hummel, S. [2012])

For every *n* there is an ω -word language definable in MSO+U that requires at least *n* alternations of set quantifiers: $\exists \forall \ldots \exists \forall$.

n

Theorem (Hummel, S. [2010])

There is an ω -word language definable in MSO+U that requires at least one universal set quantifier.

This language is not recognised by any non-deterministic machine with a Borel acceptance condition.

Theorem (Hummel, S. [2012])

For every *n* there is an ω -word language definable in MSO+U that requires at least *n* alternations of set quantifiers: $\exists \forall \ldots \exists \forall$.

Corollary

There is no model of alternating machines on ω -words with a fixed projective acceptance condition capturing MSO+U.

Theorem (B., G., M., S. [2013] (unpublished))

Under the assumption that V=L, MSO+U logic is undecidable over infinite trees.

Theorem (B., G., M., S. [2013] (unpublished))

Under the assumption that V=L, MSO+U logic is undecidable over infinite trees.

Set-theoretic swamp...

V=L states that we work in the Gödel's constructible universe of Set Theory.

Theorem (B., G., M., S. [2013] (unpublished))

Under the assumption that V=L, MSO+U logic is undecidable over infinite trees.

Set-theoretic swamp...

V=L states that we work in the Gödel's constructible universe of Set Theory.

V=L has similar status to Continuum Hypothesis:

(Set Theory has a model) \implies (it has a model satisfying V=L)

Theorem (B., G., M., S. [2013] (unpublished))

Under the assumption that V=L, MSO+U logic is undecidable over infinite trees.

Set-theoretic swamp...

V=L states that we work in the Gödel's constructible universe of Set Theory.

V=L has similar status to Continuum Hypothesis:

(Set Theory has a model) \implies (it has a model satisfying V=L)

Corollary

If there exists a proof that MSO+U is decidable over infinite trees

then

Set Theory is inconsistent.

Intermediate statement

If Λ is any extension of MSO that defines some ω -word language requiring 6 alternations of set quantifiers

then (assuming V=L)

the Λ -theory of the full binary tree is undecidable.

Intermediate statement

If Λ is any extension of MSO that defines some ω -word language requiring 6 alternations of set quantifiers

then (assuming V=L)

the Λ -theory of the full binary tree is undecidable.

Proof.

By a reduction to Shelah's undecidability of MSO on $(\mathbb{R}, <)$.

Intermediate statement

If Λ is any extension of MSO that defines some ω -word language requiring 6 alternations of set quantifiers

then (assuming V=L)

the Λ -theory of the full binary tree is undecidable.

Proof.

By a reduction to Shelah's undecidability of MSO on $(\mathbb{R}, <)$.

MSO+U fits ideally in — it defines ω -word languages requiring arbitrarily many set quantifiers.

Getting rid of V=L

If there is no proof that MSO+U is decidable, there should be a direct proof of undecidability.

Getting rid of V=L

If there is no proof that MSO+U is decidable, there should be a direct proof of undecidability.

What about Borel quantifiers?

Rabin's theorem implies that $MSO(\mathbb{R}, <, \Sigma_2^0)$ is decidable.

Getting rid of V=L

If there is no proof that MSO+U is decidable, there should be a direct proof of undecidability.

What about Borel quantifiers?

Rabin's theorem implies that ${\rm MSO}(\mathbb{R},<,\Sigma_2^0)$ is decidable. What about ${\rm MSO}(\mathbb{R},<,\Sigma_3^0)?$

Getting rid of V=L

If there is no proof that MSO+U is decidable, there should be a direct proof of undecidability.

What about Borel quantifiers?

Rabin's theorem implies that $MSO(\mathbb{R}, <, \Sigma_2^0)$ is decidable. What about $MSO(\mathbb{R}, <, \Sigma_3^0)$? Or $MSO(\mathbb{R}, <, Borel)$? Thank you for your attention!