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Regular languages of finite words

w = a a a a b c c b ∈ {a, b, c}∗

Regular expressions

(aa)∗ b (b | c)∗
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Monadic Second-Order logic

w = a a a a b c c b

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 3 / 22



Monadic Second-Order logic

w = a a a a b c c b

ψ = ∃x b(x) ∧ ∀y<x a(y) ∧ ∃P x ∈ P ∧ . . .

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 3 / 22



Monadic Second-Order logic

w = a a a a b c c b

x

ψ = ∃x b(x) ∧ ∀y<x a(y) ∧ ∃P x ∈ P ∧ . . .

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 3 / 22



Monadic Second-Order logic

w = a a a a b c c b

x

P

ψ = ∃x b(x) ∧ ∀y<x a(y) ∧ ∃P x ∈ P ∧ . . .

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 3 / 22



Monadic Second-Order logic

w = a a a a b c c b

ψ = ∃x b(x) ∧ ∀y<x a(y) ∧ ∃P x ∈ P ∧ . . .

Language defined by ψ

L(ψ) = {w ∈ A∗ : w satisfies ψ}

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 3 / 22



Monadic Second-Order logic

w = a a a a b c c b
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Satisfiability problem
Given an MSO formula ψ decide whether L(ψ) 6= ∅?
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Monadic Second-Order logic

w = a a a a b c c b

ψ = ∃x b(x) ∧ ∀y<x a(y) ∧ ∃P x ∈ P ∧ . . .

Language defined by ψ

L(ψ) = {w ∈ A∗ : w satisfies ψ}

Satisfiability problem
Given an MSO formula ψ decide whether L(ψ) 6= ∅?

Formula is a declarative definition of the language.
Automata are more operational.
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Finite automata

L = (a | b | c)∗ abc (a | b | c)∗

Run of an automaton
w =
ρ =

a b b a b c c
qI qI qI qI qa qb qc qc

A run ρ is accepting if it ends in a final state.

Language recognised by the automaton
deterministic : {w ∈ A∗ : the run of A on w is accepting}

non-det. : {w ∈ A∗ : exists an accepting run of A on w}
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Finite automata

L = (a | b | c)∗ abc (a | b | c)∗
Deterministic automaton — only one transition to use
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Equivalence

Theorem (Büchi [1960], Elgot [1961], Trakhtenbrot [1962])
For L ⊆ A∗ the following conditions are (effectively) equivalent:

L = L(ψ) for an MSO formula ψ,

L = L(B) for a non-deterministic automaton B,
L = L(A) for a deterministic automaton A.

Such a language is called regular.

Crucial step - determinization
Given a non-deterministic automaton compute an equivalent
deterministic one (via powerset construction).

Deciding satisfiability
Take ψ, compute an equivalent automaton A, check if A accepts
some word.
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Simplifying the formulæ

ψ — MSO formula (many quantifiers inside)

A — deterministic automaton

ψ′
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Simplifying the formulæ

ψ — MSO formula (many quantifiers inside)

A — deterministic automaton

ψ′ — simplified formula
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Simplifying the formulæ

ψ — MSO formula (many quantifiers inside)

A — deterministic automaton

ψ′ = ∃ρ (ρ is a run of A) ∧ (ρ is accepting)
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Simplifying the formulæ

ψ — MSO formula (many quantifiers inside)

A — deterministic automaton

ψ′ = ∃ρ (ρ is a run of A) ∧ (ρ is accepting)

no set quantifiers here
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Simplifying the formulæ

ψ — MSO formula (many quantifiers inside)

A — deterministic automaton

ψ′ = ∃ρ (ρ is a run of A) ∧ (ρ is accepting)

no set quantifiers here
∃ ~X (. . .) — existential formula
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Simplifying the formulæ

ψ — MSO formula (many quantifiers inside)

A — deterministic automaton

ψ′ = ∃ρ (ρ is a run of A) ∧ (ρ is accepting)

∃ ~X (. . .) — existential formula

ψ′′ = ∀ρ (ρ is a run of A) ⇒ (ρ is accepting)

∀ ~X (. . .) — universal formula
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Infinite words

w = a a a a b c c b . . . ∈ Aω

ω-language defined by ψ — the same definition

L(ψ) = {w ∈ Aω : w satisfies ψ} .

Parity automata
Each state q has priority Ω(q) ∈ N.
A run ρ of a parity automaton is accepting if:

the highest priority visited infinitely often is even.
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Infinite words

w = a a a a b c c b . . . ∈ Aω

ω-language defined by ψ — the same definition

L(ψ) = {w ∈ Aω : w satisfies ψ} .

What about automata?
When an infinite run ρ is accepting?
There is no last state!

Parity automata
Each state q has priority Ω(q) ∈ N.
A run ρ of a parity automaton is accepting if:

the highest priority visited infinitely often is even.
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ω-language defined by ψ — the same definition

L(ψ) = {w ∈ Aω : w satisfies ψ} .

Büchi automata
A run of a Büchi automaton is accepting if it visits a final state
infinitely many times.

Parity automata
Each state q has priority Ω(q) ∈ N.
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the highest priority visited infinitely often is even.
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Equivalence
Theorem (Büchi [1962], McNaughton [1966], . . . )
For L ⊆ Aω the following conditions are (effectively) equivalent:

L = L(ψ) for an MSO formula ψ,

L = L(B) for a non-deterministic Büchi automaton B,
L = L(A) for a deterministic parity automaton A.

Such a language is called ω-regular.

Problems
Powerset construction is not enough to determinize!
Deterministic Büchi automata are too weak.
Determinization procedure is complicated.
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For L ⊆ Aω the following conditions are (effectively) equivalent:

L = L(ψ) for an MSO formula ψ,
L = L(B) for a non-deterministic Büchi automaton B,
L = L(A) for a deterministic parity automaton A.

Such a language is called ω-regular.

Original proof (Büchi)
Only Büchi automata, no determinization, direct complementation:

given A compute B such that L(B) = Aω \ L(A).

Problems
Powerset construction is not enough to determinize!
Deterministic Büchi automata are too weak.
Determinization procedure is complicated.
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L = L(ψ) for an MSO formula ψ,
L = L(B) for a non-deterministic Büchi automaton B,
L = L(A) for a deterministic parity automaton A.

Such a language is called ω-regular.

Modern proof — determinization
Given a non-deterministic Büchi automaton compute an equivalent
deterministic parity automaton.

Problems
Powerset construction is not enough to determinize!
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Determinization procedure is complicated.
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Equivalence continued

Using non-deterministic Büchi automata and complementation
Decidability of L(ψ) 6= ∅.

Every MSO formula over infinite words is equivalent to:
an existential formula (∃ ~X (. . .)),
a universal formula (∀ ~X (. . .)).

Verification of interactive systems
model a system as a finite automaton,
write an MSO formula ψ specifying allowed behaviours,
construct an automaton B recognising bad behaviours
check for emptiness of B.

Using deterministic parity automata
Even more: memoryless winning strategies, Wagner hierarchy, . . .
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Infinite trees — labellings of the full binary tree
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Infinite trees — labellings of the full binary tree

Trees are expressive
One infinite tree can encode:

an arbitrary set of finite words,
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Infinite trees — labellings of the full binary tree

Trees are expressive
One infinite tree can encode:

an arbitrary set of finite words,
all futures of a
non-deterministic system,
a strategy in an
infinite-duration game.

a

b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 10 / 22



Infinite trees — labellings of the full binary tree

Trees are expressive
One infinite tree can encode:

an arbitrary set of finite words,
all futures of a
non-deterministic system,
a strategy in an
infinite-duration game.

a

b

a

b

...
...

b

...
...

b

c

...
...

a

...
...

c

b

a

...
...

c

...
...

a

b

...
...

c

...
...

Regular tree languages?
Those definable in MSO logic.
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Infinite trees — labellings of the full binary tree

Trees are expressive
One infinite tree can encode:

an arbitrary set of finite words,
all futures of a
non-deterministic system,
a strategy in an
infinite-duration game.
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Regular tree languages?
Those definable in MSO logic.

What about decidability?
Given ψ check if there is a tree satisfying ψ?
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Mother of all decidability results

Theorem (Rabin [1969])
The satisfiability problem is decidable for MSO formulæ over
infinite trees.

Proof — non-deterministic tree automata

Branching transitions:

qT

qL qR

a

ρ is accepting if it satisfies the acceptance condition on all infinite
branches of the tree.

L(A) =
{
t : ∃

run ρ
∀

branch π
ρ is accepting on π

}
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Proof — non-deterministic tree automata
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No simple automata for infinite trees

Theorem (Rabin [1969], Emerson&Jutla [1991], Mostowski [1991])
The following conditions are (effectively) equivalent for a language
of trees L:

L = L(ψ) for an MSO formula over trees ψ,

It is the best we can have. . .

Proof of 2)
Pumping argument OR descriptive complexity argument. . .
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Descriptive complexity

Idea
How many set quantifiers need to appear in a definition of L ⊆ X:

L = {x : ϕ}?

(We don’t restrict ϕ to MSO, it can be any formula of arithmetic.)

How to compare descriptive complexity of languages?
As for NP: known complete sets and appropriate reductions.

Better than NP
The hierarchy is strict: for every n there is a set L that requires n
set quantifiers: ∃∀ . . . ∃∀︸ ︷︷ ︸

n

.
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Upper bounds

Intuition
Any machine recognising L gives an upper bound on the
descriptive complexity of L.

Example
IfM is a non-deterministic ω-word machine with a Borel
acceptance condition then

L(M) = {w : ∃ρ (ρ is a run) ∧ (ρ is accepting)}

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 14 / 22



Upper bounds

Intuition
Any machine recognising L gives an upper bound on the
descriptive complexity of L.

Example
IfM is a non-deterministic ω-word machine with a Borel
acceptance condition then

L(M) = {w : ∃ρ (ρ is a run) ∧ (ρ is accepting)}

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 14 / 22



Upper bounds

Intuition
Any machine recognising L gives an upper bound on the
descriptive complexity of L.

Example
IfM is a non-deterministic ω-word machine with a Borel
acceptance condition then

L(M) = {w : ∃ρ (ρ is a run) ∧ (ρ is accepting)}

Borel Borel

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 14 / 22



Upper bounds

Intuition
Any machine recognising L gives an upper bound on the
descriptive complexity of L.

Example
IfM is a non-deterministic ω-word machine with a Borel
acceptance condition then

L(M) = {w : ∃ρ (ρ is a run) ∧ (ρ is accepting)}

Borel Borel
existential

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 14 / 22



Upper bounds

Intuition
Any machine recognising L gives an upper bound on the
descriptive complexity of L.

Example
IfM is a non-deterministic ω-word machine with a Borel
acceptance condition then

L(M) = {w : ∃ρ (ρ is a run) ∧ (ρ is accepting)}

existential

Note
All additional features allowed inM: counters, stacks, tapes, . . .
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The other way round

Research plan
Look for examples of languages requiring many set quantifiers.
Derive some undefinability / undecidability results.

Playground
Extensions of MSO logic.

Behind the scenes
Theorem (Gurevich, Shelah [1982])
The MSO theory of (R, <) is undecidable.

Conjecture (Shelah [1975])
The MSO theory of (R, <,Borel) where set
quantifiers range over Borel subsets of R is decidable.
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The other way round — a classical example

Theorem (Rabin)
There is a regular tree language that is not recognised by any
non-deterministic Büchi tree automaton.

Michał Skrzypczak Descriptive complexity vs. decidability for MSO 16 / 22



The other way round — a classical example

Theorem (Rabin)
There is a regular tree language that is not recognised by any
non-deterministic Büchi tree automaton.

Original proof
A pumping argument.
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The other way round — a classical example

Theorem (Rabin)
There is a regular tree language that is not recognised by any
non-deterministic Büchi tree automaton.

Modern proof
Show that if B is a non-deterministic Büchi tree automaton then
there is an existential formula of arithmetic ϕ such that

L(B) = {t : ϕ}.

Find a regular tree language that requires a universal set quantifier.
For example:{

t : ∀
branch π

almost all letters on π are a
}
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Our victim: asymptotic extensions of MSO

Idea (Bojańczyk [2004])
Extend MSO with an additional quantifier U such that

UX ψ(X) ⇐⇒ ψ(X) holds for arbitrarily big finite sets X.

Open problem [2004]
Is MSO+U decidable over infinite words / trees?

Theorem (Bojańczyk, Toruńczyk [2012])
Satisfiability problem of weak MSO+U is decidable over infinite
trees.
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Round 1 (joint with Hummel)

Theorem (Hummel, S. [2010])
There is an ω-word language definable in MSO+U that requires at
least one universal set quantifier.
This language is not recognised by any non-deterministic machine
with a Borel acceptance condition.

Theorem (Hummel, S. [2012])
For every n there is an ω-word language definable in MSO+U that
requires at least n alternations of set quantifiers: ∃∀ . . . ∃∀︸ ︷︷ ︸

n

.

Corollary
There is no model of alternating machines on ω-words with a fixed
projective acceptance condition capturing MSO+U.
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Round 2 (joint with Bojańczyk, Gogacz, and Michalewski)
Theorem (B., G., M., S. [2013] (unpublished))
Under the assumption that V=L, MSO+U logic is undecidable
over infinite trees.

Set-theoretic swamp. . .
V=L states that we work in the Gödel’s constructible universe of
Set Theory.
V=L has similar status to Continuum Hypothesis:

(Set Theory has a model) =⇒ (it has a model satisfying V=L)

Corollary
If there exists a proof that MSO+U is decidable over infinite trees

then

Set Theory is inconsistent.
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Round 2 (joint with Bojańczyk, Gogacz, and Michalewski)

Intermediate statement
If Λ is any extension of MSO that defines some ω-word language
requiring 6 alternations of set quantifiers

then (assuming V=L)

the Λ-theory of the full binary tree is undecidable.

Proof.
By a reduction to Shelah’s undecidability of MSO on (R, <). �

MSO+U fits ideally in — it defines ω-word languages requiring
arbitrarily many set quantifiers.
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Summary & further work
Making long story short. . .

Decidability

Definability

Low descr. complexity

Getting rid of V=L
If there is no proof that MSO+U is decidable, there should be a
direct proof of undecidability.

What about Borel quantifiers?
Rabin’s theorem implies that MSO(R, <,Σ0

2) is decidable.
What about MSO(R, <,Σ0

3)? Or MSO(R, <,Borel)?
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Thank you for your attention!
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