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Abstract—For a given regular language of infinite trees, one
can ask about the minimal number of priorities needed to
recognise this language with a non-deterministic or alternating
parity automaton. These questions are known as, respectively,
the non-deterministic and the alternating Rabin-Mostowski in-
dex problems. Whether they can be answered effectively is a
long-standing open problem, solved so far only for languages
recognisable by deterministic automata (the alternating variant
trivialises).

We investigate a wider class of regular languages, recognisable
by so-called game automata, which can be seen as the closure
of deterministic ones under complementation and composition.
Game automata are known to recognise languages arbitrarily
high in the alternating Rabin-Mostowski index hierarchy, i.e.,
the alternating index problem does not trivialise any more.

Our main contribution is that both index problems are decid-
able for languages recognisable by game automata. Additionally,
we show that it is decidable whether a given regular language
can be recognised by a game automaton.

I. INTRODUCTION

Finite state automata running over infinite words and infinite
binary trees lie at the core of the seminal works of Büchi [1]
and Rabin [2]. Known to be equivalent to the monadic second-
order (MSO) logic and the modal µ-calculus on both classes
of structures, they subsume all standard linear and branching
temporal logics. Because of these properties, they constitute
fundamental tools in the theory of verification and model-
checking, where the model-checking problem is reduced to
the non-emptiness problem for automata: a given formula is
translated into an automaton recognising its models. From
this perspective, a natural question is, which parameter in
the definition of an automaton reflects the complexity of the
language recognised by it. A naı̈ve approach is to look at
the number of states; a more meaningful one is to consider
the infinitary behaviour of the automata, captured by the
complexity of its acceptance condition.

Out of different acceptance conditions proposed for tree
automata, Büchi, Muller, Rabin, Streett, and parity [3], [4],
the last one has proved to be the most appropriate, as it
enabled unveiling the subtle correspondences between games,
automata, and the modal µ-calculus [5], [6]. In a parity
automaton, each state is assigned a natural number, called
its priority. A sequence of states is said to be accepting if
the lowest priority occurring infinitely often is even (min-
parity condition). The pair (i, j) consisting of the minimal
priority i and the maximal priority j in a given automaton is
called its Rabin-Mostowski index. The index of a language
is the minimal index of a recognising automaton. Practical
importance of this parameter comes from the fact that the best

known algorithms deciding emptiness of (non-deterministic)
automata are exponential in the number of priorities.

Given a regular tree language, what is the minimal range
of priorities needed to recognise it? The answer to this
question depends on which mode of computation is used, i.e,
whether the automata are deterministic, non-deterministic, and
alternating. While deterministic automata are weaker, non-
deterministic and alternating parity automata recognise all
regular tree languages. Still, alternating automata often need
less priorities than non-deterministic ones. Thus, for each of
these three classes there is the respective index problem.

C Index Problem: Given i, j and a regular language L, decide
if L is recognised by an automaton in C of index (i, j).

The solution of this problem for the most important
cases—when C is the class of non-deterministic or alternat-
ing automata—seems still far away. The results of [7]–[9],
later extended in [10], show that it is decidable if a given
regular tree language can be recognised by a combination of
reachability and safety conditions (which corresponds to the
Boolean combination of open sets). It is also known that the
non-deterministic (min-parity) index problem is decidable for
(i, j) = (1, 2), and for (i, j) = (0, 1) if the input language
is given by an alternating automaton of index (1, 2) [11]–
[13]. The non-deterministic index problem has been reduced to
the uniform universality problem for so-called distance-parity
automata [14], but decidability of latter problem remains open.

The index problems become easier when we restrict the
input to languages recognised by deterministic automata. This
is mostly due to the fact that in a deterministic automaton, each
sub-automaton can be replaced with any automaton recognis-
ing a language of the same index, without influencing the index
of the whole language. This observation has been essential in
providing a full characterisation of the combinatorial structure
of a language L in terms of certain patterns in a deterministic
automaton recognising L. This so-called pattern method [15]
has been successfully used for solving all three index problems
for languages recognised by deterministic automata:

Theorem I.1. For languages recognised by deterministic
automata the following problems are decidable:

1) the deterministic index problem [16];
2) the non-deterministic index problem [17], [18]; and
3) the alternating index problem [19].

The pattern method cannot be applied to non-deterministic
nor alternating automata; the reason is that both these classes
are closed under union and union is not an operation that
preserves the index of languages. However, it turns out that



if we avoid closure under union, we can extend the pattern
method well beyond deterministic automata, to so-called game
automata.

Game automata can be seen as a combination of determin-
istic and co-deterministic ones. They were introduced in [20]
as the largest subclass of alternating tree automata extending
the deterministic ones, closed under complementation and
composition, and for which the latter operation preserves
natural equivalence relations on recognised languages, like
the topological equivalence, or having the same index. As
game automata recognise the game languages Wi,j [21],
the alternating index problem does not trivialise, unlike for
deterministic deterministic automata.

Here, we extend Theorem I.1(2),(3) and prove the following.

Theorem I.2. For languages recognised by game automata
the following problems are decidable:

1) the non-deterministic index problem,
2) the alternating index problem.

Decidability of the non-deterministic index problem for
languages recognised by game automata is obtained via an
easy reduction to the non-deterministic index problem for
deterministic automata (Section III).

The alternating index problem is solved by providing a
recursive procedure computing the alternating index of the
language recognised by a given game automaton (Section IV).

Finally, we give an effective characterisation of languages
recognised by game automata, within the class of all regular
languages (Section V). As the characterisation effectively
yields an equivalent game automaton, we obtain procedures
computing the alternating and non-determinstic index for a
given alternating automaton equivalent to some game automa-
ton.

II. PRELIMINARIES

To simplify the presentation of inductive arguments, all our
definitions allow partial objects: trees have leaves, automata
have exits (where computation stops) and games have final
positions (where the play stops and no player wins). The defi-
nitions become standard when restricted to total objects: trees
without leaves, automata without exits, and games without
final positions. We also do not distinguish the initial state of
an automaton but treat it as an additional parameter for the
recognised language.

A. Trees

For a function f we write dom(f) for the domain of f
and rg(f) for the range of f . For a finite alphabet A, we
denote by PTrA the set of partial trees over A, i.e., functions
t : dom(t) → A from a prefix-closed subset dom(t) ⊆
{L,R}∗ to A. By TrA we denote the set of total trees,
i.e., trees t such that dom(t) = {L,R}∗. For a direction
d ∈ {L,R} by d̄ we denote the opposite direction. For
v ∈ dom(t), t �v denotes the subtree of t rooted at v. The
sequences u, v ∈ {L,R}∗ are naturally ordered by the prefix
relation: u � v if u is a prefix of v.

A tree that is not total contains holes. A hole of a tree t
is a minimal sequence h ∈ {L,R}∗ that does not belong to
dom(t). By holes(t) ⊆ {L,R}∗ we denote the set of holes of
a tree t. If h is a hole of t ∈ PTrA, for s ∈ PTrA we define
the partial tree t[h := s] obtained by putting the root of s into
the hole h of t.

B. Games

A parity game G is a tuple 〈V = V∃∪V∀, vI , F, E,Ω〉, where
• V is a countable arena;
• V∃, V∀ ⊆ V are positions of the game belonging, respec-

tively, to player ∃ and player ∀, V∃ ∩ V∀ = ∅;
• vI ∈ V is the initial position of the game;
• F is a countable set of final positions, F ∩ V = ∅;
• E ⊆ V× (V ∪ F ) is the transition relation;
• Ω: V → {i, . . . , j} is a priority function.

We assume that all parity games are finitely branching (for
each v ∈ V there are only finitely many u ∈ V ∪ F such that
(v, u) ∈ E), and that there are no dead-ends (for each v ∈ V
there is at least one u ∈ V ∪F such that (v, u) ∈ E). We also
implicitly assume that sets V, F are restricted to elements that
are accessible by E from vI .

A play in a parity game G is a finite or infinite sequence π
of positions starting from vI . If π is finite then π = vIv1 . . . vn
and vn is required to be a final position (that is vn ∈ F ). In
that case vn is called the final position of π. An infinite play
π is winning for ∃ if lim infn→∞ Ω(π(n)) is even. Otherwise
π is winning for ∀.

A (positional) strategy σ for a player P ∈ {∃,∀} in a game
G is defined as usual, as a function assigning to every P ’s
position v ∈ VP the chosen successor σ(v) ∈ V ∪F such that
(v, σ(v)) ∈ E. A play π conforms to σ if whenever π visits a
vertex v ∈ VP then the next position of π is σ(v). We say that
a strategy σ is winning for P if every infinite play conforming
to σ is winning for P . For a winning strategy σ we define the
guarantee of σ as the set of all final positions that can be
reached in plays conforming to σ. In each parity game one of
the players has a (positional) winning strategy [3], [6].

C. Automata

For the purpose of the inductive argument we incorpo-
rate into the definition of automata a finite set of exits.
Therefore, an alternating automaton A is defined as a tuple
〈A,Q,F, δ,Ω〉, where A is a finite alphabet, Q is a finite set
of states, F is a finite set of exits disjoint from Q, Ω: Q→ N
is a function assigning to each state of A its priority, and δ
assigns to each pair (q, a) ∈ Q×A the transition b = δ(q, a)
built using the grammar

b ::= >
∣∣ ⊥ ∣∣ (q, d)

∣∣ (f, d)
∣∣ b ∨ b ∣∣ b ∧ b

for q ∈ Q, f ∈ F , and d ∈ {L,R}.
For an alternating automaton A, a state qI ∈ Q, and a partial

tree t ∈ PTrA we define the game G(A, t, qI) as follows:
• V = dom(t) × (Sδ ∪ Q), where Sδ is the set of all

subformulae of formulae in rg(δ); all positions of the



form (v, b1 ∨ b2) belong to ∃ and the remaining ones to
∀;

• F = (holes(t)× (Q ∪ F )) ∪ dom(t)× F ;
• vI = (ε, qI);
• E contains the following pairs (for all v ∈ dom(t)):

–
(
(v, b), (v, b)

)
for b ∈ {>,⊥},

–
(
(v, b), (v, bi)

)
for b = b1 ∧ b2 or b = b1 ∨ b2,

–
(
(v, (q, d)), (vd, q)

)
for d ∈ {L,R}, q ∈ Q ∪ F ,

–
(
(v, q), (v, δ(q, t(v)))

)
for q ∈ Q;

• Ω(v,>) = 0, Ω(v,⊥) = 1, Ω(v, q) = Ω(q) for q ∈ Q,
v ∈ dom(t), and for other positions Ω is max(rg(Ω)).

An automaton A is total if F = ∅. A total automaton A
accepts a total tree t ∈ TrA from qI ∈ Q if ∃ has a winning
strategy in G(A, t, qI). By L(A, qI) we denote the set of total
trees accepted by a total automaton A from a state qI . A total
automaton A recognises a language L ⊆ TrA if L(A, qI) = L
for some qI ∈ Q. A state q ∈ Q is non-trivial if ∅ ( L(A, q) (
TrA. Without loss of generality we implicitly assume that all
total automata have only non-trivial states.

The (Rabin-Mostowski) index of an automaton A is the pair
(i, j) where i is the minimal and j is the maximal priority of
the states of A. In that case A is called an (i, j)-automaton.

An automaton A is deterministic if all its transitions are de-
terministic, i.e., of the form >, ⊥, (qd, d), or (qL, L)∧(qR, R),
for d ∈ {L,R}. Similarly, A is non-deterministic if its
transitions are disjunctions of deterministic transitions.

D. Compositionality

Let A = 〈A,Q,F, δ,Ω〉 be an alternating automaton and
Q′ ⊆ Q be a set of states. By A�Q′ we denote the restriction
of A to Q′ obtained by replacing the set of states by Q′, the
set of exits by F ∪ (Q−Q′), the ranking function by Ω �Q′ ,
and the transition function by δ �Q′×A. We say that B is a
sub-automaton of A (denoted B ⊆ A) if B = A�QB .

For automata A,B over an alphabet A with QA ∩QB = ∅,
we define the composition A · B as the automaton over A,
with states Q = QA ∪QB, exits

(
FA ∪ FB

)
−Q, transitions

δA ∪ δB, and ranks ΩA ∪ΩB. Note here that some exits of A
may be states of B and vice versa.

Fact II.1. If A is an alternating automaton and Q = Q1∪Q2

is a partition of the states of A then A�Q1
· A�Q2

= A.

E. Game automata

In this work we study the so-called game automata, i.e.,
alternating automata with transitions of the following forms:

> , ⊥ , (qd, d) , (qL, L) ∨ (qR, R) , (qL, L) ∧ (qR, R)

for d ∈ {L,R} and qL, qR ∈ Q ∪ F .
The main similarity between game automata and determin-

istic automata is that their acceptance can be expressed in
terms of runs, which are relabellings of input trees induced
by transitions. For a total game automaton A and an initial
state qI , with each partial tree t one can associate the run

ρ(A, t, qI) : dom(t) ∪ holes(t)→ QA ∪ {>,⊥, ∗}

such that ρ(ε) = qI and for all v ∈ dom(t), if ρ(v) = q,
δ(q, t(v)) = bv , then
• if bv is (qL, L) ∨ (qR, R) or (qL, L) ∧ (qR, R), then
ρ(vL) = qL and ρ(vR) = qR;

• if bv = (qd, d) for some d ∈ {L,R}, then ρ(vd) = qd
and ρ(vd̄ ) = ∗;

• if bv = ⊥ then ρ(vL) = ρ(vR) = ⊥, and dually for >;
and if ρ(v) ∈ {>,⊥, ∗}, then ρ(vL) = ρ(vR) = ∗. Observe
that ρ(v) is uniquely determined by the labels of t on the path
leading to v.

The run ρ = ρ(A, t, qI) is naturally interpreted as a game
Gρ(A, t, qI) with positions dom(t) − ρ−1(∗), final positions
holes(t), where edges follow the child relation and loop on
ρ−1({>,⊥}), priority of v is ΩA(ρ(v)) with ΩA(⊥) = 1,
ΩA(>) = 0, and the owner of v is ∃ iff δ(ρ(v), t(v)) =
(qL, L)∨(qR, R) for some qL, qR ∈ QA. Clearly Gρ(A, t, qI)
is equivalent to G(A, t, qI). If t is total, we say that ρ is
accepting, if ∃ has a winning strategy in Gρ(A, t, qI).

Let t ∈ PTrA be a partial tree and ρ = ρ(A, t, qI) be the
run of an automaton A on t. We say that t resolves A from
qI ∈ QA if ρ(h) 6= ∗ for each hole h of t and whenever t�vd
is the only total tree in {t�vL, t�vR}, either ρ(vd) = ∗ or vd
is losing for the owner of v in Gρ(A, t, qI).

Fact II.2. Assume that t resolves A from qI and ρ =
ρ(A, t, qI). If t has a single hole h then t[v := s] ∈ L(A, qI)
iff s ∈ L(A, ρ(h)) for all s ∈ TrA.

If t has two holes h, h′ whose closest common ancestor u
satisfies δA(ρ(u), t(u)) = (qL, L) ∧ (qR, R) for some qL, qR,
then t[h := s, h′ := s′] ∈ L(A, qI) iff s ∈ L(A, ρ(h)) and
s′ ∈ L(A, ρ(h′)) for all s, s′; dually for (qL, L) ∨ (qR, R).

III. NON-DETERMINISTIC INDEX PROBLEM

Decidability of the non-deterministic index problem for
languages recognised by game automata is an immediate
consequence of decidability for deterministic tree languages
[18] and the following observation.

Proposition III.1. For each game automaton A and a state
qAI ∈ QA one can effectively construct a deterministic automa-
ton D with initial state qDI , such that L(A, qAI ) is recognised
by a non-deterministic automaton of index (i, j) if and only if
so is L(D, qDI ).

Proof: Essentially, D recognises the set of winning strate-
gies for ∃ in games induced by the runs of A. For two total
trees t ∈ TrA, s ∈ TrB let t ⊗ s ∈ TrA×B be given by
(t ⊗ s)(v) = (t(v), s(v)). Let W ∃A,qI be the set of all total
trees t ⊗ s over the alphabet AA × {L,R, ?} such that s
encodes a winning strategy for ∃ in the game Gρ(A, t, qI)
in the following sense: if s(v) ∈ {L,R}, ∃ should choose
v · s(v), and s(v) = ? means that ∃ has no choice in v. It is
easy to see that W ∃A,qI can be recognised by a deterministic
automaton.

Note that

L(A, qAI ) =
{
t ∈ TrAA

∣∣ ∃ s. t⊗ s ∈W ∃A,qAI }.



Hence, if W ∃A,qAI
= L(B, qBI ) for some non-deterministic

automaton B then L(A, qAI ) = L(B′, qBI ), where B′ is the
standard projection of B on the alphabet AA: for all q ∈ QA
and a ∈ AA, δB

′
(q, a) = δB(q, (a, L)) ∨ δB(q, (a,R)) ∨

δB(q, (a, ?)). The projection does not influence the index.
For the other direction, the proof is based on the following

observation. For t ∈ TrAA and s ∈ Tr{L,R,?} let t�s ∈ TrAA
be the tree obtained from t by the following operation: for
each v, if ρt,qI (v) = q, δ(q, t(v)) = (qL, L) ∨ (qR, R), and
s(v) = L, then replace the subtree of t rooted at vR by
some fixed regular tree in the complement of L(A, qR); dually
for s(v) = R. (Recall that A has only non-trivial states,
so L(A, qR) ( TrAA .) If s encodes a strategy σs for ∃ in
Gρ(A, t, qAI ), then σs is winning if and only if t � s ∈
L(A, qAI ). Hence, t ⊗ s ∈ W ∃A,qAI

if and only if s encodes
a strategy for ∃ in Gρ(A, t, qAI ) and t� s ∈ L(A, qAI ). These
conditions can be checked by a non-deterministic automaton
of index (i, j) as soon as L(A, qAI ) can be recognised by such
an automaton.

IV. ALTERNATING INDEX PROBLEM

In this section we show that the alternating index problem is
decidable for game automata. Let us start with some notation.

Definition IV.1. For i < j ∈ N, let RM(i, j) be the class
of languages recognised by alternating automata of index
(i, j). Let ΣRM

j = RM(0, j), ΠRM
j = RM(1, j + 1), and

∆RM
j = RM(0, j) ∩ RM(1, j + 1). The above classes are

naturally ordered by inclusion.

The result we prove not only gives decidability of the
alternating index problem but also shows that languages recog-
nisable by game automata collapse inside the ∆RM

i classes. To
express it precisely we recall the so-called comp classes [22]
that can be defined in terms of strongly connected components
(SCCs) of a graph naturally associated with each alternating
automaton.

Definition IV.2. Let A be an alternating automaton. Let
Gph(A) be the directed edge-labelled graph over the set of

vertices Q such that there is an edge p
(a,d)−−−→ q whenever

(q, d) occurs in δ(p, a). Additionally, vertices of Gph(A) are
labelled by values of Ω. We write p w−→ q if there is a path in
Gph(A) whose edge-labels yield the word w.

Definition IV.3. An alternating automaton A is in Comp(i, j)
if (ignoring edge-labels) each SCC in Gph(A) has priorities
between i and j or between i+ 1 and j + 1.

It follows from the definition that each Comp(i, j) au-
tomaton is a (i, j + 1) automaton, and can be transformed
into an equivalent Comp(i + 1, j + 2) automaton by scaling
the priorities. We write Compj for the class of languages
recognised by Comp(0, j) automata. We then have

ΣRM
j ∪ΠRM

j ⊆ Compj ⊆∆RM
j+1 .

The Comp0 automata are more widely known as weak al-
ternating automata. They recognise exactly those languages

that are definable in weak monadic second-order logic. An
important result by Rabin [23] states that the classes Comp0

and ∆RM
1 coincide. However, as shown by Arnold and San-

tocanale [22], for higher levels the inclusion is strict

Compj ( ∆RM
j+1 for j > 0 ,

i.e., there are examples of regular languages in ∆RM
j+1 but

not in Compj . It turns out that, as a consequence of our
characterisation, in the case of languages recognisable by game
automata the respective classes Compj and ∆RM

j+1 coincide for
all levels.

Theorem IV.1. For each game automaton A and an initial
state qI , the language L(A, qI) belongs to exactly one of the
classes: Comp0, ΣRM

i −ΠRM
i , ΠRM

i −ΣRM
i , or Compi −(

ΣRM
i ∪ΠRM

i

)
, for i > 0.

Moreover, it can be effectively decided which class it is and
an automaton from this class can be constructed.

The rest of this section is devoted to showing this result.
Section IV-A describes a recursive procedure to compute
the class of the given language L(A, qI), i.e., ΣRM

i , ΠRM
i ,

or Compi, depending on which of the possibilities holds.
Sections IV-B, IV-C show that the procedure is correct. The
estimation of Section IV-B is in fact an effective construction
of an automaton from the respective class.

A. The algorithm

Let A be an alternating automaton of index (i, j). For n ∈ N
we denote by A≥n the sub-automaton obtained from A by
restricting to states of priority at least n. Observe that the index
of A≥n is at most (n, j). A sub-automaton B ⊆ A is an n-
component of A if Gph(B) is a strongly connected component
of Gph(A≥n). We say that B is non-trivial if Gph(B) contains
at least one edge. Our algorithm computes the class of each n-
component B of A, based on the classes of n+ 1-components
of B and transitions between them. (We shall see that for n-
components the class does not depend on the initial state.)

We begin with a simple preprocessing. An automaton A
is rank-reduced if for all n > 0, each n-component of A is
non-trivial and contains a state of priority n.

Lemma IV.1. Each game automaton can be effectively trans-
formed into an equivalent rank-reduced game automaton.

The main algorithm uses three simple notions. An n + 1-
component B0 of B is ∃-branching if B contains a transition

δ(p, a) = (qL, L) ∨ (qR, R)

with p, qL ∈ QB0 or p, qR ∈ QB0 . For ∀ replace ∨ with ∧.
For a class K, operations K∃ and K∀ are defined as(

ΣRM
m

)∃
=
(
ΠRM
m−1

)∃
=
(
Compm−1

)∃
= ΣRM

m ,(
ΠRM
m

)∀
=
(
ΣRM
m−1

)∀
=
(
Compm−1

)∀
= ΠRM

m .

We write
∨k
`=1K` for the largest class among K1,K2, . . . ,K`

if it exists, or Compm if among these classes there are two
maximal ones, ΣRM

m and ΠRM
m .



Let A be a rank-reduced game automaton of index (i, j).
The algorithm starts from n = j and proceeds downward. Let
B be an n-component.
• If B has only states of priority n, set class(B) = Comp0.
• If B has no states of priority n, it coincides with a single

1-component B1. Set class(B) = class(B1).
• Otherwise, assume that n is even (for odd n replace ∃

with ∀). Let B1,B2, . . . ,Bk, be the (n + 1)-components
of B that are ∃-branching, and let C1, C2, . . . , Ck′ be the
ones that are not ∃-branching. We set

class(B) =

k∨
`=1

class(B`)∃ ∨
k′∨
`=1

class(C`) ,

Let class(A, qI) =
∨k
`=1 class(A`) where A1,A2, . . . ,Ak are

the i-components of A reachable from qI in Gph(A).

B. Upper bounds

In this subsection we show that L(A, qI) can be recognised
by a class(A, qI)-automaton. The argument will closely follow
the recursive algorithm, pushing through an invariant guaran-
teeing that each n-component B of A can be replaced with an
“equivalent” class(B)-automaton. The notion of equivalence
for non-total automata is formalised by simulations.

Definition IV.4. An alternating automaton S simulates a game
automaton A if FS ⊆ FA and there exists an embedding
ι : QA → QS (usually QA ⊆ QS ) such that for all t ∈ TrA,
qAI ∈ QA, and for each winning strategy σ for player P
in G(A, t, qAI ) there is a winning strategy σS for P in
G(S, t, ι(qAI )) such that the guarantee of σS is contained in
the guarantee of σ, and if there is an infinite play conforming
to σS then there is an infinite play conforming to σ.

Note that if A and S are total and S simulates A then
L(A, qAI ) = L(S, ι(qAI )).

Lemma IV.2. For each n-component B of a game automaton
A, B can be simulated by a class(B)-automaton.

Proof: Assume that the index of A is (i, j). We proceed
by induction on n = j, j − 1, . . . , i. If all states of B have
priority n or all have priority strictly greater then n, the
claim is immediate. Let us assume that neither is the case.
By symmetry it is enough to give the construction for even n.

Suppose B has only ∃-branching n + 1 components,
B1,B2, . . . ,Bk. Then class(B) =

∨
` class(B`)∃ = ΣRM

m for
some m ≥ 1. By the inductive hypothesis we get a class(B`)-
automaton BS` , simulating B`. Since ΣRM

m ≥ class(B`)∃, BS`
can be assumed to be an (n, n + m)-automaton. Hence, we
can put

BS = B �Ω−1(n) · BS1 · BS2 · . . . · BSk

to get an (n, n+m)-automaton simulating B.
Now, assume that B contains also n + 1 components

C1, C2, . . . , Ck′ that are not ∃-branching. Repeating the con-
struction above would now result in an automaton of in-
dex

∨
` class(B`)∃ ∨

∨
` class(C`)∃, potentially higher than

class(B) =
∨
` class(B`)∃ ∨

∨
` class(C`). Hence, instead of

CS` we shall use CR` · CT` , where
• CT` is a copy of CS` with each transition leading to an exit

of CS` that is not an exit of B, replaced with a transition
to > (losing for ∀);

• CR` is CS` with all priorities set to n and additional ε-
transitions (which can be eliminated in the usual way):
for each state q of CR` allow ∀ to decide to stay in q or
move to the copy of q in CT` (treated as an exit in CR` ).

Thus,

BS = B �Ω−1(n) · BS1 · . . . · BSk · CR1 · CT1 · . . . · CRk′ · CTk′ .

The composition of automata B �Ω−1(n), BS` , CR` gives a
class(B)-automaton (each CS` was replaced with an (n, n)-
automaton CR` ). This is further composed with class(C`)-
automata CT` in a loop-less way. Hence, BS is a class(B)-
automaton.

Let us see that BS simulates B. Let ι be defined as identity
on B �Ω−1(n), on QB` as the embedding QB` → QB

S
` , and on

QC` as the embedding QC` → QC
R
` . Consider a tree t ∈ TrA,

a state qBI of B, and games G(B, t, qBI ) and G(BS , t, ι(qBI )).
First, consider a strategy σ for ∃ in G(B, t, qBI ). We decom-

pose this strategy into parts corresponding to the sub-automata
B` and C`, for each part we use the fact that BS` simulates B`
and CS` simulates C`. This gives us a strategy for ∃ on parts of
G(BS , t, ι(qBI )) corresponding to sub-automata BS` , CR` , CT` .
Outside of BS` , CR` , and CT` , ∃ has the same choices in BS
as in B. Therefore, she can make her choices according to
σ. This gives a complete strategy σS . Now consider any play
conforming to σS . Such a play either visits infinitely many
times a state of priority n in BS , and so is winning for ∃,
or from some point on it stays in some sub-automaton BS` ,
CR` or CT` . In this case the play is also winning for ∃, by
the assumption on σ and by the fact that all the changes of
priorities in CR` ’s and transitions in CT` ’s are favourable to ∃.
By the definition of σS , the guarantee of σS is contained in
the guarantee of σ, and if there is an infinite play conforming
to σS then there is an infinite play conforming to σ.

For a winning strategy σ for ∀ in G(B, t, qBI ), we construct
a winning strategy σS for ∀ in G(BS , t, ι(qBI )) as follows:
• in positions corresponding to states of priority n in B the

strategy σS follows the decisions of σ;
• in components BS` , CR` , CT` the strategy σS simulates σ

(using the fact that CR` and CT` have the same states and
exits as the automaton CS` that simulates C`) with the
following exception: ∀ immediately moves from CR` to CT`
whenever each extension of the current play, conforming
to the simulating strategy, stays forever in CR` (possibly
reaching an exit that is also an exit of BS).

An easy inductive argument shows that
1) each position (v, p) with p ∈ B �Ω−1(n) that is reached

in some play conforming to σS is also reached in some
play in G(B, t, qBI ) conforming to σ;

2) whenever a play conforming to σS enters BS` (resp. CR` )
in a position (v, p), then p = ι(q) for some q ∈ B`



(resp. q ∈ C`) and (v, q) is reached in some play in
G(B, t, qBI ) conforming to σ.

Consider any play bS conforming to σS .
Assume that bS is a finite play leading to a final position

(v, f). Unless (v, f) is entered directly from some CT` , by the
two observations above (and by the definition of σS) it follows
that (v, f) can also be reached in some play conforming to
σ. Assume that (v, f) is entered directly from some CT` . Let
(w, ι(q)) be the last moment when bS entered CR` (recall that
CT` is only entered from CR` ). Since σS in CR` and CT` mimics
the simulating strategy in CS` , the final position (v, f) can
be reached in some play in G(B, t, qBI ) starting in (w, q),
conforming to σ. By observation 2 it follows that (v, f) is
reached in a play conforming to σ and starting in (ε, qBI ).

The remaining case is when bS is an infinite play. Should
bS visit infinitely often positions of priority n, by the ob-
servation 2 and by the definition of σS we would define
a play in G(B, t, qBI ) conforming to σ that visits infinitely
often positions of priority n. This is impossible since σ is
winning for ∀. It follows that from some point on bS stays
in some sub-component. If the sub-component is BS` , ∀ wins
as he is playing with a winning strategy in BS` . The other
possibility is that bS stays forever in CR` · CT` for some `.
Since C` is not ∃-branching, in each transition of the form
δ(p, a) = (qL, L) ∨ (qR, R) with p ∈ QB` , at least one of
the states qL, qR is an exit state in B, or both are outside of
C`. Hence, after entering C`, σ becomes a single path in C`,
with all the branchings (choices of ∃) going directly to exits
of B. In general, this path may end in a position belonging to
∃, such that both choices lead outside of C` (not necessarily
to exits of B.) In our case the path must stay in C` forever:
since bS is infinite and stays forever in CR` · CT` , there is an
infinite play conforming to the strategy simulating σ in CS`
and, by Definition IV.4, an infinite play conforming to σ in
C`. Consequently, all exits reachable with σ in C` are also exits
of B. Hence, as soon as bS enters CR` for the last time, σS

tells ∀ to move to CT` where ∀ wins all infinite plays.

It follows easily that L(A, qI) can be recognised by a
class(A, qI)-automaton: the automaton can be obtained as a
loop-less composition of the class(A`)-automata simulating
the i-components A` of A reachable from qI . In other words,
the alternating index bounds computed by the algorithm in
Section IV-A are correct.

C. Lower bounds

It remains to see that L(A, qI) cannot be recognised by an
alternating automaton of index lower than class(A, qI). Our
proof uses the concept of topological hardness. A classical
notion of topological hardness relies on the Borel hierarchy
and the projective hierarchy [24], but these notions are not
suitable for us, since most regular tree languages live on the
same level of these hierarchies: ∆1

2. We use a more refined
notion based on continuous reductions [25] and so-called game
languages [21], [26], [27].

Definition IV.5. For i < j consider the following alphabet

Ai,j = {∃,∀} × {i, i+ 1, . . . , j}.

With each t ∈ PTrAi,j
we associate a parity game Gt where

• V = dom(t), F = holes(t),
• E =

{
(v, vd)

∣∣ v ∈ dom(t), d ∈ {L,R}
}

,
• if t(v)=(P, n) then Ω(v)=n and v ∈ VP for P ∈ {∃,∀}.

Let Wi,j be the set of total trees over Ai,j such that ∃ has a
winning strategy in Gt.

Topological hardness of languages can be compared using
continuous reductions. A continuous reduction of L1 ⊆ X
to L2 ⊆ Y is a continuous function f : X → Y such that
f−1(L2) = L1. The fact that L1 can be continuously reduced
to L2 is denoted by L1 ≤W L2. On Borel sets, the pre-order
≤W induces the so-called Wadge hierarchy (see [25]) which
greatly refines the Borel hierarchy and has the familiar ladder
shape with pairs of mutually dual classes alternating with sin-
gle self-dual classes. Here, we are interested in the following
connection between continuous reductions, languages Wi,j ,
and the alternating index hierarchy.

Fact IV.1 ([21], [26], [27]). For all i < j,
1) Wi,j is regular and Wi,j ∈ RM(i, j),
2) L ≤W Wi,j for each L ∈ RM(i, j),
3) Wi,j 6≤W Wi+1,j+1,
4) Wi,j ∈∆1

2, W0,1 is Σ1
1-complete, W1,2 is Π1

1-complete.

This gives a criterion for proving index lower bounds.

Corollary IV.1. If Wi,j ≤W L then L /∈ RM(i+ 1, j + 1).

In consequence, in order to show that the index bound
computed by the algorithm from Section IV-A is tight, it
suffices to show that if RM(i, j) ≤ class(A, qI), then
Wi,j ≤W L(A, qI). We construct the reduction is three steps:

1) we show that if the class computed by the algorithm is
at least RM(i, j), then this is witnessed with a certain
subgraph in Gph(A), called (i, j)-edelweiss;

2) we introduce intermediate languages Ŵi,j , whose inter-
nal structure corresponds precisely to (i, j)-edelweisses,
and show that Ŵi,j ≤W L(A, qI) if only A contains an
(i, j)-edelweiss reachable from qI ;

3) we prove that Wi,j ≤W Ŵi,j .
The combinatorial core of the argument is the last step.

Definition IV.6. We say that in a game automaton B there is
an i-loop rooted in p if there exists a word w such that on the
path p w−→ p in Gph(B) the minimal priority is i.

Automaton B contains an (i, j)-loop for ∃ rooted in p,
if there exist states q, qL, qR of B, a letter a, and words
w,wL, wR such that:
• δ(q, a) = (qL, L) ∨ (qR, R) ;
• p

w−→ q; qL
wL−−→ p; qR

wR−−→ p ;
• on one of the paths p

w (a,L)wL−−−−−−−→ p , p
w (a,R)wR−−−−−−−→ p

the minimal priority is i and on the other it is j.
For ∀ dually, with ∨ replaced with ∧.



For an even j > i, B contains an (i, j)-edelweiss rooted in
p (see Fig. 1) if for some even n it contains
• (n+ k)-loops for k = i, i+ 1, . . . , j − 3 ,
• (n+ j − 2, n+ j − 1)-loop for ∃ , if i ≤ j − 2; and
• (n+ j − 1, n+ j)-loop for ∀ ;

all rooted in p. For odd j swap ∀ and ∃ but keep n even.

Lemma IV.3. Let A be a game automaton and qI a state of A.
If class(A, qI) ≥ RM(i, j) then A contains an (i, j)-edelweiss
rooted in a state reachable from qI .

Proof: Let us first assume that (i, j) = (0, 1). Analysing
the algorithm we see that the only case when class(A, qI)
jumps to RM(0, 1) is when for some even n there is an n-
component B in A, reachable from qI , and containing states
of priority n, such that some n + 1 component B` of B is
∃-branching in B, i.e., B contains a transition of the form

δ(p, a) = (qL, L) ∨ (qR, R)

with p, qL ∈ QB` , qR ∈ QB (or symmetrically, p, qR ∈ QB` ,
qL ∈ QB). Since A is rank-reduced, p is reachable from qL
within B` via a state of priority n+ 1, and from qR within B
via a state of priority n. This gives an (n, n + 1)-loop for ∃
(a (0, 1)-edelweiss) rooted in a state reachable from qI . The
argument for (1, 2) is entirely dual.

Next, assume that (i, j) = (0, 2). It follows immediately
from the algorithm that A contains an n-component B (reach-
able from qI , containing states of priority n) such that n is
even and there exists an ∃-branching (n + 1)-component B`
in B such that class(B`) = ΠRM

1 or class(B`) = Comp1. In
either case, class(B`) ≥ RM(1, 2) and by the previous case
B` contains an (n′, n′ + 1)-loop for ∀, for some odd n′ ≥ n.
Since A is rank-reduced, for each state q in B` and each r
between n and Ω(q), there is a loop from q to q with the lowest
priority r. Hence, the (n′, n′ + 1)-loop can be turned into an
(n+1, n+2)-loop. Thus, B` contains an (n+1, n+2)-loop for
∀, rooted in a state p. We claim that B contains an (n, n+ 1)-
loop for ∃, also rooted in p (giving a (0, 2)-edelweiss rooted in
p). Indeed, since B` is ∃-branching, arguing like for (0, 1), we
obtain an (n, n+1)-loop for ∃ rooted in a state p′ in B`. Since
B` is an n+ 1-component, there are paths in B` from p to p′

and back; the lowest priority on these paths is at least n+ 1.
Using these paths one easily transforms the (n, n + 1)-loop
rooted in p′ into an (n, n+ 1)-loop rooted in p.

The inductive step is easy. Suppose that j−i > 2. Then, for
some even n, A contains an (n+ i)-component B (reachable
from qI , containing states of priority n + i), which has an
(n+ i+ 1)-component B` such that class(B`) = RM(i+ 1, j)
or class(B`) = Comp(i+ 1, j). Since for each state p in B`,
B contains an (n + i)-loop rooted in p, we can conclude by
the inductive hypothesis.

Definition IV.7. For i ≤ 2k − 2 consider the alphabet

Âi,2k = {i, i+ 1, . . . , 2k − 3, e, a}.

With each t ∈ PTrÂi,2k
we associate a parity game Ĝt with

positions dom(t) and final positions holes(t) such that
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Fig. 1. (0, 4)-edelweiss and (1, 5)-edelweiss.

• if t(v) = a, then in v player ∀ can choose to go to vL
or to vR, and Ω(vL) = 2k − 1, Ω(vR) = 2k,

• if t(v) = e, then in v player ∃ can choose to go to vL
or to vR, and Ω(vL) = 2k − 2, Ω(vR) = 2k − 1,

• if t(v) ∈ {i, i+ 1, . . . , 2k − 3}, the only move from v is
to vL and Ω(vL) = t(v).

For i = 2k−1, let Âi,2k = {a,>}, and let Ĝt be defined like
above, except that if t(v) = > then Ω(v) = 2k and the only
move from v is back to v.

Let Ŵi,2k be the set of all total trees over Ai,2k such that
∃ has a winning strategy in Ĝt.

The languages Ŵi,2k+1 are defined dually, with e, a and
∃,∀ swapped, and > replaced with ⊥.

Lemma IV.4. If a total game automaton A contains an (i, j)-
edelweiss rooted in a state reachable from an initial state qI
then Ŵi,j ≤W L(A, qI).

Proof: We only give a proof for (i, j) = (1, 2); for other
values of (i, j) the argument is entirely analogous. By the
definition, A contains an (1, 2)-loop for ∀, rooted in a state p
reachable from qI . Since A is a game automaton and has no
trivial states, it follows that there exist
• a partial tree tI resolving A from qI , with a single hole
v, labelled with p in ρ(A, tI , qI);

• a partial tree ta resolving A from p with two holes v1, v2,
such that in ρ(A, ta, p) both holes are labelled p, the
lowest priority on the path from the root to vi is i, and
the closest common ancestor u of v1 and v2 is labelled
with a state q such that δA(q, t(u)) = (qL, L) ∧ (qR, R)
for some qL, qR; and

• a total tree t> ∈ L(A, p).

Let us see how to build ta. The paths p
w (a,L)wL−−−−−−−→ p,

p
w (a,R)wR−−−−−−−→ p guaranteed by Definition IV.6 give as a partial

tree s with a single branching in some node u and two leaves
v1, v2, which we replace with holes. For ρ = ρ(A, s, p),
ρ(v1) = ρ(v2) = p and δ(ρ(u), t(u)) = (qL, L) ∧ (qR, R).
At each hole of s, except v1 and v2, we substitute a total
tree such that the run on the resulting tree with two holes
resolves A from p, e.g., if vL is a hole and δ(s(v), ρ(v)) =
(q′, L) ∨ (q′′, R), we substitute at vL any tree that is not in
L(A, q′), relying on the assumption that A has no trivial states.

Let us define the reduction g : Tr{a,>} → TrAA . Let t ∈
Tr{a,>}. For v ∈ dom(t), define tv co-inductively as follows:
if t(v) = >, set tv = t>; if t(v) = a, then tv is obtained by
plugging in the holes v1, v2 of ta the trees tvL and tvR. Let
g(t) be obtained by plugging tε in the hole of tI . It is easy to



check that g continuously reduces Ŵ1,2 to L(A, qI).

It remains to see that Wi,j ≤W Ŵi,j . For the lowest level
we give a separate proof.

Lemma IV.5. W0,1 ≤W Ŵ0,1 and W1,2 ≤W Ŵ1,2.

Proof: By the symmetry it is enough to prove the first
claim. Let us take t ∈ TrA0,1

. By König’s lemma, Player ∃
has a winning strategy in Gt if and only if she can produce a
sequence of finite strategies σ0, σ1, σ2, . . . (viewed as subtrees
of t) such that

1) σ0 consists of the root only;
2) for each n the strategy σn+1 extends σn in such a way

that below each leaf of σn a non-empty subtree is added,
and all leaves of σn+1 have priority 0.

Using this observation we can define the reduction. Let
(τi)i∈N be the list of all finite unlabelled binary trees. Some of
these trees naturally induce a strategy for ∃ in Gt. For those
we define tτi ∈ Tr{e,⊥} co-inductively, as follows:
• tτi(R

j) = e for all j;
• if τj induces in Gt a strategy that is a legal extension of

the strategy induced by τi in the sense of item 2) above,
then the subtree of tτi rooted at RjL is tτj ;

• otherwise, all nodes in this subtree are labelled with ⊥.
Let f(t) = tσ0

. By the initial observation, tσ0
∈ Ŵ0,1 if and

only if ∃ has a winning strategy in Gt. The function f is con-
tinuous: to determine the labels in nodes Rn1LRn2L . . . Rnk

and Rn1LRn2L . . . RnkL we only need to know the restriction
of t to the union of the domains of τn1 , τn2 , . . . , τnk

. Hence,
f continuously reduces W0,1 to Ŵ0,1.

Lemma IV.6. For all i and j ≥ i+ 2, Wi,j ≤W Ŵi,j .

Proof: By duality we can assume that j = 2k. For
t ∈ TrAi,2k

, let us consider game G̃t defined as follows. The
positions are pairs (v, σ), where v is a node of t, and σ is finite
strategy from v for ∀ (viewed as a subtree of t �v). Initially
v = ε is the root of t and σ = {ε}. In each round, in position
(v, σ), the players make the following moves:
• ∀ extends σ under leaves of priority 2k− 1 to σ′ in such

a way that on every path leading from a leaf of σ to a
leaf of σ′ all nodes have priority 2k, except the leaf of
σ′, which has priority at most 2k − 1;

• ∃ has the following possibilities:
– select a leaf v′ of σ′ with priority at most 2k − 2,

and let the next round start with (v′, {v′}), or
– if σ′ has some leaves of priority 2k − 1, continue

with (v, σ′).
A play is won by ∃ if she selects a leaf infinitely many times
and the least priority of these leaves seen infinitely often is
even, or ∀ is unable to extend σ in some round. Otherwise,
the play is won by ∀.

We claim that player P has a winning strategy in Gt if and
only if P has a winning strategy in G̃t.

For a winning strategy σ∃ for ∃ in Gt, let σ̃∃ be the
strategy in G̃t in which ∃ selects a leaf v′ in σ′ if and only

if v′ ∈ σ∃. Consider an infinite play conforming to σ̃∃. If in
the play ∃ selects a leaf infinitely many times, she implicitly
defines a path in t conforming to σ∃, and so the play must
be winning for ∃. Assume that ∃ selects a leaf only finitely
many times. Then, ∀ produces an infinite sequence of finite
strategies {v} = σ0 ⊆ σ1 ⊆ . . . in Gt. Let σ∞ be the union
of these strategies. Consider the play π in Gt passing through
v and conforming to σ∞ and σ∃. Observe that for each σi,
the strategy σ∃ must choose some path; hence, either ∃ selects
a leaf of σi, or this path goes via a leaf of priority 2k − 1.
Thus, π is infinite and by the rules of G̃t priorities at most
2k − 1 are visited infinitely often. Since ∃ selects a leaf only
finitely many times, priorities strictly smaller than 2k − 1 are
visited finitely many times in π. Hence, π is won by ∀, what
contradicts the assumption that σ∃ is winning for ∃.

Now, let σ∀ be a winning strategy for ∀ in Gt. Then, for
each v ∈ σ∀ there exists a finite sub-strategy σ′ of σ∀ from v
such that all internal nodes of σ′ have priority 2k and leaves
have priority at most 2k−1. This shows that for each current
strategy σ ⊆ σ∀, ∀ is able to produce a legal extension σ′ ⊆
σ∀. Let σ̃∀ be a strategy of ∀ in G̃t that extends every given
σ by σ′ as above. Consider any play conforming to σ̃∀. By
the initial observation, the play is infinite, so priorities strictly
smaller then 2k are visited infinitely often. If ∃ selects a leaf
only finitely many times, priorities strictly smaller then 2k−1
occur only finitely many times and ∀ wins. If ∃ selects a leaf
infinitely many times, then the lowest priority seen infinitely
often must be odd, as otherwise ∃ would show a losing path
in σ∀. Hence, ∀ wins in this case as well.

It remains to encode G̃t as a tree f(t) ∈ TrÂi,2k
in a

continuous manner. The argument is similar to the one in
Lemma IV.5. Let (τn)n∈N be the list of all unlabelled finite
trees. For some pairs (v, τn), τn induces a strategy in Gt

from the node v. For such (v, τn) we define t∀v,τn and t∃v,τn
co-inductively, as follows:
• t∀v,τn(Rm) = a for all m;
• the subtree of t∀v,τn rooted at RmL is t∃v,τm if τm induces

a strategy from v that is a legal extension of τn according
to the rules of G̃t, and otherwise the whole subtree is
labelled with e’s (losing choice for ∀);

• t∃v,τn(Rm) = e for m = 0, 1, . . . , `, where v0, v1, . . . , v`
are the leaves in the strategy induced by τn from v;

• the subtree of t∃v,τn rooted at R`+1 is t∀v,τn if the strategy
induced by τn from v has some leaves of priority 2k−1,
otherwise the whole subtree is labelled with a’s (losing
choice for ∃);

• for m ≤ `, consider the following cases to define the
subtree sm of t∃v,τn rooted at RmL:

– if Ω(vm) ∈ {2k − 1, 2k} then sm is labelled
everywhere with a’s (losing choice for ∃),

– if Ω(vm) = 2k − 2 then sm = t∀vm,{vm},
– if Ω(vm) = r < 2k − 2 then sm(ε) = r, the left

subtree of sm is t∀vm,{vm}, and the right subtree of
sm is labelled with a’s (irrelevant for Gt).

Let f(t) be t∀ε,{ε}. Checking that f continuously reduces Wi,j



to Ŵi,j does not pose any difficulties.

V. RECOGNISABILITY BY GAME AUTOMATA

In this section we give an effective characterisation of the
class of languages recognised by game automata within the
class of all regular languages. The characterisation is inspired
by the one for deterministic automata [19], however, due to the
alternation of players, the arguments here are more involved.

We begin with a handful of definitions. Let us fix a finite
alphabet A. A trace is a finite word w over A∪ {L,R}, with
letters from A on even positions, and directions from {L,R}
on odd positions. If the last symbol of w is a letter, the trace
is labelled, otherwise it is unlabelled. A trace w can be seen
as a partial tree tw ∈ PTrA consisting of a single path: for a
labelled trace w = a0d1a1 . . . dkak, dom(tw) = {d1d2 . . . di

∣∣
i ≤ k} and tw(d1d2 . . . di) = ai for all i ≤ k. Abusing the
notation, we write w instead of d1d2 . . . dk. The tree tw has
two final holes, wL and wR, and side holes d1d2 . . . di−1d̄i
for i ≤ k. For an unlabelled trace w = a0d1a1 . . . dk, tw
is defined similarly, but this time it has only one final hole:
d1d2 . . . dk. We shall also write w for this hole.

A partial tree t ∈ PTrA is a realisation of a trace w if it
is obtained from tw by putting some total trees in all the side
holes of tw. If w is an unlabelled trace, t still has a hole w.
We write t(t′) for the tree obtained by putting t′ in the hole w,
and t−1M for {t′

∣∣ t(t′) ∈ M}. Similarly, if w is a labelled
trace, we write t(tL, tR) for the total tree obtained by putting
tL, tR in the holes wL and wR, respectively, and we define
t−1M as {(tL, tR)

∣∣ t(tL, tR) ∈ M}. Additionally, a−1M
stands for t−1

a M for the root-only tree ta with ta(ε) = a.
A language Z is non-trivial if neither Z nor its complement

Z{ is empty. The following notions are semantic counter-parts
of states and transitions of game automata.

Definition V.1. A unary profile is ∗ (standing for trivial) or a
non-trivial regular tree language Z. A binary profile is ∗, ∅,
TrA×TrA, or a non-trivial subset of TrA×TrA in one of the
forms ZL × TrA, TrA × ZR, (ZL × TrA) ∪ (TrA × ZR), or
ZL×ZR, for some non-trivial regular tree languages ZL, ZR.

We shall see that the binary profiles (except ∗) correspond
to transitions of the form ⊥, >, (qL, L), (qR, R), (qL, L) ∨
(qR, R), and (qL, L) ∧ (qR, R), respectively. As a first step,
let us relate traces to profiles.

Definition V.2. A trace w has non-trivial profile Z in a regular
language M , if for each realisation t of w either t−1M is
trivial or t−1M = Z, and for some realisation t0, t−1

0 M = Z;
here Z is unary for unlabelled w and binary for labelled w.

An unlabelled trace w has profile ∗ in M if for each
realisation t of w, t−1M is trivial. A labelled trace wa has
profile Z ∈ {∅,TrA×TrA} in M if w has a non-trivial profile
Z ′ and a−1Z ′ = Z; if w has profile ∗, so does the trace wa.

Note that each trace, labelled or unlabelled, has at most one
profile in M . We write pM for the partial function assigning
profiles to traces. We say that M is locally game if each trace

has a profile in M . Equivalently, one could assume that all
unlabelled traces have profiles in M .

Let us now examine the connection between profiles, and
states and transitions of game automata. Let B be a total game
automaton and let qI be a state of B. For a trace w, let ρw =
ρ(B, tw, qI) be the run over the tree tw associated with w.

If w is an unlabelled trace, define pB,qI (w) = L(B, q), if
ρw(w) = q ∈ QB; if ρw(w) /∈ QB, set pB,qI (w) = ∗.

If w is a labelled trace, set pB,qI (w) = ∗ if ρw(w) /∈ QB;
otherwise, let ρw(w) = q and bw = δB(q, a), where a is the
last symbol of w, and set pB,qI (w) = L(B, bw) where L(B, b)
is the profile of the transition b in B, defined as

∅ for b = ⊥;

TrA × TrA for b = >;

L(B, qL)× TrA for b = (qL, L);

TrA × L(B, qR) for b = (qR, R);

L(B, qL)×TrA ∪ TrA×L(B, qR) for b = (qL, L) ∨ (qR, R);

L(B, qL)× L(B, qR) for b = (qL, L) ∧ (qR, R).

The following is an easy consequence of Fact II.2.

Lemma V.1. For each trace w, pB,qI (w) = pL(B,qI)(w).

Corollary V.1. Languages recognised by game automata are
locally game.

Being locally game is necessary but not sufficient to be
recognisable by a game automaton. In what follows, for a
given locally game language M we construct a game automa-
ton GM that locally computes the profiles and globally reflects
the infinitary aspects of M . We show that M is recognised by
a game automaton if and only if it is recognised by GM .

We say that a DFA A = 〈A,Q, qI , δ, F 〉 computes a
partial function f : A∗ ⇀ X if A recognises dom(f) and
it comes equipped with a function τA : F → rg(f), such that
τA(δ(qI , w)) = f(w) for each w ∈ dom(f), where δ(q, v) is
the state of A after reading word v from state q.

Lemma V.2. For each regular tree language M one can effec-
tively construct a DFA A that computes (a finite representation
of) the profile of the trace w in M .

In particular, it is decidable whether M is locally game,
and the set ProfilesM of all possible profiles of traces in M
is finite and can be computed from M .

The infinitary aspects of M are captured by the notion of
correct infinite traces. An infinite trace is an infinite word π
over A ∪ {L,R} with letters from A on even positions and
directions from {L,R} on odd positions. Just like a finite trace,
π can be seen as a tree tπ consisting of a single infinite branch
which has only side holes. A tree t realises π if it is obtained
by plugging total trees in the side holes of tπ .

Assume that M is locally game and let pM (w) be the profile
of w in M . We say that t resolves M up to π if t realises π
and for each labelled trace w that is a prefix of π, if wL is a
prefix of π then
• t�wR /∈ ZR if pM (w) = (ZL × TrA) ∪ (TrA × ZR),



• t�wR∈ ZR if pM (w) = ZL × ZR,
and symmetrically if wR is a prefix of π. An infinite trace π
is M -correct if some tree t ∈M resolves M up to π.

If π is M -correct, it must be accepted by each game automa-
ton recognising M in the following sense: a game automaton
D accepts π from qI if ∃ wins the play corresponding to π
in the game associated with ρ = ρ(D, tπ, qI), or ρ(v) = ∗ for
some v ∈ dom(tπ) and ρ(w) 6= ⊥ for all w ∈ dom(tπ).

Lemma V.3. Automaton D accepts π from qI if and only if
π is L(D, qI)-correct.

Lemma V.4. For each regular tree language M one can
effectively construct a deterministic parity automaton D recog-
nising the set of M -correct infinite traces.

We define GM as a product of A and D, with priorities
inherited from D and the types of transitions (∨, ∧, etc.)
determined by the type of profile computed by A. More
precisely, for a ∈ A, (p, q) ∈ QA × QD, τ = τA(δA(p, a)),
define δ

(
(p, q), a

)
as

> if τ ∈ {∗,TrA × TrA};
⊥ if τ = ∅;

β(p, q, a, L) if τ = ZL × TrA;

β(p, q, a,R) if τ = TrA × ZR;

β(p, q, a, L) ∨ β(p, q, a,R) if τ = ZL × TrA ∪ TrA × ZR;

β(p, q, a, L) ∧ β(p, q, a,R) if τ = ZL × ZR;

where β(p, q, a, d) is defined as
(
(δA(p, ad), δD(q, ad)), d

)
.

Let qM = (qAI , q
D
I ).

Theorem V.1. A regular language M is recognised by a game
automaton iff M is locally game and L(GM , qM ) = M .

Proof: Assume that M = L(B, qBI ) for some game
automaton B and qBI ∈ QB. By Corollary V.1, M is locally
game. Fix t ∈ TrA and let ρM = ρ(GM , t, qM ) and ρB =
ρ(B, t, qBI ). By Lemma V.1, pM (w) determines the profiles
of the corresponding transitions in ρB and ρM . Hence, the
games associated to these runs are isomorphic if the priorities
are ignored. Let π be an infinite trace in t. By the construction,
GM accepts π from qM iff π is M -correct. By Lemma V.3,
π is M -correct iff B accepts π from qBI . It follows that ρB is
accepting iff ρM is accepting.

As an immediate corollary we obtain the following.

Theorem V.2. Given an alternating automaton A and a state
qI , it is decidable whether L(A, qI) is recognised by a game
automaton. If so, some game automaton recognising L(A, qI)
can be effectively constructed from A and qI .
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APPENDIX

Proofs for II. Preliminaries

A. Trivial states

Fact A.1. Every game automaton recognising non-trivial
language can be effectively transformed into an equivalent
game automaton without trivial states.

Proof: Let A be a game automaton. We just remove trivial
states of A. If q is trivial then in each transition we replace
each subterm of the form (q, d) by ⊥ or > (depending on
whether L(A, q) = ∅ or L(A, q) = TrA) and then propagate it
up the transition expression using the standard laws: (>∧b) =
b, (⊥∧ b) = ⊥, (>∨ b) = >, (⊥∨ b) = b. After this step the
automaton is still a game automaton but does not contain any
trivial states.

B. Resolving trees

Fact II.2. Assume that t resolves A from qI and ρ =
ρ(A, t, qI) assigns states to all holes of t. If t has a single
hole h, then t[v := s] ∈ L(A, qI) iff s ∈ L(A, ρ(h)) for all s.

If t has two holes h, h′, whose closest common ancestor u
satisfies δA(ρ(u), t(u)) = (qL, L) ∧ (qR, R) for some qL, qR,
then t[h := s, h′ := s′] ∈ L(A, qI) iff s ∈ L(A, ρ(h)) and
s′ ∈ L(A, ρ(h′)) for all s, s′; dually for (qL, L)∨(qR, R).

Proof: Let us prove the first claim. There are two cases.
• One of the players P ∈ {∃,∀} has a winning strategy σ

in the game associated to ρ such that node v does not
belong to σ. In that case, there exists an ancestor u of v
such that the player P owns u and σ moves to from u
to ud such that ud is not ancestor of v. In that case σ is
a winning strategy for P in the subtree under ud, which
contradicts the definition of a resolving tree.

• Whenever σ is a winning strategy for a player P ∈ {∃,∀}
in the game associated to ρ, then the node corresponding
to v belongs to σ. Take any total tree s. If t[v := s] ∈
L(A, qI) then ∃ has a winning strategy in in the game
associated with ρ(A, t[v := s], qI). In particular, she can
win from the position v in this game. Therefore, by the
definition, s ∈ L(A, ρ(q)). If t[v := s] /∈ L(A, qI) then
the property is symmetrical: ∀ has a winning strategy and
s /∈ L(A, ρ(v)).

For the second claim, it follows easily that in this case the
trees t �uL, t �uR and the tree obtained by putting a hole in
t instead of u, resolve A from qL, qR, and qI , respectively.
We obtain the second claim by applying the first claim three
times,

Proofs for III. Non-deterministic index problem

C. Winning strategies

Proposition III.1. For each game automaton A and state
qI one can construct effectively a deterministic automaton
recognising a language W ∃A,qI such that W ∃A,qI and L(A, qI)
have the same non-deterministic index.

Proof: Let us define a deterministic automaton D recog-
nising W ∃A,qI . It inherits the state-space and the ranking

function from A and its transitions are modified as follows: for
all q ∈ Q, a ∈ A, d ∈ {L,R}, if δA(q, a) = (qL, L)∨ (qR, R)
for some qL, qR, then

δ(q, (a, d)) = (qL, d) , δ(q, (a, ?)) = ⊥ ,

otherwise,

δ(q, (a, d)) = ⊥ , δ(q, (a, ?)) = δA(q, a) .

It is easy to check that L(D, qI) = W ∃A,qI .
What remains is to show that if L(A, qI) = L(B, qBI ) for

some non-deterministic automaton B of index (i, j), then we
can construct a non-deterministic automaton C of index at most
(i, j) recognising W ∃A,qI . Following the idea described in the
body of the paper, the automaton C simply checks for the
input tree t ⊗ s if s encodes a strategy for ∃ in the parity
game associated with ρt,qI and if t� s ∈ L(B, qBI ). This can
be implemented as follows.

By the Rabin’s theorem, for each q ∈ QA there exists a
regular tree tq /∈ L(A, q). We define a sequence of regular
languages, then we argue that they can be recognised by non-
deterministic automata of indices at most (i, j):

St = {t⊗ s : s is a strategy for ∃ in Gρ(A, t, qI)} ,
StE = {t⊗ s⊗ t′ : t⊗ s ∈ St ∧ t� s = t′} ,

StEW =
{
t⊗ s⊗ t′ ∈ StE : t′ ∈ L(B, qBI ) = L(A, qI)

}
,

StW = {t⊗ s ∈ St : t� s ∈ L(A, qI)} .

Where:
• St corresponds to a safety condition that can be verified

by a Comp0 deterministic automaton,
• StE additionally enforces that the respective subtrees

equal tq , as above it can be checked by a Comp0

deterministic automaton,
• StEW can be recognised by a product of automata

recognising StE and B — the resulting non-deterministic
automaton can be constructed in such a way that its index
equals (i, j),

• StW is obtained as the projection of StEW onto the first
two coordinates, as such can also be recognised by a non-
deterministic (i, j)-automaton.

What remains to show is the following equation

W ∃A,qI = StW (1)

First assume that t ⊗ s ∈ W ∃A,qI . In that case s encodes
a winning strategy σ for ∃ in Gρ(A, t, qI). Let t′ = t � s
and D = dom(σ) be the set of vertices belonging to σ. Note
that if v ∈ D then t(v) = t′(v), so also ρt,qI (v) = ρt′,qI (v).
Therefore, the strategy σ is also winning in Gρ(A, t′, qI). So
t′ ∈ L(A, qI) what implies that t⊗s⊗ t′ ∈ StEW and t⊗s ∈
StW.

Now assume that t ⊗ s ∈ StW. Let t′ = t � s and σ
be the strategy for ∃ in Gρ(A, t, qI) encoded by s. By the
definition of StEW we obtain that t′ ∈ L(A, qI) so there
exists a winning strategy σ′ for ∃ in Gρ(A, t′, qI). Similarly
as above, let D (resp. D′) be the set of vertices in σ (resp.



σ′). If D′ 6⊆ D then there exists a minimal (w.r.t. the prefix
order) vertex v ∈ D′−D. By the definition of t�s we obtain
that t′ �v is tq for q = ρ(A, t, qI)(v). Therefore, since tq /∈
L(A, q), so there is no winning strategy for ∃ in Gρ(A, tq, q)
and we obtain a contradiction. Therefore D′ ⊆ D and for
every v ∈ D′ we have ρ(A, t, qI)(v) = ρ(A, t′, qI)(v), so σ′

is also a strategy in Gρ(A, t′, qI). Since strategies form an
anti-chain with respect to inclusion, so σ = σ′, t′ ∈ L(A, qI),
and t⊗ s ∈W ∃A,qI .

Proofs for IV. Alternating index problem

D. Rank reduced automata
Lemma IV.1. Each game automaton can be effectively
transformed into an equivalent rank-reduced game automaton.

Proof: We iteratively decrease ranks in n-components of
A, for n ≥ 1. As long as there is an n-component that is not
rank-reduced, pick any such n-component, if it is trivial, set
all its ranks to n− 1, if it is non-trivial but does not contain
a state of rank n, decrease all its ranks by 2 (this does not
influence the recognised language). After finitely many steps
the automaton is rank-reduced. Note that no trivial states are
introduced.

Proofs for V. Recognisability by game automata

E. Unary profiles give binary profiles
The following fact implies in particular, that if all unlabelled

traces have profiles in M , so do labelled traces.

Lemma A.1. Given the profiles of traces w, waL and waR
in M , one can effectively compute the profile of wa in M .

Proof: Let us consider a situation where w has a non-
trivial profile K ⊆ TrA, and waL and waR have profiles
KL, and KR. Then, by Definition V.2, wa cannot have profile
∗. Let a−1K =

{
(s, t) ∈ TrA × TrA

∣∣ a(s, t) ∈ K
}

. Is easy
to see that wa has a profile Z ⊆ TrA × TrA if and only if
Z = a−1K. Thus, it remains to check that a−1K is of one of
the forms allowed by Definition V.1.

For a set U ⊆ X × Y , we define the lower section of U by
x ∈ X as Ux = {y ∈ Y

∣∣ (x, y) ∈ U}, and the upper section
of U by y ∈ Y as Uy = {x ∈ X

∣∣ (x, y) ∈ U}.
Since waL and waR have profiles KL and KR, respec-

tively, it follows easily that
• each lower section of a−1K is ∅, TrA, or KR; and
• each upper section of a−1K is ∅, TrA, or KL.
The following three sets form a partition of TrA:

XTrA =
{
sL
∣∣ (a−1K)sL = TrA

}
,

XKR
=
{
sL
∣∣ (a−1K)sL = KR

}
,

X∅ =
{
sL
∣∣ (a−1K)sL = ∅

}
,

and a−1K = XTrA × TrA ∪XKR
×KR ∪X∅ × ∅.

Fix sR ∈ KR and s′R ∈ TrA −KR. It follows that

(a−1K)sR = XTrA ∪XKR
,

(a−1K)s
′
R = XTrA .

Hence, by the initial observation on upper sections, XTrA is
TrA, KL, or ∅, and similarly for XTrA ∪XKR

Assume KR is non-trivial. Then for some realisation t of
waR, t−1(M) = KR. Let sL be the subtree of t rooted at
awL, and let t0 be obtained by replacing wa in t with a hole.
Then, t0 is a realisation of w. Since (a−1t−1

0 M)sL = KR, the
set t−1

0 M is non-trivial. Hence, t−1
0 M = K and (a−1K)sL =

KR. This means that XKR
6= ∅.

We have three cases, depending on the value of XTrA .
• If XTrA = TrA, then XKR

= ∅. Contradiction.
• If XTrA = ∅, then (a−1K)s

′
R = XKR

. Since XKR
is non-

empty, it is either TrA or KL. In the first case, a−1K =
TrA ×KR; in the second case, a−1K = KL ×KR.

• If XTrA = KL, then either XTrA∪XKR
= KL or XTrA∪

XKR
= TrA. In the first case, a−1K = KL × TrA; in

the second case, a−1K = KL ×KR ∪ TrA ×KL.
If KL is non-trivial the situation is analogous.
If KL and KR are trivial, then each section of a−1K is

either empty or full. The only two possibilities are a−1K =
TrA × TrA and a−1K = ∅.

F. Languages recognised by game automata are locally game

Lemma V.1. For each total game automaton B and a state
qI ∈ QB, for each trace w,

pB,qI (w) = pL(B,qI)(w).

Proof: Let M = L(B, qI).
First consider the case of an unlabelled trace w. Let ρ =

ρ(B, tw, qI) be the run. If ρ(w) = ∗ then by the definition
pB,qI (w) = ∗. For every realisation t of w the position w is
not accessible in the game Gρ(B, t, qI) so t−1(M) is either
∅ or TrA and by the definition w has profile ∗ in M .

Now let ρ(w) = q ∈ QB. In that case pB,qI (w) = L(B, q).
Let t be any realisation of w. Observe that either:

1) Player P has a winning σ strategy in Gρ(B, t, qI) such
that w /∈ σ. Then t−1(M) is either ∅ or TrA depending
on P .

2) Every winning strategy σ of P in Gρ(B, t, qI) contains
w. In that case t−1(M) = L(B, q) since the following
conditions are equivalent:
• a composition t[w := s] belongs to M ,
• there exists a winning strategy for ∃ in the game

Gρ(B, t[w := s], qI),
• ∃ can win Gρ(B, t[w := s], qI) from w,
• ∃ has a winning strategy in the game Gρ(B, s, q),
• s ∈ L(B, q).

Recall that there exists a tree t0 that realises w and resolves B
from qI — we plug subtrees in the side holes of tw accordingly
to the states assigned by ρ. By Fact II.2 we obtain that
t−1
0 M = L(B, q) so t0 is a witness that w has profile L(B, qI).

For the case when w is a labelled trace we use Lemma A.1
— since every unlabelled trace has a profile, we know that
every labelled trace also has a profile. It is then easy to verify
that the respective equality holds.



G. Locally game is not enough
Proposition A.1. There exists a regular tree language L such
that L is locally game but L cannot be recognised by a game
automaton.

Proof: Consider the alphabet A = {a, b}. Let t ∈ TrA be
a tree. Let us denote Cut(a, t) as the subtree of t containing
those nodes that are accessible by only letters a from the
root of t. A total tree t ∈ TrA is called thin if Cut(a, t)
has only countably many infinite branches. Let Thin contain
all thin trees. This language is regular by observation that the
following conditions are equivalent:

1) a given tree t ∈ TrA is not thin,
2) there exists an embedding of the full binary tree {L,R}∗

into Cut(a, t).
Note that every trace w has a profile Zw in Thin:
• if w contains a letter b then Zw = ∗,
• otherwise either w is labelled and therefore Zw = Thin×

Thin or w is unlabelled and Zw = Thin.
This means that Thin is locally game.

Assume that Thin is recognised by a game automaton B.
In that case all transitions of B have profile Thin × Thin
(see Lemma V.1 in Section V), so B is a deterministic
automaton. However, a standard argument shows that Thin
is not recognisable by any deterministic automaton.

H. Effectiveness of locally game property
We prove Lemma V.2 in the following formulation.

Lemma V.2. Let M be a regular tree language over an
alphabet A. There exists a finite automaton that reads a word
w over A ∪ {L,R} and outputs:
• NotTrace if w is not a trace;
• NoProfile if w is a trace but w has no profile in M ; and
• a finite representation of pM (w) if w is a trace and has

a profile in M .

The proof of this fact can be easily obtained using the
composition method [28]. However, to make the paper self-
contained, we give a direct reasoning. The crucial observation
is that if a tree t′ is put in a hole of a tree t, then the only
thing that matters for the acceptance of t is the type of t′. For
the sake of this proof let us fix a regular tree language M
recognised by a non-deterministic tree automaton B from an
initial state qI ∈ Q.

The type of a total tree t ∈ TrA is defined as follows:

tp(t) = {q ∈ Q : t ∈ L(B, q)} ⊆ Q.

The set of types of all total trees is finite and effective, we
denote it by Tp ⊆ P(Q). For a set T ⊆ Tp, by L(T ) we
denote the language of all total trees t such that tp(t) ∈ T .

Fact A.2. Let tL, tR, t′L, t
′
R ∈ TrA, let q be a state of B, and

t be a tree with two holes. If

(tp(tL), tp(tR)) = (tp(t′L), tp(t′R))

then

t(tL, tR) ∈ L(B, q) ⇔ t(t′L, t
′
R) ∈ L(B, q).

In particular, the type tp (t(tL, tR)) does not depend on the
choice of representatives tL, tR.

By the fact above, we can write t(τL, τR) for the type of
t(tL, tR) for any tL, tR with (tp(tL), tp(tR)) = (τL, τR).

Our aim is to construct a finite automaton A that reads a
finite word w ∈ (A ∪ {L,R})∗, checks that w is a trace,
and computes a representation of pM (w), provided that w has
profile.

First let us fix

Q1 = P(Tp),

Q2 =
{
S ⊆ Tp2

∣∣ L(S) is a profile
}
∪ {∅,Tp2},

QE = {NotTrace,NoProfile},
QA = Q1 ∪Q2 ∪QE ,
qAI = {T ⊆ Tp : qI ∈ T} ∈ Q1.

Our aim is to define the transition function δA in such a way
that Lemma A.2, given below, is satisfied. First, for every T ∈
Q1, S ∈ Q2, U ∈ QA, a ∈ A, d ∈ {L,R}, and l ∈ A∪{L,R}
we put
• δA(T, d) = NotTrace,
• δA(S, a) = NotTrace,
• δA(U, l) = U .
Second, assume that the current state is T ∈ Q1 and a

letter a is given. We define the successive state δA(T, a) ∈
Q2 ∪ {NoProfile}. Let us define the following set of pairs of
types

S = {(τL, τR) : a(τL, τR) ∈ T} . (2)

Note that, given S, we can decide if L(S) is a profile and, if
it is, we define δA(T, a) = S. Otherwise we put δA(T, a) =
NoProfile.

Third, assume that the current state is S ∈ Q2 and a direc-
tion d is given. We define the successive state δA(S, d) ∈ Q1.
By the symmetry assume that d = L. Consider the following
cases:
• if S = TL×Tp ∪ Tp×TR for some TL, TR ⊆ Tp then
δA(S, d) = TL,

• otherwise, δA(S, d) = π1(S) — the projection of S onto
the first coordinate.

In the case d = R we consider TR instead of TL and the
projection onto the second coordinate of S.

Lemma A.2. Let w be a word and U be the state of A after
reading w. The following conditions hold

1) if U ∈ (Q1 ∪Q2)−{∅,Tp,Tp2} then w is a trace and
L(U) is the profile of w in M ,

2) if U ∈ {∅,Tp,Tp2} then w is a trace and has profile ∗
in M ,

3) if U = NotTrace then w is not a trace,
4) if U = NoProfile then w is a trace but has no profile

in M .

Proof: The first three statements follow easily from the
definition of a profile. What remains is to show that if U =
NoProfile then the trace w has no profile in M .



Assume on the contrary and consider a minimal counterex-
ample. Notice, that by the definition, such minimal counterex-
ample is a trace of the form wa for some letter a. Assume that
wa has profile Z in M . Let T be the state of A after reading
w and let S be the set computed in (2). If T ∈ {∅,Tp} then
w has profile ∗ in M by Item 2. Then wa has also profile ∗ in
M and the state of A after reading wa belongs to {∅,Tp2}.
Assume that T /∈ {∅,Tp}. By Item 1 we obtain that w has
profile L(T ) in M .

Let t0 be a realisation of w such that t−1
0 (M) = L(T ).

Then, by the definition of t−1 we obtain that

(t0[w := a])
−1

(M) = a−1(L(T )) = Z. (3)

It is enough to show that L(S) = Z and thus S ∈ Q2 and
R = S 6= NoProfile.

Note that the following conditions are equivalent for a pair
of trees tL, tR ∈ TrA:

1) (tL, tR) ∈ Z,
2) a(tL, tR) ∈ L(T ) (by (3)),
3) a(tp(tL), tp(tR)) ∈ T (by the definition of a(τL, τR)),
4) (tp(tL), tp(tR)) ∈ S (by (2)),
5) tL, tR ∈ L(S) (by the definition of L(S)).

I. Game automata accept correct infinite traces

Lemma V.3. D accepts π from qI if and only if π is L(D, qI)-
correct.

Proof: Let use denote L(D, qI) as M ′. Let π ∈ (A ×
{L,R})ω be an infinite trace. First assume that π is M ′-
correct. Let t′ ∈ M ′ be a tree witnessing it. Recall, that
t′ is obtained by putting some total trees in holes of tπ .
Since t′ ∈ M ′ so there exists a winning strategy σ for ∃
in Gρ(D, t′, qDI ). Since, whenever ∃ could make a choice to
leave the branch π, the respective subtree in t′ is losing for
her, so the whole branch π must be contained in the strategy
σ. Therefore, D must accept π from qDI .

Now assume that D accepts π from qDI . Let t′ be some
realisation of π. Consider σ to be the strategy of ∃ in
Gρ(D, t′, qDI ) defined as follows:
• in all the nodes along π follow this branch,
• whenever ∀ selects to go off the branch π, use some

winning strategy in the respective subtree (it exists by
the construction).

By the definition, σ is a winning strategy for ∃ in the game
Gρ(D, t′, qDI ). Therefore, t′ ∈M ′ so t′ is a witness that π is
an M ′-correct branch.

J. Effectiveness of the languages of M -correct infinite traces

Lemma V.4. For every regular tree language M the language
of M -correct branches C is ω-regular. Moreover, a determin-
istic parity automaton recognising C can be constructed from
a representation of M .

Proof: Let B be a non-deterministic automaton recog-
nising the given regular tree language M from a state gI .
We show how to express in monadic second-order logic over

ω the fact, that a given ω-word π is an M -correct branch.
By the results by Büchi and McNaughton such a formula ϕ
can be effectively translated into a deterministic parity ω-word
automaton D.

Similarly as in the proof of Lemma V.1, we use composi-
tional tools. In particular, by Tp ⊆ P(QB) we denote the set
of all types of total trees with respect to the automaton B.

Intuitively, the formula ϕ guesses the types of the total
subtrees that need to be put in the side holes of tπ to obtain a
tree t that resolves M up to π. Basing on this guessed types
ϕ can verify that t ∈M .

Recall that an infinite trace π is defined as a word in the
language (A · {L,R})ω . A witness for the existence of t will
be an infinite word over the alphabet A ∪ ({L,R} × Tp)
denoted π̂ and called enrichment of π by types. We require
that every even position of π̂ belongs to A and every odd
position belongs to {L,R} × Tp.

π̂ = a0 · (d0, τ0) · a1 · (d1, τ1) · . . .

If w = a0 · d0 · a1 · d1 · . . . · dn−1 · an is a labelled trace that
is a prefix of π we say that dn is the final direction of w and
τn is the final type of w.

Let the formula ψR express that for every trace w ≺ π with
final direction d, final type τ , and such that S is the state of
A (see Lemma V.1) after reading w, the following conditions
are satisfied:
• if S = SL × Tp ∪ Tp× SR then τ /∈ Sd,
• otherwise τ ∈ πi(S) where i = 1, 2 for d = L,R

respectively.
Note that every π̂ that is enrichment of π by types induces

a total tree tπ̂ over the alphabet A where in the n’th side hole
of π we put some total tree of type τn. Note also that π̂ |= ψR
if and only if tπ̂ resolves M up to π. In particular the exact
subtrees we put into side holes of tπ are irrelevant, we only
need to take care of their types.

What remains is to express in MSO logic on π̂ that tπ̂ ∈M .
For this we say that there exists an infinite word ρ coding
a run the non-deterministic automaton B on tπ . Formally a
word coding a run ρ is defined as a word over the alphabet
QB ∪ {∗} ∪ DB where DB is the set of all deterministic
transitions appearing in the transitions of B. The elements of
QB ∪ {∗} are supposed to appear on even positions of ρ and
elements of DB are supposed to appear on odd positions of
ρ:

ρ = q0 · b0 · q1 · b1 · . . .

Let the formula ψM express the following facts about the
combination of words π̂ ⊗ ρ in the language[

A×
(
QB ∪ {∗}

)
·
(
({L,R} × Tp)×DB

)]ω
• the state q0 equals qI ,
• for every n the transition bn is one of the deterministic

transitions appearing in δB(qn, an),
• for every n the state assigned to d̄n by bn (if any) belongs

to τn,



• for every n the state assigned to dn by bn (if any) equals
qn+1, if there is no such state then qn+1 = ∗,

• either from some point on bn = ∗ or the parity condition
is satisfied by the sequence of states q0, q1, . . ..

Note, that π̂⊗ρ |= ψM if and only if ρ encodes an accepting
run of B on tπ that assigns to the n’th hole of tπ a state
belonging to τn. Therefore, π̂ ⊗ ρ |= ψM if and only if the
run encoded by ρ can be extended to an accepting run of B
on tπ̂ .

Let ϕ express for a given infinite trace π that there exists
an enrichment of π by types τn and an encoding of run ρ such
that π̂ |= ψR and π̂⊗ρ |= ψM . Note that π |= ϕ if and only if
there exists a tree t = tπ̂ ∈M that realises π and that resolves
M up to π.


