Complexity collapse for unambiguous languages

Henryk Michalewski Michał Skrzypczak

University of Warsaw

Highlights 2013 Paris

Henryk Michalewski, Michał Skrzypczak Complexity collapse for unambiguous languages 1 / 8

Henryk Michalewski, Michał Skrzypczak

$$S = \left\{ x \ : \ \exists_y \ R(x,y) \right\}$$

2 / 8

Henryk Michalewski, Michał Skrzypczak Complexity collapse for unambiguous languages

2 / 8

Automata

Henryk Michalewski, Michał Skrzypczak

Nondeterministic

Nondeterministic parity

Büchi condition:

"infinitely many accepting states on every branch"

Büchi condition:

"infinitely many accepting states on every branch"

Logic Automata MSO ≡ parity

Büchi condition:

"infinitely many accepting states on every branch"

Logic	Logic		
MSO	≡	parity	
existential MSO	≡	Büchi	

Büchi condition:

"infinitely many accepting states on every branch"

	Logic		Automata	
	MSO	≡	parity	
existential	MSO	≡	Büchi	
weak	MSO	≡	Büchi ∩	$(B\"uchi)^c (= weak)$

Henryk Michalewski, Michał Skrzypczak

Projection ~> nondeterminism

 \mathcal{A} — nondeterministic automaton

Projection ~> nondeterminism

 $\mathcal{A}-\text{nondeterministic}$ automaton

 $R(t,\rho)\text{:}$ " ρ is an accepting run of $\mathcal A$ on t"

Projection \rightsquigarrow nondeterminism

 \mathcal{A} — nondeterministic automaton

 $R(t,\rho)$: " ρ is an accepting run of ${\mathcal A}$ on t"

Projection ~> nondeterminism

 \mathcal{A} — nondeterministic automaton

 $R(t,\rho)$: " ρ is an accepting run of ${\cal A}$ on t"

Henryk Michalewski, Michał Skrzypczak

Projection ~> nondeterminism

Henryk Michalewski, Michał Skrzypczak

Theorem (Niwiński, Walukiewicz [1996])

 $\exists_v b(v)$ is **not** recognised by any unambiguous automaton.

5 / 8

Theorem (Niwiński, Walukiewicz [1996])

 $\exists_v b(v)$ is **not** recognised by any unambiguous automaton.

Characterization of unambiguous languages:

Decide if $L(\mathcal{A})$ is recognised by some unambiguous automaton.

Theorem (Niwiński, Walukiewicz [1996])

 $\exists_v b(v)$ is **not** recognised by any unambiguous automaton.

Characterization of unambiguous languages:

Decide if $\mathrm{L}(\mathcal{A})$ is recognised by some unambiguous automaton.

Complexity of unambiguous languages:

Lower / upper bounds for descriptive complexity of unambiguous languages.

Theorem (Niwiński, Walukiewicz [1996])

 $\exists_v b(v)$ is **not** recognised by any unambiguous automaton.

Characterization of unambiguous languages:

Decide if $L(\mathcal{A})$ is recognised by some unambiguous automaton.

Complexity of unambiguous languages:

Lower / upper bounds for descriptive complexity of unambiguous languages.

```
\left( egin{array}{c} {\sf Partial answer by Hummel [2012], [2013]:} \\ {\sf There are unambiguous languages above } {f \Pi}_1^1. \end{array} 
ight)
```

Theorem (Finkel, Simmonet [2009])

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is Borel.

Theorem (Finkel, Simmonet [2009]) If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is Borel.

But what if:

But what if:

Conjecture (Skurczyński [1993])

If a $L(\mathcal{A})$ is Borel then $L(\mathcal{A})$ is weak MSO-definable.

Henryk Michalewski, Michał Skrzypczak

Unambiguous Büchi is weak

Theorem

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Unambiguous Büchi is weak

Theorem

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Proof.

Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Proof. Separation (Rabin [1970], Arnold, Santocanale [2005]) + Game argument

Syntactic conditions: one automaton unambiguous and Büchi

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Proof. Separation (Rabin [1970], Arnold, Santocanale [2005]) + Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012]) There exists a language L that is:

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Proof. Separation (Rabin [1970], Arnold, Santocanale [2005]) + Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])

There exists a language L that is:

• recognised by an unambiguous (but not Büchi) automaton,

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Proof. Separation (Rabin [1970], Arnold, Santocanale [2005]) + Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])

There exists a language L that is:

- recognised by an unambiguous (but not Büchi) automaton,
- recognised by a Büchi (but not unambiguous) automaton,

If \mathcal{A} is unambiguous and Büchi then $L(\mathcal{A})$ is weak MSO-definable.

Proof. Separation (Rabin [1970], Arnold, Santocanale [2005]) + Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])

There exists a language L that is:

- recognised by an unambiguous (but not Büchi) automaton,
- recognised by a Büchi (but not unambiguous) automaton,
- on non-Borel.

If I had more time...

Henryk Michalewski, Michał Skrzypczak

If I had more time...

Theorem Similar result for higher parity indices (i, 2n).

Theorem Similar result for higher parity indices (i, 2n).

Theorem

Extension to topological classes defined by Game Quantifier **D**.

Theorem Similar result for higher parity indices (i, 2n).

Theorem Extension to topological classes defined by Game Quantifier **D**.

Conclusions:

The first collapse of the parity index exploiting unambiguity.

Theorem Similar result for higher parity indices (i, 2n).

Theorem *Extension to topological classes defined by Game Quantifier* **D**.

Conclusions:

The first collapse of the parity index exploiting unambiguity.

Hopefully a step towards upper bounds for unambiguous languages.