Complexity collapse for unambiguous languages

Henryk Michalewski Michał Skrzypczak
University of Warsaw

Highlights 2013
Paris

Existential quantifier \rightsquigarrow projection

Existential quantifier \rightsquigarrow projection

$$
S=\left\{x: \exists_{y} R(x, y)\right\}
$$

Existential quantifier \rightsquigarrow projection

Theorem (Lebesgue, Souslin)
Projection of a Borel set may not be Borel.

Existential quantifier \rightsquigarrow projection

Theorem (Lebesgue, Souslin)
Projection of a Borel set may not be Borel.
Theorem (Lusin, Souslin)
Projection of an uniformized Borel set is Borel.

Automata

Automata

Nondeterministic

Automata

Nondeterministic parity

Automata

Nondeterministic parity tree automata

Automata

Nondeterministic parity tree automata
Büchi condition:
"infinitely many accepting states on every branch"

Automata

Nondeterministic parity tree automata
Büchi condition:
"infinitely many accepting states on every branch"

> Logic MSO \equiv Automata parity

Automata

Nondeterministic parity tree automata
Büchi condition:
"infinitely many accepting states on every branch"

Logic		Automata
MSO	$\equiv \quad$ parity	
existential MSO	$\equiv \quad$ Büchi	

Automata

Nondeterministic parity tree automata
Büchi condition:
"infinitely many accepting states on every branch"

Logic		Automata
MSO	\equiv	parity
existential MSO	\equiv	Büchi
weak MSO	\equiv Büchi $\cap(\text { Büchi })^{c}(=$ weak $)$	

\mathcal{A} - nondeterministic automaton
\mathcal{A} - nondeterministic automaton

$$
R(t, \rho):{ }_{\text {„ }} \rho \text { is an accepting run of } \mathcal{A} \text { on } t "
$$

\mathcal{A} - nondeterministic automaton

$$
R(t, \rho):{ }_{\text {„ }} \rho \text { is an accepting run of } \mathcal{A} \text { on } t "
$$

\mathcal{A} - nondeterministic automaton

$$
R(t, \rho):{ }_{\text {„ }} \rho \text { is an accepting run of } \mathcal{A} \text { on } t "
$$

\mathcal{A} - nondeterministic automaton
$R(t, \rho):{ }_{\text {, } \rho}$ is an accepting run of \mathcal{A} on $t "$
\mathcal{A} is unambiguous if $\quad \forall_{t} \exists_{\rho}^{\leq 1} \rho$ is accepting

Open problems

Open problems

Theorem (Niwiński, Walukiewicz [1996])
$\exists_{v} b(v)$ is not recognised by any unambiguous automaton.

Open problems

Theorem (Niwiński, Walukiewicz [1996])
$\exists_{v} b(v)$ is not recognised by any unambiguous automaton.

Characterization of unambiguous languages:
Decide if $\mathrm{L}(\mathcal{A})$ is recognised by some unambiguous automaton.

Open problems

Theorem (Niwiński, Walukiewicz [1996])
$\exists_{v} b(v)$ is not recognised by any unambiguous automaton.

Characterization of unambiguous languages:
Decide if $\mathrm{L}(\mathcal{A})$ is recognised by some unambiguous automaton.
Complexity of unambiguous languages:
Lower / upper bounds for descriptive complexity of unambiguous languages.

Open problems

Theorem (Niwiński, Walukiewicz [1996])
$\exists_{v} b(v)$ is not recognised by any unambiguous automaton.

Characterization of unambiguous languages:
Decide if $\mathrm{L}(\mathcal{A})$ is recognised by some unambiguous automaton.
Complexity of unambiguous languages:
Lower / upper bounds for descriptive complexity of unambiguous languages.

Partial answer by Hummel [2012], [2013]:
There are unambiguous languages above $\boldsymbol{\Pi}_{1}^{1}$.

Theorem (Finkel, Simmonet [2009])
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is Borel.

Unambiguous Büchi is Borel

Theorem (Finkel, Simmonet [2009])
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is Borel.

Proof.

Unambiguous Büchi is Borel

Theorem (Finkel, Simmonet [2009])
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is Borel.

Proof.

But what if:

Unambiguous Büchi is Borel

Theorem (Finkel, Simmonet [2009])
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is Borel.

Proof.

But what if:
Conjecture (Skurczyński [1993])
If a $\mathrm{L}(\mathcal{A})$ is Borel then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.

Unambiguous Büchi is weak

Unambiguous Büchi is weak

Theorem
 If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.

Unambiguous Büchi is weak

Theorem
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.
Proof.
Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

Unambiguous Büchi is weak

Theorem
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.
Proof.
Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Unambiguous Büchi is weak

Theorem
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.
Proof.
Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])
There exists a language L that is:

Unambiguous Büchi is weak

Theorem
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.
Proof.
Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])
There exists a language L that is:

- recognised by an unambiguous (but not Büchi) automaton,

Unambiguous Büchi is weak

Theorem
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.
Proof.
Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])
There exists a language L that is:

- recognised by an unambiguous (but not Büchi) automaton,
- recognised by a Büchi (but not unambiguous) automaton,

Unambiguous Büchi is weak

Theorem
If \mathcal{A} is unambiguous and Büchi then $\mathrm{L}(\mathcal{A})$ is weak MSO-definable.
Proof.
Separation (Rabin [1970], Arnold, Santocanale [2005])

+ Game argument

Syntactic conditions: one automaton unambiguous and Büchi

Example (Hummel [2012])
There exists a language L that is:

- recognised by an unambiguous (but not Büchi) automaton,
- recognised by a Büchi (but not unambiguous) automaton,
- non-Borel.

Theorem
Similar result for higher parity indices $(i, 2 n)$.

Theorem
Similar result for higher parity indices $(i, 2 n)$.

Theorem
Extension to topological classes defined by Game Quantifier $\boldsymbol{Ð}$.

Theorem
Similar result for higher parity indices $(i, 2 n)$.

Theorem
Extension to topological classes defined by Game Quantifier \mathfrak{D}.

Conclusions:
The first collapse of the parity index exploiting unambiguity.

Theorem
Similar result for higher parity indices ($i, 2 n$).

Theorem
Extension to topological classes defined by Game Quantifier \mathfrak{D}.

Conclusions:
The first collapse of the parity index exploiting unambiguity.
Hopefully a step towards upper bounds for unambiguous languages.

