# Regular languages of thin trees

Mikołaj Bojańczyk

Tomasz Idziaszek

Michał Skrzypczak

University of Warsaw

# GAMES 2012, Napoli

Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak Regular languages of thin trees

# Motto

# "Trees are harder than words"

# Motto

# "Trees are harder than words"

# Outline

- Thin trees: structures in-between words and trees.
- Positive results: several equational characterisations.
- Negative results: thin trees are much poorer then all trees.
- Tool: thin forest algebra.

#### Motto

# "Trees are harder than words"

# Outline

- Thin trees: structures in-between words and trees.
- Positive results: several equational characterisations.
- Negative results: thin trees are much poorer then all trees.
- Tool: thin forest algebra.

# Setting

- Finite alphabet A.
- Infinite labelled finitely branching trees t (leafs allowed).
- Regular languages L (MSO, automata).
- Also weak regular languages (weak-MSO, weak automata).

#### Thin trees

# A tree is thin if it has only countably many infinite branches.



#### Lemma

A tree is either:

- thin has countably many infinite branches,
- thick contains a full binary tree as a minor.

#### Lemma

A tree is either:

- thin has countably many infinite branches,
- thick contains a full binary tree as a minor.
- $\bullet\,$  Being a thick tree is  ${\rm MSO}$  definable by an existential formula.
- Thin trees are coanalytic (Π<sup>1</sup><sub>1</sub>)-complete among all (thin and thick) trees.
- Being a thin tree is **not** weak-MSO definable.



relatively easy to lift characterizations from finite words, works for FO, temporal logics, etc.



# Structural induction

 $\operatorname{rank}(t)$  — a measure of the complexity of t.



# Structural induction

 $\operatorname{rank}(t)$  — a measure of the complexity of t.



 $\operatorname{rank}(t_1) = 1$   $\operatorname{rank}(t_2) = 2$   $\operatorname{rank}(t_3) = 3$   $\operatorname{rank}(t_\omega) = \omega$ 

A thin tree consists of a *spine* and subtrees of smaller rank along it.

# Structural induction

 $\operatorname{rank}(t)$  — a measure of the complexity of t.



 $\operatorname{rank}(t_1) = 1$   $\operatorname{rank}(t_2) = 2$   $\operatorname{rank}(t_3) = 3$   $\operatorname{rank}(t_\omega) = \omega$ 

A thin tree consists of a *spine* and subtrees of smaller rank along it.

Cannot assign rank to a thick tree.  
Every thin tree t has 
$$rank(t) < \omega_1$$
.  
The spine can be arbitrarily arranged in the tree!

Mikołaj Bojańczyk, Tomasz Idziaszek, Michał Skrzypczak

# Thin forest algebra

Technical manoeuvre

Instead of trees we work with unranked forests.

# Thin forest algebra

#### Technical manoeuvre

Instead of trees we work with unranked forests.

#### Thin forest algebra

Two-sorted algebra (H, V) where

- *H* contains types of forests
- V contains types of contexts
- standard operations + and  $\cdot$
- infinite power  $V \ni v \mapsto v^{\infty} \in H$



# Thin forest algebra

# Technical manoeuvre

Instead of trees we work with unranked forests.

# Thin forest algebra

Two-sorted algebra (H, V) where

- *H* contains types of forests
- V contains types of contexts
- $\bullet\,$  standard operations  $+\,$  and  $\cdot\,$
- infinite power  $V \ni v \mapsto v^{\infty} \in H$

# Motivations

- Composition method [Shelah]
- Forest algebra [Bojańczyk, Walukiewicz]
- Wilke algebras,  $\omega$ -semigroups

Images to appear!

 $h_1$  +  $h_2$  =  $h_1$ 









# Equational characterisations

Characterisation of the form:

A regular language L has property  $\mathcal{P}$  if and only if the syntactic algebra  $\mathcal{A}_L$  for L satisfies equations  $E_{\mathcal{P}}$ .

# Equational characterisations

Characterisation of the form:

A regular language L has property  $\mathcal{P}$  if and only if the syntactic algebra  $\mathcal{A}_L$  for L satisfies equations  $E_{\mathcal{P}}$ .

- decidability
- good understanding
- algebraic properties: varieties, quotients, ...

A regular language of thin trees is closed under well-founded<sup>a</sup> commutations iff its syntactic algebra satisfies identity

$$h+g=g+h$$

<sup>a</sup>Only finitely many changes on every path.

A regular language of thin trees is closed under well-founded<sup>a</sup> commutations iff its syntactic algebra satisfies identity

$$h+g=g+h$$

<sup>a</sup>Only finitely many changes on every path.

#### Theorem

A regular language of thin trees is closed under arbitrary commutations iff its syntactic algebra satisfies identity

h + v = v + h

A regular language of thin trees is closed under bisimulational equivalence iff its syntactic algebra satisfies identities

h + v = v + hh + h = h $(v^{\infty} + v)^{\infty} = v^{\infty}$ 

A regular language of thin trees is closed under bisimulational equivalence iff its syntactic algebra satisfies identities

h + v = v + hh + h = h $(v^{\infty} + v)^{\infty} = v^{\infty}$ 

Also, a similar characterisation for EF-bisimulational equivalence: equivalence induced by the bisimulation game where players can make more than one step down at once.

A regular language of thin trees is closed under bisimulational equivalence iff its syntactic algebra satisfies identities

h + v = v + hh + h = h $(v^{\infty} + v)^{\infty} = v^{\infty}$ 

Also, a similar characterisation for EF-bisimulational equivalence: equivalence induced by the bisimulation game where players can make more than one step down at once.

#### Remark

No such equational characterisation for all trees known!

# Definition

A set of trees L is *open* if for every tree  $t \in L$  there exists a depth  $d \in \mathbb{N}$  such that all trees agreeing with t up to depth d belong to L.

# Definition

A set of trees L is *open* if for every tree  $t \in L$  there exists a depth  $d \in \mathbb{N}$  such that all trees agreeing with t up to depth d belong to L.

#### Theorem

A regular language of thin trees is open iff its syntactic morphism  $\alpha$  satisfies:

if  $v^{\infty} \in \alpha(L)$  then  $v^{\omega}h \in \alpha(L)$ 

# Definition

A set of trees L is open if for every tree  $t \in L$  there exists a depth  $d \in \mathbb{N}$  such that all trees agreeing with t up to depth d belong to L.

#### Theorem

# A regular language of thin trees is open iff its syntactic morphism $\alpha$ satisfies:

if 
$$v^{\infty} \in \alpha(L)$$
 then  $v^{\omega}h \in \alpha(L)$ 

The same condition characterises open languages of  $\omega$ -words.

The following conditions are equivalent for a regular language of thin trees *L*:

The following conditions are equivalent for a regular language of thin trees *L*:

**1** *L* is weak-MSO definable among all trees

The following conditions are equivalent for a regular language of thin trees *L*:

- *L* is weak-MSO definable among all trees
- 2 exists  $M \in \mathbb{N}$  such that every tree  $t \in L$  has rank at most M

The following conditions are equivalent for a regular language of thin trees *L*:

- **1** *L* is weak-MSO definable among all trees
- **2** exists  $M \in \mathbb{N}$  such that every tree  $t \in L$  has rank at most M
- **3** L is **not** coanalytic  $(\Pi_1^1)$ -hard among all trees

The following conditions are equivalent for a regular language of thin trees L:

- L is weak-MSO definable among all trees
- 2 exists  $M \in \mathbb{N}$  such that every tree  $t \in L$  has rank at most M
- L is not coanalytic  $(\Pi_1^1)$ -hard among all trees
- the syntactic morphism for L satisfies condition

 $\text{if} \quad h=v(w+h)^{\infty} \quad \text{or} \quad h=v(h+w)^{\infty} \quad \text{then} \quad h=\bot \\$ 

Every regular language of thin trees is coanalytic  $(\Pi_1^1)$  among all trees.

Every regular language of thin trees is coanalytic  $(\Pi_1^1)$  among all trees.

Conjecture in all trees (a gap property):

Borel & regular  $\implies$  weak-MSO definable

Every regular language of thin trees is coanalytic  $(\Pi_1^1)$  among all trees.

Conjecture in all trees (a gap property):

Borel & regular  $\implies$  weak-MSO definable

# Corollary

A regular language of thin trees is either:

- weak-MSO definable among all trees
- $\Pi_1^1$ -complete among all trees







Every regular language of thin trees can be recognised by a nondeterministic (1,3) parity automaton among all trees.

Every regular language of thin trees can be recognised by a nondeterministic (1,3) parity automaton among all trees.

#### Theorem

Every regular language of thin trees L can be recognised by an unambiguous automaton  $A_L$  among thin trees: For every thin tree t the automaton  $A_L$  has at most one accepting run on t and

$$t \in \mathcal{L}(\mathcal{A}_L) \Leftrightarrow t \in L$$

If f is a continuous function from a Polish topological space X to thin trees and L is a regular language of thin trees then  $f^{-1}(L)$  is Borel in X.

Roughly speaking...

No regular language is topologically harder then Borel.

If f is a continuous function from a Polish topological space X to thin trees and L is a regular language of thin trees then  $f^{-1}(L)$  is Borel in X.

Roughly speaking...

No regular language is topologically harder then Borel.

#### Theorem

There exists a regular language of thin trees L such that every Borel subset B of a Polish topological space can be continuously reduced to L in thin trees: there exists a continuous function fmapping elements of X to thin trees such that  $f^{-1}(L) = B$ .

```
Roughly speaking...
Language L is Borel-hard.
```

# Conclusions

- Structures in-between words and trees.
- Nice (simple) algebras.
- Equational characterisations of various properties.
- Collapse of the complexity comparing to all trees.

# Conclusions

- Structures in-between words and trees.
- Nice (simple) algebras.
- Equational characterisations of various properties.
- Collapse of the complexity comparing to all trees.

# Open problems

- Decidability of the weak-MSO definability among thin trees?
- Is it possible to extend these techniques/results to all trees?

# Results 1 ("positive")

Effective (equational) characterisations of regular languages of thin trees that are:

- commutative (in two flavours)
- invariant under bisimulation (in two flavours)
- open in the standard topology
- weak-MSO definable among all trees

# Results 2 ("negative")

Every regular language of thin trees is:

- coanalytic  $(\Pi_1^1)$  among all trees
- $\bullet$  recognisable by a nondet. (1,3) automaton among all trees
- recognisable by an unambiguous automaton among thin trees
- not harder then Borel sets (as a subset of thin trees)

# Thank you for your attention!