Equational theories of profinite structures

Michał Skrzypczak

University of Warsaw

August 23'rd 2011

http://www.mimuw.edu.pl/~mskrzypczak/docs/

A (1) > A (2) > A

Note

Things that I show are nothing remarkably *new*. This is rather a point of view than a new piece of theory.

イロト イヨト イヨト イヨト

Note

Things that I show are nothing remarkably *new*. This is rather a point of view than a new piece of theory.

Profinite structures

Add *virtual* objects to our world to make it more *complete* (e.g. compact).

A (2) A (2) A (2) A

Note

Things that I show are nothing remarkably *new*. This is rather a point of view than a new piece of theory.

Profinite structures

Add *virtual* objects to our world to make it more *complete* (e.g. compact).

Equational theories

What properties of languages can be expressed by (some) equations?

A framework is a pair $\langle \Phi, \mathbb{W} \rangle$ such that:

- Φ is a countable set of *recognisers* $\varphi \in \Phi$,
- \mathbb{W} is a countable set of *objects* $w \in \mathbb{W}$,
- a recogniser $\varphi \in \Phi$ is a function $\varphi \colon \mathbb{W} \to K_{\varphi}$ to a finite set K_{φ} .

- 4 周 ト 4 ヨ ト 4 ヨ ト

A framework is a pair $\langle \Phi, W \rangle$ such that:

- Φ is a countable set of *recognisers* $\varphi \in \Phi$,
- \mathbb{W} is a countable set of *objects* $w \in \mathbb{W}$,
- a recogniser $\varphi \in \Phi$ is a function $\varphi \colon \mathbb{W} \to K_{\varphi}$ to a finite set K_{φ} .

Running example

Let $\mathbb{W} = A^*$ be a set of all finite words and let Φ be the set of all homomorphisms into finite monoids: for every finite monoid M and any homomorphism $\varphi \colon A^* \to M$ let $\varphi \in \Phi$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A set $L\subseteq \mathbb{W}$ is *recognisable* if there exists a recogniser $\varphi\in\Phi$ and a set $V\subseteq K_{\varphi}$ such that

$$L = \varphi^{-1}(V).$$

▲冊♪ ▲屋♪ ▲屋♪

A set $L\subseteq\mathbb{W}$ is recognisable if there exists a recogniser $\varphi\in\Phi$ and a set $V\subseteq K_{\varphi}$ such that

$$L = \varphi^{-1}(V).$$

Assumptions

Additionally we assume:

- a) Each object $w \in W$ is totally described by some recogniser (that is $\{w\}$ is recognisable).
- b) Recognisable sets are closed under intersections.

((同)) (目)) (

Examples

- Let \mathbb{W} be the set of all finite models of a fixed relational signature Σ .
- Let Φ be the set of all first order formulas over Σ .
- A formula φ is a function $\varphi \colon \mathbb{W} \to \{\bot, \top\}$.

・ロト ・四ト ・ヨト ・ヨト

臣

Examples

- Let \mathbb{W} be the set of all finite models of a fixed relational signature Σ .
- Let Φ be the set of all first order formulas over Σ .
- A formula φ is a function $\varphi \colon \mathbb{W} \to \{\bot, \top\}$.
- Let W be the set of all finite labelled trees over a finite alphabet *A*.
- Let Φ be the set of all morphisms into finite tree algebras.

▲撮♪ ▲注♪ ▲注♪

Examples

- Let \mathbb{W} be the set of all finite models of a fixed relational signature Σ .
- Let Φ be the set of all first order formulas over Σ .
- A formula φ is a function $\varphi \colon \mathbb{W} \to \{\bot, \top\}$.
- Let W be the set of all finite labelled trees over a finite alphabet A.
- Let Φ be the set of all morphisms into finite tree algebras.
- Let W be the set of all finite words A[∗].
- Let Φ be the set of all total (halting) Turing machines.
- Every total Turing machine M can be treated as a function $M : \mathbb{W} \to \{ \text{accept}, \text{reject} \}.$

イロト イポト イヨト イヨト

Let

$$X = \prod_{\varphi \in \Phi} K_{\varphi}.$$

 \boldsymbol{X} is a compact topological space. Let

$$w \in \mathbb{W} \mapsto \mu(w) = (\varphi_1(w), \varphi_2(w), \varphi_3(w), \ldots)$$

Since μ is 1-1 we can identify w with $\mu(w)$ and write $\mathbb{W}\subseteq X.$ Let

$$\widehat{\mathbb{W}} = \mathrm{cl}\,(\mathbb{W}) \subseteq X.$$

マロト マヨト マヨト

 $\bullet\,$ For an object $w\in\mathbb{W}$ the image

$$\mu(w) = (\varphi_1(w), \varphi_2(w), \ldots) \in X$$

is a list of values of all recognisers on w. It *describes* all important properties of w.

• For an object $w \in \mathbb{W}$ the image

$$\mu(w) = (\varphi_1(w), \varphi_2(w), \ldots) \in X$$

is a list of values of all recognisers on w. It *describes* all important properties of w.

The image µ(W) ⊆ X is a set of all possible (*realisable*) properties of objects.

A (10) > A (10) > A

• For an object $w \in \mathbb{W}$ the image

$$\mu(w) = (\varphi_1(w), \varphi_2(w), \ldots) \in X$$

is a list of values of all recognisers on w. It *describes* all important properties of w.

- The image µ(W) ⊆ X is a set of all possible (*realisable*) properties of objects.
- A virtual object $w' \in \widehat{\mathbb{W}} \setminus \mathbb{W}$ is just a list of its properties (v_1, v_2, \ldots) that are finitely realisable by real objects.

• Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.

・ 回 と ・ ヨ と ・ ヨ と

- Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.
- Let w_n be an empty *n*-vertex graph.

・ 同 ト ・ ヨ ト ・ ヨ

- Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.
- Let w_n be an empty *n*-vertex graph.
- There is an *virtual* graph $w_{\infty} \in \widehat{\mathbb{W}}$ such that $w_n \to w_{\infty}$.

- Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.
- Let w_n be an empty *n*-vertex graph.
- There is an virtual graph $w_{\infty} \in \widehat{\mathbb{W}}$ such that $w_n \to w_{\infty}$.
- Observe that w_{∞} is not so virtual it can be seen as infinite empty graph.

- Let $\langle \Phi, \mathbb{W} \rangle$ be the framework of directed finite graphs and first order formulas.
- Let w_n be an empty *n*-vertex graph.
- There is an virtual graph $w_{\infty} \in \widehat{\mathbb{W}}$ such that $w_n \to w_{\infty}$.
- Observe that w_{∞} is not so virtual it can be seen as infinite empty graph.
- This is not a coincidence Compactness Theorem.

A (1) > A (2) > A

Fact

All recognisers naturally extend to $\widehat{\mathbb{W}}$ as projections.

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Fact

All recognisers naturally extend to $\widehat{\mathbb{W}}$ as projections.

Fact

Profinitely recognisable sets are exactly closures of normal recognisable sets.

(周) (ヨ) (ヨ)

Fact

All recognisers naturally extend to $\widehat{\mathbb{W}}$ as projections.

Fact

Profinitely recognisable sets are exactly closures of normal recognisable sets.

Fact

A set $L \subseteq \widehat{\mathbb{W}}$ is recognisable iff it is closed and open.

(日本)(日本)

For $u,v\in\widehat{\mathbb{W}}$ we say that a recognisable language $L\subseteq\widehat{\mathbb{W}}$ satisfies equation $u\to v$ iff.

$$u \in L \Rightarrow v \in L.$$

1 A > 1 > 1

문 🕨 문

For $u, v \in \widehat{\mathbb{W}}$ we say that a recognisable language $L \subseteq \widehat{\mathbb{W}}$ satisfies equation $u \to v$ iff.

$$u \in L \Rightarrow v \in L.$$

A set of equations ${\cal E}$ defines the family of all recognisable languages that satisfy all those equations.

<日</th><</th>

For $u, v \in \widehat{\mathbb{W}}$ we say that a recognisable language $L \subseteq \widehat{\mathbb{W}}$ satisfies equation $u \to v$ iff.

$$u \in L \Rightarrow v \in L.$$

A set of equations ${\cal E}$ defines the family of all recognisable languages that satisfy all those equations.

Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.

Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.

(本語) (本語) (本語)

臣

Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.

Lemma

If $I \subseteq \mathcal{L}$ and $K = \bigcup I$ is recognisable then $K \in \mathcal{L}$. If $I \subseteq \mathcal{L}$ and $K = \bigcap I$ is recognisable then $K \in \mathcal{L}$.

(本間) (本語) (本語)

Theorem

A family of recognisable languages \mathcal{L} is definable by some equations \mathcal{E} iff \mathcal{L} is a lattice.

Lemma

If $I \subseteq \mathcal{L}$ and $K = \bigcup I$ is recognisable then $K \in \mathcal{L}$. If $I \subseteq \mathcal{L}$ and $K = \bigcap I$ is recognisable then $K \in \mathcal{L}$.

Sketch of the proof (\Leftarrow)

Take any lattice \mathcal{L} and let \mathcal{E} contain all equations satisfied by \mathcal{L} . Take any language L satisfying all \mathcal{E} and show that $L \in \mathcal{L}$. Use above Lemma to approximate L from inside and from outside. If it fails, then there is an equation $u \to v$ not satisfied by L — a contradiction.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational theory of regular languages. In ICALP, pages 246–257, 2008.
- Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. A topological approach to recognition. In Automata, Languages and Programming, volume 6199 of LNCS, pages 151–162. Springer Berlin / Heidelberg, 2010.