MSO + U describes sets at arbitrarily high levels of the projective hierarchy

Szczepan Hummel Michał Skrzypczak

University of Warsaw
GAMES 2011, Paris

This talk

- Extension of results presented last year by Szczepan Hummel.

This talk

- Extension of results presented last year by Szczepan Hummel.
- Final answer to the open problem about topological complexity of MSO +U logic.

This talk

- Extension of results presented last year by Szczepan Hummel.
- Final answer to the open problem about topological complexity of MSO +U logic.
- New negative results - automata for $\mathrm{MSO}+\mathrm{U}$ if exist must be complicated.

This talk

- Extension of results presented last year by Szczepan Hummel.
- Final answer to the open problem about topological complexity of MSO + U logic.
- New negative results - automata for $\mathrm{MSO}+\mathrm{U}$ if exist must be complicated.

Outline

(1) Introduction, $\mathrm{MSO}+\mathrm{U}$.
(2) Topology, projective hierarchy.
(3) Trees, combinatorics and the main construction.

This talk

- Extension of results presented last year by Szczepan Hummel.
- Final answer to the open problem about topological complexity of MSO + U logic.
- New negative results - automata for MSO +U if exist must be complicated.

Outline

(1) Introduction, $\mathrm{MSO}+\mathrm{U}$.
(2) Topology, projective hierarchy.
(3) Trees, combinatorics and the main construction.

The setting

Finite alphabet A, infinite words $w \in A^{\omega}$.

Quantifier U

Introduced by Bojańczyk and Colcombet [Boj04], [BC06].

$$
\cup X . \varphi(X)
$$

iff
there are finite sets X satisfying $\varphi(X)$ of arbitrarily big size.

Quantifier U

Introduced by Bojańczyk and Colcombet [Boj04], [BC06].

$$
\cup X . \varphi(X)
$$

there are finite sets X satisfying $\varphi(X)$ of arbitrarily big size.

Definition

$\mathrm{MSO}+\mathrm{U}=$ Monadic Second Order logic extended by U .

Example

infinitely many $b \wedge U X . X$ is a block of a 's. defines words $a^{n_{1}} b a^{n_{2}} b \ldots$ such that $\left(n_{i}\right)$ is unbounded.

Example

 infinitely many $b \wedge \cup X . X$ is a block of a 's. defines words $a^{n_{1}} b a^{n_{2}} b \ldots$ such that $\left(n_{i}\right)$ is unbounded.
Example

$\exists_{B} B$ is an infinite set of blocks $b a^{n} b \wedge$

$$
\neg \mathrm{U}_{X \subseteq B} X \text { is a block of } a \text { 's. }
$$

defines words $a^{n_{1}} b a^{n_{2}} b \ldots$ such that $\liminf _{i \rightarrow \infty} n_{i}<\infty$.

WMSO + U— Weak Monadic Second Order logic + U

WMSO + U- Weak Monadic Second Order logic + U

- $\mathrm{WMSO}+\mathrm{U}$ is decidable on infinite words [Boj09].

WMSO + U- Weak Monadic Second Order logic + U

- WMSO +U is decidable on infinite words [Boj09].
- WMSO +U is equivalent to deterministic automata with counters (max-automata).

WMSO + U— Weak Monadic Second Order logic + U

- $\mathrm{WMSO}+\mathrm{U}$ is decidable on infinite words [Boj09].
- WMSO +U is equivalent to deterministic automata with counters (max-automata).
- WMSO +U defines only sets in $\mathcal{B C}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ (hence Borel) [Boj09], [CDFM09].

WMSO + U— Weak Monadic Second Order logic + U

- WMSO +U is decidable on infinite words [Boj09].
- WMSO +U is equivalent to deterministic automata with counters (max-automata).
- WMSO +U defines only sets in $\mathcal{B C}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ (hence Borel) [Boj09], [CDFM09].

Problem: $\mathrm{MSO}+\mathrm{U}$

WMSO + U— Weak Monadic Second Order logic + U

- WMSO +U is decidable on infinite words [Boj09].
- WMSO +U is equivalent to deterministic automata with counters (max-automata).
- WMSO + U defines only sets in $\mathcal{B C}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ (hence Borel) [Boj09], [CDFM09].

Problem: MSO + U

- Decidability?

WMSO + U— Weak Monadic Second Order logic + U

- WMSO +U is decidable on infinite words [Boj09].
- WMSO +U is equivalent to deterministic automata with counters (max-automata).
- WMSO +U defines only sets in $\mathcal{B C}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ (hence Borel) [Boj09], [CDFM09].

Problem: MSO + U

- Decidability?
- Automata model?

WMSO + U— Weak Monadic Second Order logic + U

- WMSO +U is decidable on infinite words [Boj09].
- WMSO +U is equivalent to deterministic automata with counters (max-automata).
- WMSO +U defines only sets in $\mathcal{B C}\left(\boldsymbol{\Sigma}_{2}^{0}\right)$ (hence Borel) [Boj09], [CDFM09].

Problem: MSO + U

- Decidability?
- Automata model?
- Topological complexity?

Topology

Cantor space

A^{ω} is the Cantor space.

Topology

Cantor space

A^{ω} is the Cantor space.

Open sets of the form $L \cdot A^{\omega}$ for $L \subseteq A^{*}$.

Topology

Cantor space

A^{ω} is the Cantor space.

Open sets of the form $L \cdot A^{\omega}$ for $L \subseteq A^{*}$.

Borel sets \mathcal{B}

- Closure of the family of open sets by countable unions and countable intersections.

Topology

Cantor space

A^{ω} is the Cantor space.

Open sets of the form $L \cdot A^{\omega}$ for $L \subseteq A^{*}$.

Borel sets \mathcal{B}

- Closure of the family of open sets by countable unions and countable intersections.
- Well behaved (constructive) sets - e.g. they satisfy Continuum Hypothesis and determinacy.

Topology

Cantor space

A^{ω} is the Cantor space.

Open sets of the form $L \cdot A^{\omega}$ for $L \subseteq A^{*}$.

Borel sets \mathcal{B}

- Closure of the family of open sets by countable unions and countable intersections.
- Well behaved (constructive) sets - e.g. they satisfy Continuum Hypothesis and determinacy.
- Many natural sets are Borel: properties like boundedness, liveness, safety, lim sup, lim inf, ...

Examples

- Exists a - open,

Examples

- Exists a - open,
- only b 's - not open, intersection of opens: "first n letters are b ",

Examples

- Exists a - open,
- only b 's - not open, intersection of opens: "first n letters are b ",
- infinitely many b 's - intersection of opens: ,,there are at least n letters b ",

Examples

- Exists a - open,
- only b 's - not open, intersection of opens: "first n letters are b ",
- infinitely many b 's - intersection of opens: ,,there are at least n letters b ",
- $\lim \inf <\infty$ - union of
"there are infinitely many values smaller then n ".

Projection

Take a set $L \subseteq A^{\omega} \times B^{\omega}$. Consider

$$
\pi_{1}(L)=\left\{u \in A^{\omega}: \exists_{v \in B^{\omega}}(u, v) \in L\right\} .
$$

A projection of a Borel set may be non-Borel!

Projection

Take a set $L \subseteq A^{\omega} \times B^{\omega}$. Consider

$$
\pi_{1}(L)=\left\{u \in A^{\omega}: \exists_{v \in B^{\omega}}(u, v) \in L\right\} .
$$

A projection of a Borel set may be non-Borel!

Projective hierarchy

Σ_{1}^{1} - the family of projections of Borel sets,
$\boldsymbol{\Pi}_{1}^{1}$ - complements of $\boldsymbol{\Sigma}_{1}^{1}$,
$\boldsymbol{\Sigma}_{2}^{1}$ - projections of $\boldsymbol{\Pi}_{1}^{1}$,

Estimations

Example: alternating Borel automata

Let \mathcal{A} be an alternating automaton with configuration space C. Let $F \subseteq C^{\omega}$ be a Borel acceptance condition.

Estimations

Example: alternating Borel automata

Let \mathcal{A} be an alternating automaton with configuration space C. Let $F \subseteq C^{\omega}$ be a Borel acceptance condition. Then

$$
L(\mathcal{A})=\left\{u \in A^{\omega}: \exists_{\sigma_{\exists}} \forall_{\sigma_{\forall}} \operatorname{play}\left(u, \sigma_{\exists}, \sigma_{\forall}\right) \in F\right\},
$$

so $L(\mathcal{A})$ is in $\boldsymbol{\Sigma}_{2}^{1}$.

Estimations

Example: alternating Borel automata

Let \mathcal{A} be an alternating automaton with configuration space C. Let $F \subseteq C^{\omega}$ be a Borel acceptance condition. Then

$$
L(\mathcal{A})=\left\{u \in A^{\omega}: \exists_{\sigma_{\exists}} \forall_{\sigma_{\forall}} \operatorname{play}\left(u, \sigma_{\exists}, \sigma_{\forall}\right) \in F\right\},
$$

so $L(\mathcal{A})$ is in $\boldsymbol{\Sigma}_{2}^{1}$.

Note

In particular alternating ω-BS automata are in $\boldsymbol{\Sigma}_{2}^{1}$.

Estimations

Example: alternating Borel automata

Let \mathcal{A} be an alternating automaton with configuration space C. Let $F \subseteq C^{\omega}$ be a Borel acceptance condition. Then

$$
L(\mathcal{A})=\left\{u \in A^{\omega}: \exists_{\sigma_{\exists}} \forall_{\sigma_{\forall}} \operatorname{play}\left(u, \sigma_{\exists}, \sigma_{\forall}\right) \in F\right\},
$$

so $L(\mathcal{A})$ is in $\boldsymbol{\Sigma}_{2}^{1}$.

Note

In particular alternating ω-BS automata are in Σ_{2}^{1}.

Similarly

Take φ an MSO +U formula. Assume that φ contains k quantifiers. Then $L(\varphi) \in \boldsymbol{\Sigma}_{k+1}^{1}$.

Theorem (Hummel, S., Toruńczyk 2010)

There is a $\boldsymbol{\Sigma}_{1}^{1}$-complete set definable in MSO +U .

New theorem

For every i there is a $\boldsymbol{\Sigma}_{i}^{1}$-hard set definable in MSO +U .

Definition

A tree over \mathbb{N} is a prefix-closed subset $t \subseteq \mathbb{N}^{*}$.

Trees

Definition

A tree over \mathbb{N} is a prefix-closed subset $t \subseteq \mathbb{N}^{*}$.

Example

The set of trees that contain an infinite branch

$$
\left\{t \subseteq \mathbb{N}^{*}: \exists_{\eta \in \mathbb{N}^{\omega}} \eta \text { is an infinite branch of } t\right\}
$$

is Σ_{1}^{1}-complete.

Idea of the proof

(1) Take $\boldsymbol{\Sigma}_{i}^{1}$-hard set of multidimensional trees.
(2) Iteratively encode trees into infinite words. Do it in a way convenient for MSO + U.
(3) Write an MSO +U formula expressing this hard property.

Idea of the proof

(1) Take $\boldsymbol{\Sigma}_{i}^{1}$-hard set of multidimensional trees.
(2) Iteratively encode trees into infinite words. Do it in a way convenient for MSO + U.
(3) Write an MSO +U formula expressing this hard property.

Encoding: a basic ingredient

Enumerate all vertices of a given tree encoding $v=\left(v_{1}, v_{2}, \ldots, v_{m}\right) \in \mathbb{N}^{*}$ as

$$
a^{v_{1}} b a^{v_{2}} b \ldots a^{v_{m}}
$$

A witness of a branch (last year's result)

A set of vertices of a tree $G \subseteq \mathbb{N}^{*}$ is:
deep contains arbitrarily deep vertices,
thin on any finite depth there are only finitely many paths to elements of G.

A witness of a branch (last year's result)

A set of vertices of a tree $G \subseteq \mathbb{N}^{*}$ is:
deep contains arbitrarily deep vertices,
thin on any finite depth there are only finitely many paths to elements of G.

Hint

König's lemma

Trees on \mathbb{N}^{i}

A tree on \mathbb{N}^{i} is a prefix closed subset $t \subseteq\left(\mathbb{N}^{i}\right)^{*}$. Let Tr^{i} be the set of all such trees.

Trees on \mathbb{N}^{i}

A tree on \mathbb{N}^{i} is a prefix closed subset $t \subseteq\left(\mathbb{N}^{i}\right)^{*}$. Let Tr^{i} be the set of all such trees.
For a sequence $\eta \in \mathbb{N}^{\omega}$ and a tree $t \in \operatorname{Tr}^{i}$ let $t \upharpoonright_{\eta} \in \operatorname{Tr}^{i-1}$ be:
the subtree of t where i 'th coordinate of vertices correspond to η.

Hard property

Inductive definition $\mathrm{IF}^{i} \subseteq \operatorname{Tr}^{i}$:

- IF^{1} are trees in Tr^{1} with an infinite branch,
- IF^{i+1} are trees $t \in \operatorname{Tr}^{i+1}$ for which there exists a sequence $\eta \in \mathbb{N}^{\omega}$ such that

$$
t \upharpoonright_{\eta} \notin \mathrm{IF}^{i} .
$$

Fact: IF^{i} is $\boldsymbol{\Sigma}_{i}^{1}$-complete.

Hard property

Inductive definition $\mathrm{IF}^{i} \subseteq \operatorname{Tr}^{i}$:

- IF^{1} are trees in Tr^{1} with an infinite branch,
- IF^{i+1} are trees $t \in \mathrm{Tr}^{i+1}$ for which there exists a sequence $\eta \in \mathbb{N}^{\omega}$ such that

$$
t \upharpoonright_{\eta} \notin \mathrm{IF}^{i} .
$$

Fact: IF^{i} is $\boldsymbol{\Sigma}_{i}^{1}$-complete.

Important facts

(1) Languages IF^{i} are monotone - the more vertices the more satisfied the property is.

Hard property

Inductive definition $\mathrm{IF}^{i} \subseteq \operatorname{Tr}^{i}$:

- IF^{1} are trees in Tr^{1} with an infinite branch,
- IF^{i+1} are trees $t \in \operatorname{Tr}^{i+1}$ for which there exists a sequence $\eta \in \mathbb{N}^{\omega}$ such that

$$
t \upharpoonright_{\eta} \notin \mathrm{IF}^{i} .
$$

Fact: IF^{i} is $\boldsymbol{\Sigma}_{i}^{1}$-complete.

Important facts

(1) Languages IF^{i} are monotone - the more vertices the more satisfied the property is.
(2) A witness of a branch contains at least one branch as prefixes - witness encodes more vertices then a branch.

Notice

We cannot express in MSO +U that a given word $u \in A^{\omega}$ encodes a tree $t \in \operatorname{Tr}^{i}$. But we don't need to! It's enough to build formulas φ_{i} such that

$$
\begin{gathered}
t \in \mathrm{IF}^{i} \\
\text { iff } \\
\operatorname{encoding}(t) \models \varphi_{i} .
\end{gathered}
$$

Notice

We cannot express in MSO +U that a given word $u \in A^{\omega}$ encodes a tree $t \in \operatorname{Tr}^{i}$. But we don't need to! It's enough to build formulas φ_{i} such that

$$
\begin{gathered}
t \in \mathrm{IF}^{i} \\
\text { iff } \\
\operatorname{encoding}(t) \models \varphi_{i} .
\end{gathered}
$$

Summary

- $L\left(\varphi_{i}\right)$ is MSO +U definable and $\boldsymbol{\Sigma}_{i}^{1}$-hard.
- MSO +U defines languages as complicated as possible.
- There is no alternating automata model with Borel (or even fixed projective) accepting condition that captures whole $\mathrm{MSO}+\mathrm{U}$.

Thank you for your attention!

Mikołaj Bojańczyk and Thomas Colcombet.
Bounds in ω-regularity.
In LICS, pages 285-296, 2006.
Mikołaj Bojańczyk.
A bounding quantifier.
In CSL, pages 41-55, 2004.
Mikołaj Bojańczyk.
Weak MSO with the unbounding quantifier.
In STACS, pages 159-170, 2009.
Jérémie Cabessa, Jacques Duparc, Alessandro Facchini, and Filip Murlak.
The wadge hierarchy of max-regular languages.
In FSTTCS, pages 121-132, 2009.

