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This talk
Extension of results presented last year by Szczepan Hummel.

Final answer to the open problem about topological
complexity of MSO + U logic.
New negative results — automata for MSO + U if exist must
be complicated.

Outline
1 Introduction, MSO + U.
2 Topology, projective hierarchy.
3 Trees, combinatorics and the main construction.

The setting
Finite alphabet A, infinite words w ∈ Aω.
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Quantifier U
Introduced by Bojańczyk and Colcombet [Boj04], [BC06].

UX. ϕ(X)

iff

there are finite sets X satisfying ϕ(X) of arbitrarily big size.

Definition
MSO + U = Monadic Second Order logic extended by U.
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Example

infinitely many b ∧ UX. X is a block of a’s.

defines words an1ban2b . . . such that (ni) is unbounded.

Example

∃B B is an infinite set of blocks banb ∧

¬UX⊆B X is a block of a’s.

defines words an1ban2b . . . such that lim inf i→∞ ni <∞.
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WMSO + U— Weak Monadic Second Order logic + U

WMSO + U is decidable on infinite words [Boj09].
WMSO + U is equivalent to deterministic automata with
counters (max-automata).
WMSO + U defines only sets in BC(Σ0

2) (hence Borel)
[Boj09], [CDFM09].

Problem: MSO + U
Decidability?
Automata model?
Topological complexity?
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Topology

Cantor space
Aω is the Cantor space.

Open sets of the form L ·Aω for L ⊆ A∗.

Borel sets B
Closure of the family of open sets by countable unions and
countable intersections.
Well behaved (constructive) sets — e.g. they satisfy
Continuum Hypothesis and determinacy.
Many natural sets are Borel: properties like boundedness,
liveness, safety, lim sup, lim inf, . . .
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Examples
Exists a — open,

only b’s — not open, intersection of opens:
„first n letters are b”,

infinitely many b’s — intersection of opens:
„there are at least n letters b”,

lim inf <∞ — union of
„there are infinitely many values smaller then n”.
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Projection
Take a set L ⊆ Aω ×Bω. Consider

π1 (L) = {u ∈ Aω : ∃v∈Bω (u, v) ∈ L} .

A projection of a Borel set may be non-Borel!

Projective hierarchy
Σ1

1 — the family of projections of Borel sets,
Π1

1 — complements of Σ1
1,

Σ1
2 — projections of Π1

1,
. . .

B
Σ1

1

Π1
1

Σ1
2

Π1
2

Σ1
3

Π1
3

Σ1
4

Π1
4

· · ·
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Estimations

Example: alternating Borel automata
Let A be an alternating automaton with configuration space C.
Let F ⊆ Cω be a Borel acceptance condition.

Then

L(A) = {u ∈ Aω : ∃σ∃ ∀σ∀ play(u, σ∃, σ∀) ∈ F} ,

so L(A) is in Σ1
2.

Note
In particular alternating ω-BS automata are in Σ1

2.

Similarly
Take ϕ an MSO + U formula. Assume that ϕ contains k
quantifiers. Then L(ϕ) ∈ Σ1

k+1.
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Theorem (Hummel, S., Toruńczyk 2010)
There is a Σ1

1-complete set definable in MSO + U.
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New theorem
For every i there is a Σ1

i -hard set definable in MSO + U.
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Trees

Definition
A tree over N is a prefix-closed subset t ⊆ N∗.

. . .

. . .

Example
The set of trees that contain an infinite branch

{t ⊆ N∗ : ∃η∈Nω η is an infinite branch of t}

is Σ1
1-complete.
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Idea of the proof
1 Take Σ1

i -hard set of multidimensional trees.
2 Iteratively encode trees into infinite words. Do it in a way

convenient for MSO + U.
3 Write an MSO + U formula expressing this hard property.

Encoding: a basic ingredient
Enumerate all vertices of a given tree encoding
v = (v1, v2, . . . , vm) ∈ N∗ as

av1bav2b . . . avm
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A witness of a branch (last year’s result)
A set of vertices of a tree G ⊆ N∗ is:

deep contains arbitrarily deep vertices,
thin on any finite depth there are only finitely many paths

to elements of G.

Hint
König’s lemma
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Trees on Ni

A tree on Ni is a prefix closed subset t ⊆
(
Ni

)∗. Let Tri be the set
of all such trees.

For a sequence η ∈ Nω and a tree t ∈ Tri let t�η∈ Tri−1 be:

the subtree of t where i’th coordinate of vertices correspond to η.

. . .

. . .

. . .

. . .
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Hard property
Inductive definition IFi ⊆ Tri:

IF1 are trees in Tr1 with an infinite branch,
IFi+1 are trees t ∈ Tri+1 for which there exists a sequence
η ∈ Nω such that

t�η /∈ IFi.

Fact: IFi is Σ1
i -complete.

Important facts
1 Languages IFi are monotone — the more vertices the more

satisfied the property is.
2 A witness of a branch contains at least one branch as prefixes

— witness encodes more vertices then a branch.
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Notice
We cannot express in MSO + U that a given word u ∈ Aω encodes
a tree t ∈ Tri. But we don’t need to! It’s enough to build formulas
ϕi such that

t ∈ IFi

iff

encoding(t) |= ϕi.

Summary
L(ϕi) is MSO + U definable and Σ1

i -hard.
MSO + U defines languages as complicated as possible.
There is no alternating automata model with Borel (or even
fixed projective) accepting condition that captures whole
MSO + U.
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Thank you for your attention!
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