Topological properties of infinite computations

Michał Skrzypczak

University of Warsaw

September 22, 2010

Task

- Define a semantics of programs,
- express some expected properties,
- proof or better automatically verify them.

Solution

For usual (terminating) programs:

- Write programs in declarative languages,
- (and/or) define small steps/big steps/continuation semantics,
- (and/or) use Hoare logic,
- (and/or) . . .
- neither way: treat a program as a partial function in → out.

Sometimes one doesn't want to terminate!

Example

Mail server has three states: receiving, reordering, sending. We want to ensure, that infinitely often server will receive:

$$\forall_{n \in \mathbb{N}} \exists_{k \ge n} S(k) = \text{receiving.}$$

Problems

- We cannot even simulate the whole computation its infinite,
- first order logic over $(\mathbb{N}, +, \cdot)$ is undecidable,
- servers are parallel, so testing may not expose possible errors.

Idea

Model infinite computation as a sequence $\alpha \in \Sigma^{\omega}$, for a given finite set Σ of states of a server. Use Monadic Second Order (MSO) logic over $(\omega, <, \Sigma)$ to express properties of such computations.

Example

For $\Sigma = \{A, B\}$ consider a formula

 $\varphi = \exists_{P \subseteq \omega} \forall_{n \in \omega} \ (n \in P \Leftrightarrow s(n) \notin P) \land 0 \in P \land \exists_{k \in \omega} k \in P \land A(k).$

 $\alpha\in\Sigma^\omega$ has a property $\alpha\models\varphi$ iff there exists even k such that $\alpha_k=A.$

More formally

Definition

MSO is SO logic with additional restriction, that second order quantification may bind only sets of elements. For φ over $<, \Sigma$, let

$$L(\varphi) = \{ \alpha \in \Sigma^{\omega} : \alpha \models \varphi \}.$$

Theorem (Büchy 1960)

MSO logic over $(\omega, <, \Sigma)$ is decidable — there exists an algorithm that reads a formula and outputs whether $L(\varphi) = \emptyset$.

- Define a model of automaton reading infinite word and accepting or rejecting it.
- 2 Show that each formula can be translated into an automaton.
- Onstruct a program as above, operating on the graph of the automaton.

Definition

Deterministic parity automaton is a tuple $\mathcal{A} = \langle q_0, Q, \delta, \Omega \rangle$ where

- q_0 is an element of Q,
- Q is finite set of *states*,
- $\delta \colon Q \times \Sigma \to Q$ is a transition function,
- $\Omega \colon Q \to \mathbb{N}$ maps a state $q \in Q$ into its rank $\Omega(q) \in \mathbb{N}$.

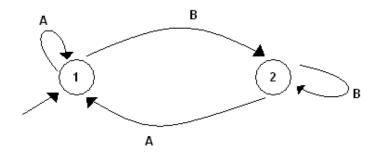
For a given word $\alpha \in \Sigma^{\omega}$, we define a $run \ \tau \in Q^{\omega}$ inductively $\tau_0 = q_0$ and $\tau_{n+1} = \delta(\tau_n, \alpha_n)$. We say that \mathcal{A} accepts a word α iff

$$\liminf_{n \to \infty} \Omega(\tau_n) \equiv 1 \mod 2.$$

By $L(\mathcal{A})$ (language recognised by automaton \mathcal{A}) denote the set of all words $\alpha \in \Sigma^{\omega}$ accepted by \mathcal{A} .

Example

Consider automaton \mathcal{A} : $Q = \{1, 2\}$, $q_0 = 1$, $\Omega(q) = q$ and $\delta(q, A) = 1$ and $\delta(q, B) = 2$. Then \mathcal{A} accepts α iff α contains infinitely many A's.



Definition

WMSO (Weak MSO) is MSO logic with restriction that quantifiers bind only finite sets.

Definition

 ω -regular languages are (equivalently):

- defined by MSO formulas,
- defined by WMSO formulas,
- recognised by deterministic parity automata,
- recognised by nondeterministic Büchi automata.

Fact

The family of ω -regular languages is closed under boolean operations and projections: $\pi \colon \Sigma^{\omega} \times \Gamma^{\omega} \to \Sigma^{\omega}$.

Idea

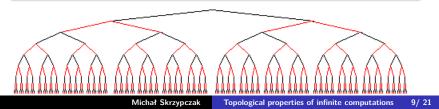
 Σ^{ω} is homeomorphic to Cantor's discontinuum. Why not use methods known from descriptive set theory to investigate the complexity of languages $L(\varphi) \subseteq \Sigma^{\omega}$?

Definition

Consider a topology on Σ^ω generated by sets

$$[s] := \left\{ \alpha \in \Sigma^{\omega} : \alpha|_{|s|} = s \right\},\$$

for $s \in \Sigma^*$.



Borel hierarchy

Definition

Inductive definition for $\eta < \omega_1$.

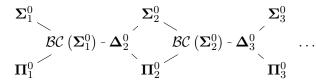
•
$$\mathbf{\Sigma}_1^0$$
 — open sets,

• Π^0_1 — closed sets,

•
$$\Sigma^0_\eta$$
 — countable unions of sets from $igcup_{ au<\eta} \Pi^0_ au$,

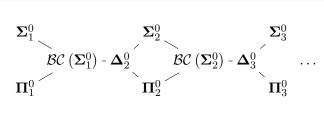
•
$$\mathbf{\Pi}_{\eta}^{0}$$
 — completions of sets from $\mathbf{\Sigma}_{\eta}^{0}$

•
$$\mathbf{\Delta}_{\eta}^{0} = \mathbf{\Sigma}_{\eta}^{0} \cap \mathbf{\Pi}_{\eta}^{0}$$
.



Fact

Borel hierarchy is strict — each inclusion on the following schema is not an equality.

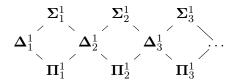


Projective hierarchy

Definition

Set $A \subseteq \Sigma^{\omega}$ is called analytic (den. Σ_1^1) iff it is a projection of some Borel set.

- $\mathbf{\Pi}_n^1$ are completions of sets from $\mathbf{\Sigma}_n^1$,
- $\mathbf{\Sigma}_{n+1}^1$ are projections of sets from $\mathbf{\Pi}_n^1$,
- $\boldsymbol{\Delta}_n^1 = \boldsymbol{\Sigma}_n^1 \cap \boldsymbol{\Pi}_n^1.$



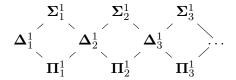
Fact

The projective hierarchy is strict.

Theorem (Souslin)

Borel sets are exactly Δ_1^1 sets.

$$\mathcal{B} = oldsymbol{\Delta}_1^1 = oldsymbol{\Sigma}_1^1 \cap oldsymbol{\Pi}_1^1$$



Definition

A continuous reduction of $A\subseteq X$ to $B\subseteq Y$ is a continuous function $f\colon X\to Y$ such that

$$f^{-1}(B) = A.$$

Fact

If A reduce to B, then topological complexity of A is at most equal to these of B.

Definition

A set $B \subseteq X$ is called complete for topological complexity class C iff $B \in C$ and for each $A \in C$, A continuously reduce to B.

Fact

For each $\eta < \omega_1$ and $n < \omega$, there exist complete sets for $\Sigma_{\eta}^0, \Pi_{\eta}^0, \Sigma_n^1, \Pi_n^1$.

Example

Set
$$\{\alpha \in \{0,1\}^{\omega} : \exists_{i \in \mathbb{N}} \alpha_i = 1\}$$
 is Σ_1^0 -complete.

$$\left\{\alpha \in 2^{\mathbb{N}^i} : \exists_{m_i} \forall_{m_{i-1}} \exists_{m_{i-2}} \dots \forall_{m_1} \alpha(m_i, m_{i-1}, \dots, m_1) = 1\right\}$$

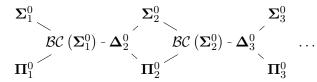
is $\mathbf{\Sigma}_i^0$ -complete.

Fact

If C-complete set reduce to $B \subseteq X$ then topological complexity of B is at least C.

Fact

For each MSO formula φ , there holds $L(\varphi) \in \mathcal{BC}(\Sigma_2^0)$. Language "exists infinitely many 1's" is Σ_2^0 -complete and ω -regular.



Fact

Language $\{a^{n_0}ba^{n_1}b\ldots:\lim_{i\to\infty} n_i=\infty\}$ is Π^0_3 -complete, so not ω -regular.

Remark

There are countably many ω -regular sets. So there exist open sets that are not ω -regular.

Remark

Consider a set $P \subseteq \Sigma^{\omega}$ that is Σ^{1}_{1024} -complete. Consider boolean calculus over one atom " Φ ": set of formulas like $\Phi \land (\neg \Phi \lor \bot)$. Let

$$\alpha \models \Phi \Leftrightarrow \alpha \in P$$

The emptiness problem for this calculus is decidable (trivially).

Extensions of the MSO logic

Idea

Extend a concept of ω -regular language, to express asymptotic properties like "blocks of a^n are bounded in length".

Definition

Formula $UX.\varphi(X)$ holds iff

$$\forall_{n\in\mathbb{N}}\exists_{X\subset\omega}\ n\leq |X|<\infty\wedge\varphi(X).$$

- MSO + U = MSO with U,
- WMSO + U = WMSO with U.

WMSO + U, results by Mikołaj Bojańczyk

Fact

WMSO + U is strictly stronger than MSO.

Theorem

WMSO + U is decidable.

Construct adequate automata model — $\max\-$ automata. Show that emptiness problem for that automata is decidable.

Fact

Languages definable in WMSO + U lie in $\mathcal{BC}(\Sigma_2^0)$.

MSO + U

Question

Is MSO + U decidable?

Is there any appropriate automata model for $\mathrm{MSO}+\mathrm{U?}$

Theorem

There exists non Borel set definable in MSO + U.

Corollary

There is no nondeterministic Borel automata model catching full MSO + U.

Thank you for your attention!

- W.Thomas, *Languages Automata and Logics*, Technical Report 9607.
- W.Thomas, H.Lescow, *Logical Specifications of Infinite Computations*, REX School/Symposium 1993.
- M.Bojańczyk, *Weak* MSO with the Unbounding Quantifier, STACS 2009.
- S.Hummel, M.S., S.Toruńczyk, *On the Topological Complexity* of MSO + U and *Related Automata Models*, MFCS 2010.