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Abstract. We show that Monadic Second Order Logic on ω-words ex-
tended with the unbounding quanti�er (MSO+U) can de�ne non-Borel
sets. We conclude that there is no model of nondeterministic automata
with a Borel acceptance condition which captures all of MSO+U. We
also give an exact topological complexity of the classes of languages rec-
ognized by nondeterministic ωB-, ωS- and ωBS-automata studied by
Boja«czyk and Colcombet in [BC06]. Furthermore, we show that corre-
sponding alternating automata have higher topological complexity than
nondeterministic ones � they inhabit all �nite levels of the Borel hier-
archy.

Introduction

Motivation and background. The notion of an ω-regular language is
well established in the theory of automata. This class of languages carries
over to ω-words many of the good properties of regular languages of �nite
words. It can be described using automata, namely by nondeterministic
Büchi automata, or the equivalent deterministic Muller automata, and
also alternating automata. In terms of logic, they are equivalent to both
Monadic Second Order Logic (MSO) and Weak Monadic Second Order
Logic (Weak MSO) � the fragment of MSO where quanti�ers may only
bind �nite sets. Such connections between logic and automata are ex-
tremely important in the �eld of veri�cation and speci�cation.
Recently, in [Boj10,Boj09,BT09] it has been suggested that there are
other robust classes of languages of ω-words, extending the canonical
notion. It has been advocated that natural examples of languages that
might be seen as regular (for instance, because of a �nite Myhill-Nerode
index) are languages such as

LB = {an1ban2b . . . | lim supni <∞},
LS = {an1ban2b . . . | lim inf ni =∞}.

which are not ω-regular in the usual sense.
These papers describe several such classes of languages, but none of them
is known to have all the robust properties of ω-regular languages. On
one hand, automata models often allow deciding emptiness, on the other
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hand, a class described in terms of logic usually has good closure prop-
erties. Ideally, one would like to have a class of languages which can be
described both in terms of automata and in terms of logic, as in the case
of ω-regular languages.
The connection between automata and logic is better understood when
restricted to deterministic automata and weak logics. Deterministic max-
automata, introduced in [Boj09], have an alternative description in terms
of logic, namely Weak MSO extended with the unbounding quanti�er U,
which is de�ned so that the formula UX.ϕ(X) is equivalent to writing:

�ϕ(X) is satis�ed by arbitrarily large �nite sets X of positions�

Thus U is suited to capture (the complement of) LB .
As shown in [BT09], the correspondence between deterministic automata
and weak logics extends to various other classes of languages, for instance
deterministic min-max-automata are equivalent to a logic called Weak
MSO+U+R, and embrace both LB and LS .
Problems arise when we look for classes closed under set-theoretic pro-
jection, which corresponds to full existential quanti�cation in logic or to
nondeterminism on the automata side. In [BC06], ωBS-automata were
de�ned as automata equipped with counters which can be incremented
or reset, but not read. The acceptance condition may require a counter
to be bounded (the B-condition) or convergent to ∞ (the S-condition).
Although nondeterministic ωBS-automata are not closed under comple-
mentation, there is a partial �x to this problem. The main technical result
of [BC06] shows that the complement of a language de�ned by an ωB-
automaton is accepted by an ωS-automaton and vice versa, where the
two are subclasses of ωBS-automata using only the B-condition or the S-
condition, respectively. However, boolean combinations of ωB-automata
are not closed under existential quanti�cation1. In consequence, it seems
unlikely to �nd any sensible logic corresponding to either ωBS-automata
or boolean combinations of ωB-automata. To try to overcome these is-
sues, one might consider alternating ωBS-automata. So far, it was not
known whether in the ωBS-setting there is any advantage of alternation
over nondeterminism.
From the logic side, in order to capture nondeterminism, it seems natu-
ral to consider the logic MSO+U, which extends the class of languages
recognized by ωBS-automata. However, we face the essential question,
whether this logic is decidable. In this paper we analyze large classes of
automata to seek for a model capable of capturing MSO+U.

Topological complexity. Our approach is to investigate from the topo-
logical viewpoint the classes of languages mentioned above and also ex-
plore other large classes of automata. Such an analysis can guide in con-
structing a suitable model of automata for MSO+U, or show that such
a model cannot exist. For instance, we prove that a large class of models
of nondeterministic automata cannot capture MSO+U. We also discover

1 The complement of the language G de�ned in Section 3.2 can be obtained by using
boolean combinations and projections of ωB-automata, but is not even recognized
by ωBS-automata, as shown in [BC06, Corollary 2.8].



that alternating ωBS-automata are strictly more expressive than boolean
combinations of nondeterministic ωBS-automata.
Let us illustrate these techniques here with some elementary examples.
The language LS corresponds to a property of a sequence of numbers
n1, n2, . . . � namely, being convergent to ∞ � which is equivalent to:∧

k

∨
m

∧
i≥m

(ni > k).

Being able to de�ne LS with a formula with three alternations of logical
conectives directly translates into its topological complexity � we say
that LS is (at most) in the third level of the Borel hierarchy. Similarly,
it is easy to see that LB is in the second level of the Borel hierarchy.
A run of a deterministic automaton is a continuous function which maps
an input word into a sequence of states. The recognized language is the
inverse image of the set of accepting runs under this mapping. A basic
property of continuous mappings proves that the language is topologi-
cally not more complex than this set of accepting runs.
This immediately yields several results: ω-regular languages occupy at
most the �rst two levels of the Borel hierarchy, since such is the com-
plexity of the Muller acceptance condition; max-automata (equivalently,
Weak MSO+U) also fall into the �rst two levels of the Borel hierarchy,
since their acceptance condition is LB .
As a sample impossibility result (stated in [Boj09]), observe that deter-
ministic max-automata do not recognize the language LS since it is in
the third level of the Borel hierarchy and provably not lower.
In Section 2 we exhibit an example of a languageM de�nable in MSO+U
which is analytic-complete, i.e. lays beyond the in�nite Borel hierarchy.
This instantly proves that there can be no deterministic model of au-
tomata with a Borel acceptance condition which captures all of MSO+U.
The above method does not give upper bounds for the complexity of
languages de�ned by nondeterministic automata. Such bounds require
some nontrivial combinatorial results, usually determinization (as for ω-
regular languages). We, in turn, use two di�cult results to give upper
bounds concerning nondeterministic automata.
In Section 2, Corollary 1, we use a strong topological result of Souslin
to conclude that no model of nondeterministic automata with a Borel
acceptance condition can capture all of MSO+U.
In Section 3, we use the combinatorial complementation result of [BC06]
which allows us to compute the precise topological complexity of lan-
guages de�ned by nondeterministic ωB-, ωS- and ωBS-automata. In par-
ticular, ωBS-automata, which form the largest among all the subclasses
of MSO+U that we know to have decidable emptiness, reach only the
fourth level of the Borel hierarchy.
However, there is still some hope in alternating automata. In Section 4
we de�ne the alternating variant of ωBS-automata and we prove that
they inhabit at least all �nite levels of the Borel hierarchy. This implies
that alternating ωBS-automata are strictly more powerful than (boolean
combinations of) nondeterministic ωBS-automata. However, we do not
know whether they can recognize analytic languages, such as M . This
leaves open the question whether this model captures MSO+U.
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1 Basic Notions

Logic. We assume familiarity with the Monadic Second Order Logic
(MSO). Fix an alphabet A. We denote positions of ω-words using symbols
x, y, . . . and sets of positions with symbols X,Y, . . .. For a ∈ A, the unary
predicate Pa holds in all positions of the word where an a stands. It is
well known that languages that can be described by this logic are exactly
ω-regular languages.
MSO+U allows building formulas using MSO constructs and an addi-
tional quanti�er U, called the unbounding quanti�er, de�ned as follows.
The formula UX.ϕ(X) holds in a word w if ϕ(X) is satis�ed for arbitrar-
ily large �nite sets X of positions. Formally, UX.ϕ(X) is equivalent to:∧

n∈N

∃X. (ϕ(X) ∧ n < |X| <∞)

The canonical examples of languages that can be described are the lan-
guages LB and LS de�ned in the introduction.

Topology. For a �xed alphabet A, we treat Aω as a topological space.
A basic open set is determined by a pre�x s ∈ A∗ and is of the form
s ·Aω. Other open sets are obtained by taking unions of basic open sets.
If A is �nite, this topological space is homeomorphic (i.e. topologically
isomorphic) to the Cantor space.

The Borel hierarchy. The Borel hierarchy is de�ned inductively. We
assist the de�nition with the following diagram2.

Σ0
1 II Σ0

2 II Σ0
3 II Σ0
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BC2 II

uu
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uu
. . .

Π0
1

uu
Π0

2

uu
Π0

3

uu
Π0

4

xx

Σ0
1 denotes the class of open sets and Π0

1 denotes the class of closed sets,
i.e. complements of open sets. Having de�ned Σ0

n and Π0
n, we de�ne BCn

as (�nite) boolean combinations of Σ0
n sets and Π0

n sets. In the next step,
we de�ne Σ0

n+1 as unions of countable families of BCn sets and Π0
n+1 as

intersections of countable families of BCn sets. Note that for each n, Π0
n

consists of complements of Σ0
n sets, and vice versa.

This way we de�ne all �nite levels of the Borel hierarchy, which is all
we will need in this paper. Note that for each n, both Σ0

n and Π0
n are

strictly contained in both Σ0
n+1 and Π0

n+1. In fact, in order to obtain a
class which is closed under both complements and countable unions, one
should continue the construction using trans�nite induction up to level
ω1, where we arrive at the class of Borel sets. For these and other facts
concerning the Borel hierarchy see e.g. [Sri98, Chapter 3.6].

2 This diagram is more commonly presented with the larger class ∆0
n+1 = Σ0

n+1∩Π0
n+1

in place of BCn. However, we will not use the classes ∆0
n.



Analytic sets. The direct image of a Borel set under a continuous map-
ping may no longer be a Borel set. We call such sets analytic, and the
class of all analytic sets is denoted Σ1

1. Complements of analytic sets
are called coanalytic and form the class Π1

1. An important result in the
theory, the theorem of Souslin (see e.g. [Kec95, Chapter 14.C]) states
that if both a set and its complement are analytic then they are in fact
Borel. It is worth mentioning that the Borel hierarchy and analytic sets
are part of a bigger hierarchy of classes, called the projective hierarchy.

Topological complexity. A topological complexity class C, for the needs
of this paper is any of the classes Σ0

n, Π0
n where n is a �nite number

(although the full Borel hierarchy has levels above ω), and the classes
Σ1

1 and Π1
1. Analogously to complexity theory, we have the notions of

reductions and completeness. Let A,B be two alphabets and let K ⊆
Aω and L ⊆ Bω. We say that a continuous mapping f : Aω → Bω is a
reduction of K to L if K = f−1(L). It is a simple property of continuous
mappings that if L belongs to a topological complexity class C then so
does K. The language L is called C-hard i� any set K ∈ C can be
reduced to L. We say that L is C-complete if additionally L ∈ C.

2 Non-Borel sets in MSO+U

In this section we show that the set B of trees on N (i.e. pre�x closed
subsets of N∗) with an in�nite branch is MSO+U-de�nable modulo some
encoding. The set B is well known to be Σ1

1-complete (see [Kec95, The-
orem 27.1]).
To simplify notation, we consider B as a subset of T � the set of in�nite
trees. Since B ⊆ T and T ⊆ 2N

∗
is in Π0

2, this restriction doesn't a�ect
the topological complexity of B.
Let ≺ be some �xed order of type ω on N∗. We continuously embed T into
Aω, where A = {a, b, c}. For a given vertex v = (n1, n2, . . . , nm) ∈ N∗,
let K(v) = an1ban2b . . . banm ∈ A∗. For a given tree T ∈ T , let K(T ) =
K(v1)cK(v2)c . . . ∈ Aω, where vi is the i'th vertex of T in the order ≺.
It is easy to see that K : T → Aω de�ned above is a homeomorphism
onto its image.

Proposition 1. There exists an MSO+U formula ϕ such that

T ∈ B ⇔ K(T ) |= ϕ.

Proof. Below, pre(G) denotes the set of pre�xes of elements of G.

Lemma 1. Let T ∈ T be a tree. The following conditions are equivalent:
1. T has an in�nite branch,
2. T has an in�nite set of vertices G such that for any subset S of

pre(G), if S has bounded height then S is �nite.

The proof of the lemma is an easy application of König's Lemma.
To prove Proposition 1 it su�ces to show that the second condition can
be veri�ed by a formula of MSO+U on K(T ). The construction of such
a formula is described below.
For �xed w ∈ Aω, S ⊆ ω, let ψ(S) express the following properties:



� for each block of the form c(a∗b)∗a∗c in w, S contains some initial
segment of its positions,

� there is a bound r such that within every block the number of b's
contained in S is bounded by r. Let rS denote the minimal bound.

Let γ(S) express that all blocks of letters a inside S are jointly bounded
in length.
Let ϕ be an MSO+U formula expressing that there exists an in�nite set
G ⊆ ω containing only whole blocks of the form c(a∗b)∗a∗c, such that

∀S ⊆ G. ψ(S)⇒ γ(S) (1)

ut

Let us denoteM = L(ϕ) = {w ∈ Aω : w |= ϕ} . Therefore we have shown
that K is a continuous reduction of B to M .

Proposition 2. M ⊆ Aω is a Σ1
1-set.

Proof. Let Z be a set of pairs (w,G) ⊆ Aω × 2ω with G being a witness
for ϕ and (w,G) satisfying the formula (1).
Note that for each rS ∈ N and G ⊆ ω, there is a maximal set S ⊆ G,
satisfying ψ(S) with given rS bound. Such S depends continuously on
(w,G). If we take S ⊆ S′ ⊆ G, then γ(S′) ⇒ γ(S). Therefore, to check
the validity of (1) it is enough to consider only countably many maximal
S's (one per each rS ∈ N). The formula γ(S) de�nes a Borel set. So Z is
a countable intersection of Borel sets. Since M = π1(Z), M is Σ1

1. ut

Therefore, we have proved:

Theorem 1. M ⊆ Aω is a Σ1
1-complete set (in particular, non-Borel)

and is de�nable in MSO+U.

Corollary 1. There is no model of nondeterministic automata with a
Borel acceptance condition, capturing all of MSO+U.

Proof. Assume that for each MSO+U formula ψ, there exists a nonde-
terministic automaton A with a Borel acceptance condition F ⊆ Qω,
such that L(A) = L(ψ). In this proof the set Q can be even in�nite (but
countable), taking into account values of counters or any other additional
state information. Then, L(ψ) is a Σ1

1-set � it is the projection of the
Borel set of pairs (w, ρ) such that ρ is a run of A on w.
Therefore, both L(ϕ) = M and L(¬ϕ) = Aω \M are Σ1

1-sets. By the
theorem of Souslin, M must be Borel, which is a contradiction. ut

3 ωBS-automata

We will now de�ne ωBS-automata as described in [BC06,Boj10]. They
de�ne a strict subclass of MSO+U, but it is the greatest subclass of
MSO+U of which we know to have decidable emptiness.
An ωBS-automaton A, as other nondeterministic �nite automata, has
a �nite input alphabet A, a �nite set Q of states and an initial state



qI . Apart from that it is equipped with a �nite set Γ of counters. The
counters can only be updated and cannot be read during the run. They
will be used by the acceptance condition. A transition of the automaton
is a transformation of states, as in standard NFA's, and additionally a
�nite sequence of counter updates. A counter update can be either an
increment or a reset of a counter c ∈ Γ .
The value of a counter c is initially set to 0 and is incremented or reset
according to the transitions in a run. For c ∈ Γ we de�ne a sequence
valρ(c), where valρ(c)i is the value of counter c right before its i-th reset
in the run ρ. Note that if a counter c is reset only �nitely many times
then the sequence valρ(c) is �nite.

The acceptance condition of ωBS-automaton is a boolean combination
of constraints that can be of one of the forms:

lim sup
i

valρ(c)i <∞ lim inf
i

valρ(c)i =∞

The �rst constraint is called the B-condition (bounded), the second �
the S-condition (strongly unbounded). In order that lim inf and lim sup
make sense, the constraints implicitly require the corresponding sequences
to be in�nite.

It is a simple observation that the negation of a B-condition can be sim-
ulated using an S-condition and nondeterminism, and vice versa. Thanks
to this fact we can consider automata with acceptance conditions that
are positive boolean combinations of S- and B-conditions, without loss
of expressive power.

We will use the notation B(c) for the B-condition and S(c) for the S-
condition imposed on a counter c.

If the acceptance condition of an automaton is a positive boolean com-
bination of B-conditions, the automaton is called an ωB-automaton. We
similarly de�ne ωS-automata.

Languages recognized by ωBS-automata (ωB-automata, ωS-automata)
are called ωBS-regular (resp. ωB-regular, ωS-regular). An important re-
sult of [BC06] is that the complement of an ωB-regular language is an
ωS-regular language and vice versa. Both classes are extensions of the
class of ω-regular languages since the Büchi condition can be simulated
by either a B-condition or an S-condition.

Example 1. The language LS de�ned in the introduction can be recog-
nized by an ωS-automaton. The automaton has one state and uses one
counter that is increased when reading a letter a and is reset after each b.
The acceptance condition is simply an S-condition on the only counter.

3.1 Complexity of ωB- and ωS-regular languages

Theorem 2. Each ωB-regular language is in Σ0
3.

Proof. Let us �x an ωB-regular language L, or rather �x an ωB-automaton
A recognizing it.



First we assume that the accepting condition is a conjunction of B-
conditions, i.e. is of the form: ∧

c∈ΓB

B(c)

Each of the considered counters is bounded i� there is a common bound
k for all of them. Therefore L can be de�ned as:

L =
{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is bounded but in�nite
}

=
⋃
k

{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is bounded by k and in�nite
}︸ ︷︷ ︸

Lk

,

where the quanti�cation is over the set of all runs of A on w.
It is easy to see that for a �xed k, Lk can be recognized by a nonde-
terministic Büchi automaton. We simply store the counter values in the
state and do not allow them to be incremented above k. The acceptance
condition requires each of the counters c ∈ ΓB to be reset in�nitely often.
Hence Lk is ω-regular. Recall that all ω-regular languages are in BC2.
Therefore, L ∈ Σ0

3 as a countable union of BC2 sets.
In the general form, the acceptance condition of an ωB-automaton is
a positive boolean combination of B-conditions. We can write such a
condition in disjunctive normal form (DNF). The language accepted by
this automaton is a union of languages corresponding to each disjunct.
Hence it is in Σ0

3. ut

Thanks to the complementation result of [BC06], we have:

Corollary 2. Each ωS-regular language is in Π0
3.

The complexity bounds given by Theorem 2 and Corollary 2 are tight.

Theorem 3. There is a Σ0
3-complete set that is ωB-regular and a Π0

3-
complete set that is ωS-regular.

Proof. Because ωB-regular languages are complements of ωS-regular lan-
guages, it su�ces to show only one of the claims.
We recall that the language LS is in Π0

3 and ωS-regular. Π
0
3-completeness

of LS follows from [Kec95, Exercise 23.2] via an obvious reduction. ut

3.2 Complexity of ωBS-regular languages

Now we switch to languages recognized by automata that can use both
S- and B-conditions. We prove the following.

Theorem 4. Each ωBS-regular language is in Σ0
4.

Proof. The proof, on the one hand, will use the result of Theorem 2 and,
on the other hand, will repeat a similar reasoning.
Let us �x an ωBS-regular language L and an automaton A recognizing
it. First consider an acceptance condition of the form:∧

c∈ΓB

B(c) ∧
∧
c∈ΓS

S(c)



The language L can then be de�ned by:

L =
⋃
k

{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is bounded by k and in�nite∧
c∈ΓS

valρ(c) converges to ∞

}
︸ ︷︷ ︸

Lk

Note that each Lk language is ωS-regular, hence (by Theorem 2), it is
in Π0

3. So L, as a countable union of such languages, is in Σ0
4.

A general acceptance condition can be written in disjunctive normal form
(DNF). Again, the language accepted by such an automaton is a union
of languages corresponding to each disjunct, so it is in Σ0

4. ut

Now we show that the bound is tight. For that we consider the language,
that was used in [BC06, Corollary 2.8] to show that the class of ωBS-
regular languages is not closed under complements. Let

G =

an1ban2b . . . :
the sequence n1, n2, . . . can be partitioned into
a (possibly empty) bounded subsequence and
a (possibly empty) subsequence tending to ∞


The following fact is presented as an example in [TL93, page 595].

Lemma 2. The language G is Σ0
4-complete.

Now it su�ces to note that the language G is ωBS-regular. It is proven
in [BC06] (by showing an appropriate ωBS-regular expression), but it is
straightforward to construct an automaton recognizing it.

4 Alternating ωBS-automata

On the way towards �nding a model of automata for the logic MSO+U
we consider alternating ωBS-automata.

Alternating ωBS-automata are de�ned similarly as nondeterministic ωBS-
automata. The di�erence is that the state space Q is split into Q∀ (uni-
versal states) and Q∃ (existential states).

We use standard game semantics for such automata. For a given alter-
nating automaton A and word w ∈ Aω we de�ne a two-player game.
A play in this game starts in the initial state of the automaton and in
the �rst position of the word and proceeds by applying transitions of
the automaton on the word w consistent with current state and a let-
ter in current position in the word. Player ∀ chooses transitions when
the automaton is in a state from Q∀, Player ∃ � from Q∃. Finally the
play produces an in�nite sequence of transitions consistent with consec-
utive letters of the word. The word w is accepted by the automaton i�
Player ∃ has a winning strategy in the game with the winning condition
of exactly the same form as an acceptance condition of nondeterministic
ωBS-automata, i.e. a boolean combination of B- and S-conditions.



4.1 Languages complete for the classes Π0
2n

We will now present examples of languages of in�nite words complete
for the Borel classes Π0

2n, which are recognized by alternating ωBS-
automata.
To make proofs easier, we will work with the spaces of sequences of
vectors of numbers Nn = (Nn)ω. An easy embedding will transfer the
results into the space of in�nite words. For n = 0, the above de�nition
gives a space of sequences of empty tuples, i.e. N0 = {ω}.
Let us �x an alphabet A = {a, b, c}. We use encoding of a sequence of
vectors into the space Aω, where each vector (zn, zn−1, . . . , z1) is mapped
to the word aznbazn−1b . . . az1c. We will call the embedding de�ned this
way Wn : Nn → Aω.
We will use a few additional notations to easily operate on sequences of
vectors.
� For η ∈ Nn and m ∈ N, let η�m be a subsequence of η consisting of

those vectors that have value m at the �rst coordinate.
� Let πn : Nn → Nn−1 be the projection which cuts o� the �rst coor-

dinate from each vector in a given sequence.

Languages. Now we are ready to de�ne the desired languages.

De�nition 1. Let Ln ⊆ Nn for n > 0 be the set of all η ∈ Nn such that

∃∞mn
∃∞mn−1

. . .∃∞m1
∃∞x∈ωη(x) = (mn,mn−1, . . . ,m1) ,

where ∃∞ stands for �exists in�nitely many�. Additionally, let L0 =
{ω} = N0.

The following lemma describes the languages Ln in an inductive fashion.

Lemma 3. For n > 0, η ∈ Ln i� there exist in�nitely many m ∈ N such
that η�m is an in�nite sequence and πn (η�m) ∈ Ln−1.

Topological complexity of the languages Wn(Ln) is presented as an ex-
ample in [TL93, pages 595�596], here we only recall it.

Theorem 5. For every n>0, the language Wn(Ln) is Π0
2n+2-complete.

Logic. Now we present MSO+U formulas describing the languages Ln.
We do not formally prove that the formulas de�ne exactly the desired
sets, but they will serve as a guideline for us in the construction of
alternating automata recognizing the languages.
First de�ne a formula over Nn, expressing boundedness of the �rst co-
ordinates of vectors marked by X:

Bndn(X) ≡ ∃k∈N∀x∈X η(x)1 ≤ k.

Now we build the formula for the language Ln inductively:

ϕn ≡ ∀X.Bndn(X) =⇒ ∃Y.Bndn(Y ) ∧ (X ∩ Y=∅) ∧ (ϕn−1|Y ) , (2)

where ϕn−1|Y is ϕn−1 with all quanti�ers restricted to Y and operating
on Nn by ignoring the �rst coordinates of vectors, and ϕ0 simply states
that a sequence is in�nite.
The formula (2) deals with sequences of vectors, but it is easy to rewrite
it in such a way that it works on ω-words over A and de�nesWn(Ln). It is
possible because properties like �being a maximal block of consecutive a's
that correspond to the k-th coordinate of one of the vectors in a sequence�
are expressible in MSO. Expressing Bndn in this context requires U.



4.2 Automata Construction

Theorem 6. For each n ∈ N there is an alternating ωBS-automaton
recognizing a Π0

2n+2-hard language.

Proof. For a �xed n, it is possible to construct an ωBS-automaton rec-
ognizing exactly the languageWn(Ln). However, to avoid some technical
inconveniences, we construct an automaton An for which we only require
that it accepts a word Wn(η) i� η ∈ Ln.
The automaton will mimic the formula ϕn. The problem that we face
is that alternation in automata and quanti�er alternation in logic have
di�erent semantics. In logic, using the second order quanti�er refers to
choosing a set all at once, while in automata, players make decisions step
by step (position by position). We will be able to overcome this problem
using properties of the B-condition.

Automaton. The automaton An will be de�ned in the following way.
While reading the code of a sequence of vectors, before reading each
vector Player ∀ decides if he selects the �rst component of the vector.
If ∀ has not chosen the component, ∃ can choose it. If the component
was chosen by ∀, counter an counts its length and then resets. If the
component was chosen by ∃, counter en counts its length and then resets.
If the �rst component was chosen by ∃ then the procedure is repeated for
the second component and for the counters an−1 and en−1. We continue
with the next components until Player ∃ does not select a component or
all components of the vector are selected by ∃.
The whole process is repeated for all the vectors in a word.
Player ∀ can additionally reset any of ai counters at any time (except
the moment when it is actually incremented). This is to allow Player ∀
to select a �nite (even empty) set.
The acceptance condition (winning condition for ∃ in the game) re-
quires that among the counters an, en, an−1, en−1, . . . , a1, e1, the left-
most which is unbounded (or reset �nitely many times) is an a-counter,
or all counters are reset in�nitely many times and are bounded.

Soundness. For a given word w =Wn(η) such that η ∈ Ln, we have to
prove that the existential player has a winning strategy in An on w. We
proceed by induction. As stated above, η ∈ Ln if and only if there exist
in�nitely many m ∈ N such that

η�m is in�nite and πn (η�m) ∈ Ln−1 (3)

Player ∃ uses the following strategy. Let k be the greatest value of the
�rst component among vectors selected by ∀ so far. Let mk be the least
m greater than k, for which condition (3) holds. Player ∃ selects a vector
if its �rst component is equal to mk.
Note that we may assume that k is increased only �nitely many times
during the run (otherwise Player ∀ loses). Hence, there exists a value
mk0 that occurs at the �rst component of almost all vectors selected by
Player ∃. By the assumption, πn(η�mk0

) ∈ Ln−1. Since the set Ln is
pre�x-independent (i.e. η ∈ Ln i� νη ∈ Ln for all ν ∈ (Nn)∗), also η
restricted to the vectors selected by ∃, with the �rst component erased,



belongs to Ln−1. It follows by inductive assumption that ∃ has a strategy
on further components of vectors of this restricted sequence.
Induction basis: The automaton recognizing the set L0 simply accepts
all in�nite sequences.

Correctness. Now let us take w = Wn(η) such that η /∈ Ln. We prove
that the universal player has a winning strategy in An on w. We, again,
proceed by induction. Note that if η /∈ Ln there exists m0 such that for
all m ≥ m0

η�m is �nite or πn (η�m) /∈ Ln−1 (4)

Player ∀ marks all the vectors whose �rst coordinate is less than m0. If
there are only �nitely many such vectors, ∀ uses additional resets. During
the game, Player ∀ remembers the largest �rst coordinate M of a vector
selected by Player ∃.
For every i ∈ {m0, . . . ,M} we have η�i is �nite or πn (η�i) /∈ Ln−1, so

ηM := η�{m0,m0+1,...,M} is �nite or ηM := πn (ηM ) /∈ Ln−1.

If ηM is �nite ∃ will lose the game (if he doesn't increase M). Otherwise,
at every moment, Player ∀ assumes that M will not increase and uses
the winning strategy from the inductive assumption for ηM at the next
coordinates.
The value M can increase only �nitely many times during the game
(otherwise ∃ loses). Using pre�x independence, we obtain that Player ∀
wins the game.
The inductive basis is trivial here, since there is no η ∈ N0 \ L0. ut

5 Conclusion

Our results seem to indicate that deciding MSO+U (if possible at all)
might require considering the emptiness problem of some rather compli-
cated model of automata, such as alternating ωBS-automata.
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