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1 Lecture 1: the basics

1.1 Graphs, eigenvalues and expansion

We assume that all graphs are unoriented simple graphs, i.e. have no self-loops or multiple
edges (although it is easy to extend all the definitions to cover the more general situation).
The size of a graph G, denoted |G|, is the number of vertices in G. We will be working
mainly with d-regular graphs, in which each vertex has the same degree d. Usually d will be
a fixed constant while the number of vertices in the graph goes to infinity.
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Let G = (V,E) be an unoriented simple graph. The adjacency matrix of G, denoted by
AG or simply A, has entries defined by: Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise, where
i, j ∈ V .

Another closely related matrix is the Laplacian of G, denoted as ∆G or ∆, defined as:

∆ = I −D−1A

where D is the degree matrix, i.e. diagonal matrix with dii = deg(i). In the case of d-regular
graphs, this reduces to:

∆ = I − 1

d
A

For irregular graphs the Laplacian is often more convenient to work with than the adjacency
matrix.

We will think of vectors on which A acts as functions on the vertex set f : V → R. The
space of such functions has dimension |G| and is endowed with a natural inner product:

〈f, g〉 =
∑
v∈V

f(v)g(v)

and the corresponding norm:

‖f‖2 =
∑
v∈V

|f(v)|2

We will denote this space by `2(G). For a subset of vertices S ⊆ V , its characteristic function
will be denoted by 1S.

The adjacency matrix replaces the value of f in a vertex v with the sum of values over
all neighbors of v:

(Af)(v) =
∑
w∈V
w∼v

f(w)

An important feature of A is that it is symmetric with respect to the inner product on `2(G).
For any two functions f, g ∈ `2(G) we have:

〈Af, g〉 =
∑
v∈V

(Af)(v)g(v) =
∑
v∈V

∑
w∈V
w∼v

f(w)g(v) =
∑

(v,w)∈E

f(w)g(v) = 〈f, Ag〉

since edges in G are unoriented.
Since A is a symmetric matrix, it is diagonalizable, with (possibly repeated) real eigen-

values:

λ1 ≥ λ2 ≥ · · · ≥ λn

Our goal for the next two lectures will be building connections between the spectral properties
of G, expressed by eigenvalues and eigenvectors of A, and its geometric and combinatorial
properties.

First recall that we can always choose eigenvectors of A so that they are orthogonal in
`2(G). The eigenvalues of symmetric matrices can be characterized by the following lemma:
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Lemma 1.1. For a symmetric matrix A we have:

λ1 = max
f∈`2(G)

〈Af, f〉
‖f‖2

More generally, the k-th largest eigenvalue is characterized by:

λk = max
f∈`2(G)
f⊥f1,...,fk

〈Af, f〉
‖f‖2

where the sum is over functions f orthogonal to the first k eigenfunctions f1 . . . , fk.

We start with the following bounds on the eigenvalues of A:

Remark 1.1. For any d-regular graph G we have:

d ≥ λ1 ≥ . . . ≥ λn ≥ −d

Proof. For any f ∈ `2(G), we have:

| 〈Af, f〉 | ≤
∑
v,w
w∼v

|f(w)f(v)| ≤ 1

2

∑
v,w
w∼v

(
|f(w)|2 + |f(v)|2

)
= d

∑
v

|f(v)|2 = d ‖f‖2

so all eigenvalues of A lie in the interval [−d, d].

It is straightforward to write down at least one eigenfunction of A - the constant func-
tion 1G has eigenvalue d. Equivalently, its Laplacian eigenvalue is 0 and this holds for all
graphs, not necessarily regular (although for an irregular graph 1G usually will not be an
eigenfunction of the adjacency matrix). Functions satisfying ∆f = 0 are called harmonic
functions.

A simple observation links λ1 to connectednes of G:

Remark 1.2. For any d-regular graph G, λ1 = d and its multiplicity equals the number of
connected components of G. In particular, G is connected if and only if λ1 has multiplicity
one.

Proof. As remarked above, λ1 = d, as A1G = d1G. If G has k connected components
G1, . . . , Gk, characteristic functions 1Gi are also orthogonal eigenfunctions with eigenvalue
d, so multiplicity of d is at least k. Finally, we notice that on any connected component, the
only functions with eigenvalue λ1 = d are constants. Each such function is harmonic and on
a connected graph, every harmonic function is constant, which follows from the maximum
principle for ∆ (∆ cannot have strict local maxima).

From now on, we assume that G is connected. Another easy observation links the smallest
eigenvalue λn and bipartiteness of G:
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Remark 1.3. For any d-regular graph G, λn = −d if and only if G is bipartite.

Proof. If G is bipartite with bipartition V = V1 ∪ V2, then the function f = 1V1 − 1V2 (i.e.
equal 1 on one bipartite component and −1 on the other) is an eigenfunction of A with
eigenvalue −d. Conversely, if f is an eigenfunction with eigenvalue −d, Af = −df , then it
is easy to see |f | has no strict local maxima or minima, so by connectedness |f | = const.
Defining V+ = {v ∈ V : f(v) ≥ 0}, V− = {v ∈ V : f(v) < 0} gives us the desired bipartition,
since it’s readily checked that Af = −df precludes any edges between V+ and V−.

Since G is connected, d = λ1 > λ2. Because of the variational characterization of
eigenvalues (Lemma 1.1), the second largest eigenvalue λ2 is the maximum of 〈Af, f〉 over
all functions with norm 1 which are orthogonal to 1G. The condition 〈f,1G〉 = 0 implies
that f has mean zero:

〈f,1G〉 =
∑
v∈V

f(v) = 0

The quantity d−λ2 is called the (1-sided) spectral gap of the graph. In some applications it is
necessary to consider also the 2-sided spectral gap, defined as d−λ, where λ = max{λ2, |λn|}.

Intuitively, the spectral gap σ = d−λ2 will quantify the connectivity of G - if σ is small,
G can be disconnected by removing a small number of edges (indeed, as we have seen above,
σ = 0 means that G is already disconnected). On the other hand, large σ will imply that G
has high connectivity, so to disconnect it we must remove a large number of edges.

To make this idea precise, we introduce the notion of edge expansion of a graph. For a
set S ⊂ V , denote by ∂S its edge boundary, defined as ∂S = {(u, v) ∈ E : u ∈ S, v /∈ S}.
This is the number of edges which have one endpoint in S and the other one outside of S.

Definition 1.2. For a set S ⊆ V of size |S| ≤ |V |
2

, its edge expansion is defined by:

h(S) =
|∂S|
|S|

Edge expansion of a graph G is defined as:

h = min
A⊆V
|A|≤ |V |

2

h(A)

If for any two sets S and T we denote the number of edges having one endpoint in S and
the other one in T by E(S, T ), then we have the following useful expression for this quantity:

E(S, T ) = 〈A1S,1T 〉

In particular |∂S| = E(S, S) = 〈A1S,1S〉.
A set S with high expansion h(S) should be thought of as having large ”perimeter”

(expressed by its edge boundary ∂S) relative to its size, so to disconnect S from the rest of
the graph one has to remove many edges. If a graph G has high edge expansion, it is difficult
to cut it into two parts, since all sets (at least those smaller than |V |

2
) have large boundaries.
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Before we investigate connections between spectral and geometric properties of graphs
more systematically, we study a few examples that confirm the intuition that large spectral
gap should be qualitatively equivalent to large edge expansion.

Example 1.3. For a complete graph Kn, we have:

λ1 = n− 1, λ2 = λ3 = . . . = λn = −1

h = 2

(
1− 1

n

)
Thus, Kn enjoys a very large (2-sided) spectral gap σ = n and is of course very difficult

to disconnect. Note, however, that this comes at a price of having Ω(n2) edges.

Exercise 1.1. For a cycle Cn, we have:

λk = 2 cos

(
(k − 1)

2π

n

)
, k = 1, . . . , n

h =
4

n

The fact that Cn can be disconnected by removing just 2 edges, so its edge expansion is
h = Θ

(
1
n

)
, is reflected by small spectral gap σ = 2− 2 cos

(
2π
n

)
= Θ

(
1
n2

)
.

Exercise 1.2. For a complete bipartite graph Kn,n, we have:

λ1 = n, λ2 = λ3 = . . . = λ2n−1 = 0, λ2n = −n

h =
n

2

Exercise 1.3. For a d-regular graph G consider its complement Gc, having the same vertex
set and exactly those edges which are not in G. This is an (n− d− 1)-regular graph. Show
that:

λi(G
c) = −1− λn+2−i(G)

for 2 ≤ i ≤ n.

Exercise 1.4. The n-dimensional hypercube Hn has {0, 1}n as its vertex set and two points
x, y ∈ {0, 1}n are connected by an edge if they differ in exactly one coordinate. Calculate the
eigenvalues λi(Hn) and the corresponding eigenvectors.

1.2 Expanders and their properties

At least qualitatively, spectral gap is tightly linked to having high connectivity. We have
seen that clique Kn enjoys very good spectral and isoperimetric properties - however, in
many applications it is crucial to achieve such properties while having far fewer than Ω(n2)
edges. Ideally, we would like our graph to be sparse, having constant degree, which implies
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having O(n) edges. This seems to conflict with high connectivity, as we can expect that
a graph with few edges would be very easy to cut into disjoint parts. Existence of sparse
graphs with good spectral properties is highly nontrivial - such miraculous graphs motivate
the most important definition in this course:

Definition 1.4. A family of graphs {Gn}∞n=1 with |Gn| → ∞ is a family of 1-sided (resp.
2-sided) (d, ε)-expanders for some fixed d, ε > 0 if it satisfies the following conditions:

• all Gn are d-regular

• for all Gn we have λ2 ≤ (1− ε)d (resp. max{λ2, |λn|} ≤ (1− ε)d)

We will often say that a single graph G is an expander, implicitly treating G as a member
of some family of (d, ε)-expanders.

As mentioned before, requiring that the degree d be constant implies sparsity, which
makes the task of constructing expanders considerably difficult.

How large can the spectral gap of a graph be? The following very simple lower bound
shows that it cannot be arbitrarily large:

Exercise 1.5. Let G be a d-regular graph. Prove that:

(a) TrA =
n∑
i=1

λi = 0

(b) TrA2 =
n∑
i=1

λ2
i = nd

(c) max{|λ2|, |λn|} =
√
d− o(1)

(d) give a combinatorial interpretation of TrA3

This puts an asymptotic upper bound on the quality of expansion afforded by any d-
regular graph. It turns out that the bound derived above is not optimal - we will return to
the tight bound, called the Alon-Boppana bound, in the next lecture.

Remark 1.4. The technique of estimating the spectral gap by considering the trace of
powers of A, illustrated in the simplest case in Exercise 1.5, is very useful and is known as
the trace method. Often it is possible to evaluate or approximate TrAk by combinatorial
techniques (for example, counting paths of given length) and thus extract information about
the eigenvalues. It is also used extensively in random matrix theory.

The intuition that spectral gap is related to edge expansion is made precise by the
following important inequality:

Theorem 1.5 (Cheeger’s inequality). Let λ = λ2 be the second largest eigenvalue of AG.
The spectral gap and edge expansion of G satisfy the following inequalities:

d− λ
2
≤ h ≤

√
2d(d− λ) (1)
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One direction of the inequality (large spectral gap implies good expansion) is easy to
prove, but the other one (good expansion implies large spectral gap) is more difficult, as
calculating λ2 requires controlling 〈Af, f〉 for all functions f and having good expansion
enables us to control this quantity essentially only for f which are indicators. We will prove
this inequality in the next lecture.

It is interesting to note that this kind of inequality first appeared in the context of
Riemannian manifolds, where one can also give appropriate definitions of the isoperimetric
constant and the Laplacian ([HLW06, Section 4.4]). In this sense graphs can be sometimes
thought of as discrete approximations of manifolds.

Apart from enjoying good isoperimetric properties expander graphs have other desirable
features. One of them is that an expander looks roughly like a random graph with the
same number of edges. If we pick the edges of a graph at random, taking each edge with
probability d

n
, then the average number of edges between any two sets S, T will be d

n
|S||T |,

while in the expander graph it is equal to E(S, T ). The Expander Mixing Lemma says that
these two quantities are close to each other:

Exercise 1.6 (Expander Mixing Lemma). Let G be a d-regular graph with |V | = n and
λ(G) = λ. Then for any two subsets S, T ⊆ V we have:∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ
√
|S||T |

Exercise 1.7. Let G with n vertices be a two-sided ε-expander. Show that the size of any
independent set in G is at most (1− ε)n and that G has chromatic number at least 1

1−ε .

For any graph G its diameter, denoted diamG, is the maximum of distance over all pairs
of vertices, where the distance d(u, v) between two vertices u, v is the length of the shortest
path between them. Let B(v, r) = {u : d(u, v) ≤ r} denote the ball with center v and radius
r. The following exercise shows that expanders have small diameter, so all vertices are close
to each other:

Exercise 1.8. Show that if G is an expander with n vertices, then balls in G grow expo-
nentially - for every vertex v we have |B(v, r)| ≥ min{Kr, n}, where K > 1 is a constant
independent of n. Conclude that diamG = O(log n).

Exercise 1.9. Give an example of a family of graphs which have logarithmic diameter, but
are not expanders.

We now turn to discuss random walks on expanders. Random walks on graphs is a
vast and fascinating topic, here we will only consider the property that walks on expanders
have good mixing time - if we start from any vertex and perform a random walk, after not
too many steps the probability distribution on the vertices will be close to uniform. This
property is important from the point of view of applications.

Take a graph G and pick some starting vertex v0 ∈ V . A simple random walk on G is a
sequence of random variables v0, v1, . . . such that at each step the next vertex vk+1 is chosen
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uniformly at random among neighbors of the currrent vertex vk. For each k ≥ 0 this defines
a probability distribution on the vertex set:

µ(k)(v) = P(vk = v)

which we will call the distribution after k steps of the random walk.
If we treat each µ(k) simply as a nonnegative function on G such that

∑
v∈V

µ(k)(v) = 1,

then it is easy to see that each step of the random walk is governed by the transition matrix
M = 1

d
A:

µ(k+1) = Mµ(k)

with µ(0) = δv0 .
Because 1G is an eigenfunction of A with eigenvalue d, the uniform distribution π = 1

|V |1G
on the vertex set satisfies Mπ = π, so, in the language of Markov chains, it is a stationary
distribution. Unless G is bipartite, for any initial starting distribution (not necessarily a
single vertex δv0) the distribution in k steps will converge (in a suitable norm) to the uniform
distribution as k →∞, and the speed of that convergence depends on the spectral gap of A.

There are various ways of quantifying how close to each other two probability distributions
are - in many contexts a natural measure is the total variation distance:

‖π1 − π2‖TV = sup
S⊆V

∣∣∣∣∣∑
v∈S

π1(v)−
∑
v∈S

π2(v)

∣∣∣∣∣
which can be expressed in terms of the `1 norm:

‖π1 − π2‖TV =
1

2
‖π1 − π2‖1

Proposition 1.6. If A has two-sided spectral gap σ and |V | = n, then:∥∥µ(k) − π
∥∥

1
≤
√
n
(σ
d

)k
Proof. Decompose δv0 as δv0 = 1

n
1G + f = π + f , where f = δv0 − 1

n
1G is orthogonal to 1G.

Because µ(k) = Mkδv0 , by Cauchy-Schwartz we have:∥∥µ(k) − π
∥∥

1
≤
√
n
∥∥Mk(π + f)− π

∥∥
2

=
√
n
∥∥Mkπ +Mkf − π

∥∥
2

=

=
√
n
∥∥Mkf

∥∥
2
≤
√
n
(σ
d

)k
‖f‖2 ≤

√
n
(σ
d

)k
where w ehave used that Mkπ = π and A has spectral gap σ, so

∥∥Akf∥∥
2
≤ σk ‖f‖2.

The proof works of course for any initial probability distribution.
This bound in particular implies that for a fixed ε > 0 after roughly k ≈ log n we will

have
∥∥µ(k) − π

∥∥
1
≤ ε. Compare this for example with the cycle Cn, for which k ≈ n2 steps
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are needed to get the same error ε ([LPW09, Chapter 7]). For more about mixing times of
random walks see [LPW09].

Note that in the bound above having only one-sided spectral gap is clearly insufficient,
as on a bipartite graph the random walk will alternate between two sets of the bipartition,
so it does not converge to the uniform distribution. However, a common method to get a
two-sided spectral gap when we have only one-sided gap is to consider a lazy random walk
instead of the ordinary walk. In the lazy random walk in each step with probability 1/2 we
stay at the current vertex and with probability 1/2 we move as in the ordinary random walk.
It is clear that the transition matrix for this walk is ML = 1

2
M + 1

2
I and it has a two-sided

(although smaller) spectral gap if M had a one-sided gap.

1.3 Random graphs are expanders

So far we have proved several interesting properties of expanders, but it is not a priori clear
that such families of graphs exist at all. Explicit constructions of expanders will be the
topic of the next lectures - here we show by using the probabilistic method that families of
expanders exist, although the proof is non-constructive.

We will show that a randomly chosen graph has expansion bounded away from 0 with
nonzero probability (the bounds we use are very crude - actually the probability of getting an
expander is very close to 1). We use the following model of a random d-regular graph - take
a vertex set V of size n, with n even, and choose uniformly at random d perfect matchings
on all n/2 pairs of vertices. The union of these matchings defines the edge set E of G. Note
that the resulting graph may have multiple edges, but this is only a technicality and it is
possible to fix the model to remove them, although for the sake of simplicity we will not do
this here.

Theorem 1.7. There exist d and η > 0 such that for any n a random d-regular graph G
chosen from the model above has edge expansion greater than η with nonzero probability.

Proof. Take any set S ⊆ V of size k ≤ n
2
. We will show that with high probability we

have |N(S)| > η|S|, where N(S) = {v : (u, v) ∈ E for someu ∈ S} and η > 1. Because
|∂S| ≥ |N(S)\S|, this will imply the bound on expansion.

We want to bound from above the probability that there exists some T ⊆ V with at
most ηk vertices such that N(S) ⊆ T , since this would contradict high expansion. Pick any
subset T with at most ηk vertices. Suppose we are choosing one of the matchings in G and
let Xi denote the event that the i-th vertex from S is matched with some vertex in T .

Exercise 1.10. Prove that:

P(X1 ∩ . . . ∩Xdk/2e) ≤
(
ηk

n

)k/2
Exercise 1.11. Show that for a given 1 ≤ k ≤ n

2
the probability that sets S and T as above

exist is bounded from above by 2−k for sufficiently large (but constant) degree d. Conclude
that the probability that such sets exist for any k is smaller than 1, so with nonzero probability
we have high expansion.
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As we will see in the next lecture, a random regular graph is not only an expander with
high probability, but an almost optimal expander, at least in terms of spectral gap. A lot
more can be said about spectral properties of random graphs, but we will not pursue this
direction here.

2 Lecture 2: Cheeger inequality and Alon-Boppana

bound

2.1 Cheeger inequality

In this lecture, we will prove Cheeger’s inequality, which gives quantitative relation between
spectral gap and edge expansion.

Let f : V → R be a function on vertices of G. Orient the edges of G arbitrarily and
denote the set of oriented edges as E+. Let ∇f : E+ → R denote the gradient of f , given
by:

∇f(e) = f(e+)− f(e−), e = (e+, e−)

For f, g : E+ → R their inner product is:

〈f, g〉 =
∑
e∈E+

f(e)g(e)

Lemma 2.1. For f as above we have:

‖∇f‖2 = d 〈f,∆f〉

Proof.

〈f,∆f〉 =
∑
v∈V

f(v)(∆f)(v) =
∑
v∈V

f(v)

f(v)− 1

d

∑
u∈V

(v,u)∈E

f(u)

 =

1

d

∑
(v,u)∈E

f(v) (f(v)− f(u)) =
1

d

∑
(v,u)∈E+

(f(v)− f(u))2 =
1

d
‖∇f‖2

As an aside, with the notation above having spectral grap σ can be expressed in terms
of Poincaré inequality (which may be familiar from analysis) - for any function f orthogonal
to 1G we have:

‖f‖2 ≤ 1

λ
‖∇f‖2

Inequalities of this kind show up in other places, for example in study of infinite graphs
or metric embeddings, although we won’t go in any details here (see [Pet]).

We now move to the main course of this lecture.
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Theorem 2.2 (Cheeger’s inequality). Let λ = λ2 be the second largest eigenvalue of AG.
The spectral gap and edge expansion of G satisfy the following inequalities:

d− λ
2
≤ h ≤

√
2d(d− λ) (2)

Proof. (a) λ
2
≤ h:

This is the easy direction. For any set S ⊆ V , |S| ≤ |V |
2

we have:

E(S, S̄) = 〈1S, A1S̄〉 = 〈1S, A1G〉 − 〈1S, A1S〉 = d|S| − 〈1S, A1S〉

so:
E(S, S̄)

|S|
= d− 〈1S, A1S〉

〈1S,1S〉
(3)

On the other hand, 1S can be decomposed as a sum of its mean and the component
orthogonal to constants:

1S =
|S|
|V |

1G +

(
1S −

|S|
|V |

1G

)
which gives:

〈1S, A1S〉 =

〈
|S|
|V |

1G +

(
1S −

|S|
|V |

1G

)
, A

(
|S|
|V |

1G + (1S −
|S|
|V |

1G)

)〉
=

d
|S|2

|V |
+

〈
1S −

|S|
|V |

1G, A

(
1S −

|S|
|V |

1G

)〉
≤ d
|S|2

|V |
+ λ

〈
1S −

|S|
|V |

1G,1S −
|S|
|V |

1G

〉
=

(d− λ)
|S|2

|V |
+ λ|S| ≤ 1

2
(d+ λ)|S|

which combined with 3 gives:

h = min
S⊆V
|S|≤ |V |

2

E(S, S̄)

|S|
≥ d− λ

2

(b) h ≤
√

2d(d− λ):

This is the harder direction. To bound expansion from above, we have to find a sparse

cut, i.e. a set S for which E(S,S)
|S| is small. The idea is to use the eigenvector f with

eigenvalue λ2 to approximate the optimal cut.

It will be easier to work with nonnegative functions, so decompose f into its positive
and negative part, f = f+ − f−. First, note that since f+ ≥ 0, for all v ∈ suppf+ we
have:

(∆f+)(v) ≤ (∆f)(v)
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and ∆f = 1
d
(d− λ)f , so from Lemma 2.1:

‖∇f+‖2 = d 〈f+,∆f+〉 ≤ d 〈f+,∆f〉 = (d− λ) 〈f+, f〉 = (d− λ) ‖f+‖2 (4)

We will use f+ to construct a sparse cut. Pretend for a while that f takes only two
values - since f has mean zero, one must be positive and the other negative. Taking
S = suppf+ gives the cut with h(S) ≤ d(d − λ) (in general the loss of square root is
unavoidable, see Remark 2.1). In this model case f+ is simply a characteristic function

1A, so ‖∇f‖ is proportional to |∂A| and we can bound h by ‖∇f+‖
2

‖f+‖2
immediately.

This is not true in general, but we can decompose f+ into its level sets. To this end order
vertices of V = {1, 2, . . . , n} so that f+(1) ≥ f+(2) ≥ . . . ≥ f+(n) and let Si be the i-th
level set of f+, Si = {1, . . . , i}. Consider threshold cuts of the form S = {i : f+(i) ≥ t}
for t ∈ [f+(n), f+(1)]. We will show that if t is chosen at random from an appropriate
probability distribution, then we have:

E
(
E(S, S)

)
Emin{|S|, |S|}

≤
√

2d(d− λ)

where E denotes the expectation with respect to a random choice of t. This can be
rewritten as:

E
(
E(S, S)−

√
2d(d− λ) min{|S|, |S|}

)
≤ 0

from which it follows that there exists at least one t such that:

E(S, S)

min{|S|, |S|}
≤
√

2d(d− λ)

and this proves what we want.

The trick is to choose the right probability distribution for t. A natural choice would be to
take t with uniform distribution in [f+(n), f+(1)], but it turns out that this doesn’t quite
work. Instead we pick t with density proportional to t dt, so that P(b ≥ t ≥ a) ∼ b2−a2.
The normalization constant will cancel out in the end, so for simplicity we assume it is
equal to 1.

Of course it is enough to consider values t = f+(i), i = 1, . . . , n. We can without loss of
generality assume that suppf+ ≤ n

2
(otherwise take −f and f− instead of f and f+), so

that all the sums below are in fact from i = 1 to bn
2
c.

12



First we have:

E
(
E(S, S)

)
=

n−1∑
k=1

P (f+(k) ≥ t > f+(k + 1))E(Sk, Sk) =

n−1∑
k=1

(
f 2

+(k)− f 2
+(k + 1)

)
E(Sk, Sk) =

n−1∑
k=1

(
f 2

+(k)− f 2
+(k + 1)

) ∑
(i,j)∈E

δ{i≤k≤j−1} =

∑
(i,j)∈E
i<j

j−1∑
k=i

(
f 2

+(k)− f 2
+(k + 1)

)
=
∑

(i,j)∈E
i<j

(
f 2

+(i)− f 2
+(j)

)
=

∑
(i,j)∈E+

∣∣f 2
+(i)− f 2

+(j)
∣∣

and:

Emin{|S|, |S|} =
n−1∑
k=1

P (f+(k) ≥ t > f+(k + 1)) min{|Sk|, |Sk|} =

n−1∑
i=1

(
f 2

+(k)− f 2
+(k + 1)

)
min{|Sk|, |Sk|} =

n−1∑
k=1

(
f 2

+(k)− f 2
+(k + 1)

)
k =

n∑
k=1

f 2
+(k) = ‖f+‖2

where we have telescoped the sum.

We have the following:

Lemma 2.3. E
(
E(S, S)

)
≤
√

2d ‖∇f+‖ · ‖f+‖

Proof. We simply use Cauchy-Schwartz:

E
(
E(S, S)

)
=

∑
(i,j)∈E+

∣∣f 2
+(i)− f 2

+(j)
∣∣ =

∑
(i,j)∈E+

|f+(i)− f+(j)| · |f+(i) + f+(j)| ≤

 ∑
(i,j)∈E+

|f+(i)− f+(j)|2
1/2 ∑

(i,j)∈E+

|f+(i) + f+(j)|2
1/2

=

‖∇f+‖ ·

1

2

∑
(i,j)

Aij |f+(i) + f+(j)|2
1/2

≤ ‖∇f+‖ ·

∑
(i,j)

Aij
(
f+(i)2 + f+(j)2

)1/2

=

‖∇f+‖

(
2d
∑
i

f+(i)2

)1/2

=
√

2d ‖∇f+‖ · ‖f+‖

Putting everything together, we arrive at:

E
(
E(S, S)

)
Emin{|S|, |S|}

≤
√

2d ‖∇f+‖ · ‖f+‖
‖f+‖2 =

√
2d
‖∇f+‖
‖f+‖

≤
√

2d ·
√
d− λ

13



by Lemma 2.3 and inequality 4, so we are done.

Remark 2.1. In general, Cheeger’s inequality is optimal. The easy direction is tight for the
hypercube Hn, which has h = 1 and d− λ = 2. The hard direction is tight, up to constants,
for the cycle Cn, which has h = Θ

(
1
n

)
and d− λ = Θ

(
1
n2

)
.

The proof of Cheeger’s inequality actually gives a fast algorithm for finding the approxi-
mately minimal cut - compute the second largest eigenvector f , sort vertices with respect to
f(v) and return the level set S achieving minimal isoperimetric ratio h(S) = |∂S|

|S| . Cheeger’s
inequality guarantees that such a solution is at most quadratically worse than the optimum,
since:

h ≤ h(S) ≤
√

2d(d− λ) ≤ 2
√
d
√
h

Computing the optimal value of minimal cut is NP-hard - compare this with computing
the spectral gap, which can be done in polynomial time to arbitrary precision simply by
diagonalizing the adjacency matrix A. A closely related problem is computing the sparsest
cut, defined as:

Φ = min
S⊆V

n|∂S|
|S||S|

Since min{|S|, |S|} ≤ n
2
, we have Φ ≤ 2h. The spectral partitioning algorithm can be viewed

as based on relaxation of sparsest cut problem to spectral gap problem, in the sense that:

Φ = min
S⊆V

n|∂S|
|S||S|

= min
S⊆V

∑
u∼v
|1S(u)− 1S(v)|2

1
n

∑
u,v∈V

|1S(u)− 1S(v)|2

while:

σ = min
f∈`2(G)
f⊥1G

‖∇f‖2

‖f‖2 = min
f∈`2(G)

‖∇f‖2∥∥f − f̄1∥∥2 = min
f∈`2(G)

∑
u∼v
|f(u)− f(v)|2

1
n

∑
u,v∈V

|f(u)− f(v)|2

where replacing f with f − f̄1G, for f̄ = 1
n

∑
v f(v), automatically guarantess the condition

f ⊥ 1G. Thus, σ solves the same optimization problem as Φ, but with relaxed constraints
- instead of optimizing only over characteristic functions 1S, we optimize over all functions
f ∈ `2(G). Other partitioning algorithms exist, based on different notions of relaxation (see
e.g. [Tre]).

A good question is whether higher eigenvalues λk can be given geometric interpretation
similar to connection between h and λ2. Define the k-way expansion of a graph:

hk(G) = min
S1,...,Sk⊆V

max{h(Si) : i = 1, . . . , k}

14



where the minimum is taken over all partitions of V into disjoint subsets S1, . . . , Sk. In
other words, we are interested in partitioning V into k subsets such that each subset defines
a sparse cut. Very recently, the following k-way Cheeger inequality has been proven [LGT11]:

d− λk
2
≤ hk(G) ≤ O(k2)

√
d(d− λk)

Although we have not used it in these lectures, there is another notion of expansion
known as vertex expansion. It is in general more difficult to handle, but it is instructive
to see how it is related to the spectral gap. For a set S ⊆ V define its neighborhood
N(S) = {v ∈ V : ∃s ∈ S (s, v) ∈ E}.

Definition 2.4. For a graph G its vertex expansion hV (G) is defined as:

hV = min
S⊆V
|S|≤ |V |

2

|N(S)\S|
|S|

The following exercise gives the analog of Cheeger inequality for vertex expansion:

Exercise 2.1. For a graph G let λ = max{|λ2(G)|, |λn(G)|} and let hV = hV (G). Show
that:

d2 − λ2

d2 + λ2
≤ hV ≤

√
2d
√
d2 − λ2

2.2 Alon-Boppana bound

In the exercise 1.5 we derived a crude lower bound on the second eigenvalue:

λ2(G) ≥
√
d− o(1) (5)

As mentioned there, this inequality is not optimal. We will now proceed to derive the optimal
bound, called the Alon-Boppana bound - in the process, we will touch upon fascinating topics
such as graph covers, spectral properties of infinite graphs and Ramanajun graphs, although
they are unfortunately beyond the scope of these lectures.

Theorem 2.5 (Alon-Boppana bound). Let G be a d-regular graph with diameter δ. Then:

λ(G) ≥ 2
√
d− 1

(
1−O

(
log δ

δ

))
= 2
√
d− 1 (1− o(1))

where λ = max{λ2, |λn|}.

Proof. The proof of bound 5 proceeded (essentially) by counting the number of closed paths
of length 2, expressed by TrA2, and using it to bound λ2, thus discarding all other eigenvalues.
Taking higher powers of A, or closed path of larger length, might help to improve the bound.

15



Let s, t ∈ V be two vertices with distance δ from each other. Consider the function
f = 1s − 1t (i.e. f(s) = 1, f(t) = −1 and 0 on all other vertices)- it has mean zero, so we
can use it as a test function to lower bound λ:

λ2k(A) = λ(A2k) ≥
〈
f, A2kf

〉
‖f‖2 =

A2k
ss + A2k

tt − 2A2k
st

2
(6)

We can kill the term A2k
st by taking k = b δ−1

2
c, so there are no paths of length 2k from s to

t. We are left with estimating A2k
ss , A

2k
tt , which are numbers of closed paths of length 2k.

Consider the infinite d-regular tree Td and let t2k denote the number of closed paths in
Td starting at the root. Combinatorial properties of t2k are completely known - including
asymptotics, generating functions and recursion equations - but we will be satisfied here with
a simple bound. Note that every closed path in Td determines a sign pattern π = (s1, . . . , s2k),
where si = ±1 depending on whether the i-th step is toward or away from the root. Each
sign pattern has the property that the sum of its every prefix is nonnegative - thus, the
number of valid sign patterns is the Catalan number Ck:

Ck =

(
2k
k

)
k + 1

Every sign pattern determines at least (d − 1)k closed paths, since there are k of +1 steps
and at each such step there are at least d− 1 possible choices of moving away from the root.

Now, clearly A2k
ss ≥ t2k, since presence of cycles in G can only increase the number of

closed paths. Combining this with 6 and using well known asymptotics of Ck:

Ck ∼ Θ

(
4k

k3/2

)
we get:

λ2k(G) ≥ t2k ≥ Ck(d− 1)k = Θ
(

(2
√
d− 1)2k · k−

3
2

)
which, after taking the 2k-th root and plugging in k = b δ−1

2
c leads to:

λ(G) ≥ 2
√
d− 1 ·

(
1−O

(
log δ

δ

))

The gist of the above proof lies in comparing behavior of the random walk on G to the
random walk on its universal cover Td, as we are essentially calculating the probability of a
simple random walk returning to its starting point after 2k steps. This idea can be developed
further, but we will need the definition of a graph covering:

Definition 2.6. Let G be a finite graph and H a possibly infinite graph. A map π : H → G
is called a covering map if for every vertex v ∈ H, π maps the set of edges incident to v
bijectively onto the set of edges incident to π(v).
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For example, a single vertex with d loops to itself is covered by any d-regular graph and
every d-regular graph is covered by the infinite d-regular tree Td (in other words, Td is the
universal cover of d-regular graphs, since it is simply connected).

Exercise 2.2. Let π : H → G be a covering, with G and H finite. Prove that λ2(H) ≥ λ2(G).

For an infinite graph H, the analogue of λ2 comes in the form of spectral radius ρ(H).
Spectral radius can be defined in various ways, the most natural being the spectral norm
of AH treated as a self-adjoint operator on an (infinite-dimensional) space `2(H), but this
direction would take us too far into functional analysis. Instead, we give the following
definition:

Definition 2.7. Consider a simple random walk on H. For x ∈ H, let p2n(x, x) be the
probability of returning to x after 2n steps. Then:

ρ(H) = lim
n→∞

(p2n(x, x))
1
2n

Exercise 2.3. Let π : H → G be a covering, with G and H infinite. Prove that ρ(G) ≥
dρ(H).

Combined with the fact that every d-regular graph is covered by Td and that ρ(Td) =
2
√
d−1
d

(essentially contained in estimates for t2k), this gives another way of viewing the

Alon-Boppana bound and explains the origin of the factor 2
√
d− 1.

Graphs which achieve the asymptotic bound for the second eigenvalue, i.e. have λ2(G) ≤
2
√
d− 1, are called Ramanujan graphs. Constructing explicitly such graphs is a nontrivial

task, but can be done using deep connections with number theory and group theory. The
best known construction by Lubotzky, Phillips and Sarnak (see [DSV03]), based on Cayley
graphs of PGL2(Fq) (where Fq is a finite field), gives a family of Ramanujan graphs for all
d such that d − 1 is a prime number (this can be extended to d − 1 being a prime power).
These graphs also enjoy the property of having high girth and high chromatic number, which
solves a long-standing problem in combinatorics (previously the only known examples of such
graphs were random graphs).

Although we will not cover spectral theory of random graphs here, it is interesting that
in a model of d-regular random graphs similar to the one defined in Section 1.3, almost all
graphs are almost Ramanujan, in the sense that for any ε > 0 we have:

P
(
λ2(G) ≤ 2

√
d− 1 + ε

)
−→
n→∞

0

where G is a random d-regular graphs with size going to infinity. This has been proved only
fairly recently by Friedman and it is a difficult result.

For very good treatment of spectral properties of infinite graphs and connections to
probability and geometric group theory, see [Pet].

Exercise 2.4. Prove a bound similar to the Alon-Boppana bound for bipartite (k, l)-regular
graphs, i.e. graphs where each left vertex has degree k and each right vertex has degree l.
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3 Lecture 3: algebraic constructions

3.1 Cayley graphs

Having discussed basic properties of expanders in previous two lectures, we turn to the
question of giving explicit constructions of expander families. It turns out that a rich source
of such constructions comes from group theory, specifically the study of Cayley graphs of
finite groups. The highly symmetric nature of such graphs makes them amenable to precise
analysis, using tools from harmonic analysis and representation theory. In fact, the very
first constructions of expanders were based on group theory. In this lecture, we present a
fairly elementary construction of expander family due to Margulis. There is a vast array
of other group-theoretic techniques for producing expanders (even skimming through them
would take at least one semester course), including:

• representation theory and Kazhdan property (T) (see [Tao], Notes 2, for good exposi-
tion)

• expanders from explicit generating sets for finite simple groups, e.g. symmetric and
alternating groups Sn, An ([Kas07])

• expansion in Lie type groups, e.g. SLn(Fp) ([Tao])

Definition 3.1. Let G be a group generated by a finite set S. The Cayley graph Cay(G,S) =
(V,E) is a (directed) graph whose vertex set V is G and edge (g, g′) ∈ E if and only if g = g′s
for some s ∈ S.

Note that Cay(G,S) is always |S|-regular. We will always assume that e /∈ S (so there
are no loops) and that S is symmetric, s ∈ S ⇔ s−1 ∈ S. With this assumption, Cay(G,S)
can be viewed as an undirected graph since (g, g′) ∈ E ⇔ (g′, g) ∈ E. The graph depends
on the generating S and constructing an expander out of G will often require a judicious
choice of S.

A related more general notion is that of a Schreier graph:

Definition 3.2. Let G be a group which is generated by a finite set S and acts on a set X.
Assume that S acts freely on X, so for all s, s′ ∈ S, s 6= s′ and x ∈ X we have s · x 6= s · s′
and s · x 6= x. The Schreier graph Sch(X,S) = (V,E) is a graph whose vertex set V is X
and edge (x, y) ∈ E if and only if x = s · y for some s ∈ S.

Example 3.3. The cycle Cn is the Cayley graph Cay(Zn, S) for the standard generating set
S = {−1, 1}. As we have seen before, this graph is not an expander.

In general, obtaining a family of constant-degree expanders out of Cayley graphs requires
turning to non-Abelian groups:

Exercise 3.1. Show that if Gn is a sequence of Abelian groups, then Cay(Gn, Sn) does not
form a family of expanders.
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3.2 Fourier analysis on Abelian groups

The expander construction which we will present in this lecture relies heavily on Fourier
analysis, so we start with introducing the key notions of harmonic analysis on finite Abelian
groups (the whole theory can be developed in a much more general setting of locally compact
Abelian groups).

Let G be an Abelian group. For functions f, g : G→ C, we introduce the inner product:

〈f, g〉 =
∑
f∈G

f(h)g(h)

and the associated norm:
‖f‖2

2 = 〈f, f〉

Definition 3.4. Let G be an Abelian group. A character χ is a homomorphism χ : G→ C∗,
i.e. a function satisfying χ(x+ y) = χ(x)χ(y) for every x, y ∈ G.

In the simplest case G = Zn it is straightforward to check all characters are given up to
normalization by:

χa(k) = ωak

where a ∈ Zn and ω = e
2πi
n is the n-th root of unity.

The important property of characters is that they are orthogonal as functions in `2(G):

Exercise 3.2. Prove that if G is a finite Abelian group then:

(a) if χ is a character which is not identically 1, then
∑
a

χ(a) = 0

(b) if χ1, χ2 are two different characters, then 〈χ1, χ2〉 = 0

From the point of view of spectral graph theory, knowing characters of G enables us to
find eigenvectors and eigencalues of any Cayley graph of G:

Exercise 3.3. Let Cay(G,S) be a Cayley graph of a finite Abelian group G. Show that for
any character χ the function f : G → C defined by f(a) = χ(a) is an eigenvector of the
adjacency matrix AG with eigenvalue

∑
s∈S

χ(s).

From the fact that characters are orthogonal it follows that there are at most |G| of them,
since this is the dimension of `2(G). It is easy, using the fact that every finite Abelian group
is of the form Zk1n1

× . . .×Zkmnm , to write them down explicitly and check that there are in fact
exactly |G| of them. Therefore characters form (after proper normalization) an orthonormal
basis of `2(G).

Example 3.5. Since characters of Zn are of the form χ(k) = ωak, a ∈ Zn, we immediately
see that the eigenvalues of the cycle Cn are given by ωa + ω−a = 2 cos(2πa

n
), as we found in

Exercise 1.1.
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The hypercube Hn is the Cayley graph of Zn2 with the standard generating set. Characters
of Zn2 are given by:

χa)(x) = (−1)〈a,x〉

where a = (a1, . . . , an) ∈ Zn2 , x = (x1, . . . , xn) ∈ Zn2 ) and 〈a, x〉 = a1x1 + . . . + anxn. From
this we find that the n − 2|a| (where |a| is the number of ones in a) is an eigenvalue of the
hypercube with multiplicity

(
n
|a|

)
, as in Exercise 1.4.

We now turn to the case of G = Z2
n, which we will use later, although all the properties

discussed below hold in the general setting.
Normalized characters of Z2

n are given by:

χ(a,b)(x, y) =
1

n
ωax+by

where (a, b) ∈ Z2
n.

Because χ(a,b) form an orthonormal set, every function f ∈ `2(Z2
n) can be decomposed as

a sum of characters:
f =

∑
(a,b)∈Z2

n

f̂(a, b)χ(a,b)

where the coefficients f̂(a, b) are called the Fourier coefficients of f . They define f̂ : Z2
n → C,

called the Fourier transform of f . Since χ(a,b) form an orthonormal basis, f̂ can be computed
explicitly:

f̂(a, b) =
〈
f, χ(a,b)

〉
=

∑
(x,y)∈Z2

n

f(x, y)χ(a,b)(x, y) =
1

n

∑
(x,y)∈Z2

n

f(x, y)ω−ax−by

The Fourier transform can be viewed as an isometry ̂ : `2(Z2
n) → `2(Z2

n) as it satisfies the
Plancherel identity :

‖f‖2 = ‖f̂‖2

A crucial property that makes the Fourier transform useful is that it changes translation to
multiplication by a phase factor. More precisely, for h = (h1, h2) ∈ Z2

n denote by fh the
translation of f , fh(x) = f(x+ h). We then have:

f̂h(a, b) = ω−ah1−bh2 f̂(a, b)

Of particular interest is the zero Fourier coefficient:

f̂(0, 0) =
1

n

∑
(x,y)∈Z2

n

f(x, y)

which is proportional to the mean of f . If f has mean zero, we have f̂(0, 0) = 0.
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3.3 Margulis expander

We will now provide a relatively simple and explicit construction of expanders due to Mar-
gulis. The construction will be based on the natural action of the affine group SL2(Z) nZ2

on the integer lattice Z2, quotiented to Z2
n.

The first ingredient in our construction is examining the action of SL2(Z) on Z2. Recall
that SL2(Z) is the group of all 2 × 2 matrices with integer coefficients and determinant 1.
Consider the following elements a, b ∈ SL2(Z):

a =

(
1 2
0 1

)
, b =

(
1 0
2 1

)
and sets A,B ⊆ Z2 defined as A = {(x, y) : |x| < |y|}, B = {(x, y) : |x| > |y|}. We have the
following easily proved proposition (which can be used, with help of the ping-pong lemma,
to show that a and b generate a free subgroup of SL2(Z)):

Proposition 3.6. For any n > 0 we have anA ⊆ B, bnB ⊆ A.

The existence of this ,,ping-pong decomposition” is crucial in the following lemma, which
says that every ,,almost invariant” probability measure must have a large point mass in {0}:

Lemma 3.7. Choose a finite generating set S for SL2(Z). Suppose that µ is a probability
measure on Z2 such that for every s ∈ S:

‖s∗µ− µ‖TV ≤ ε

where s∗µ denotes the pushforward measure (s∗µ)(A) = µ(s−1A). Then:

µ({0}) = 1−O(ε)

Proof. Take a, b, A,B as in Proposition 3.6. Since aA ⊆ B, we have:

µ(B) ≥ µ(aA) = µ(A) +O(ε)

and likewise:
µ(A) ≥ µ(bB) = µ(B) +O(ε)

so:
µ(B) = µ(aA) +O(ε)

In the same vein, we can obtain:

µ(B) = µ(a2A) +O(ε)

Now, a2A ⊆ B, so µ(B\a2A) ≤ O(ε) and C ⊆ B\a2A, where C = {(x, y) : |y| < |x| < |3y|}.
It follows that µ(C) ≤ O(ε). We can translate C by a fixed number of elements in SL2(Z)
to cover all Z2 but 0, from which it follows that µ(Z2\{0}) = O(ε).
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We are now ready to prove the main theorem of this lecture. Recall that SL2(Z) nZ2 is
the affine group, i.e. set of all affine transformations f : Z2 → Z2 given by:

f(x) = Ax+ b

where A ∈ SL2(Z), b ∈ Z2. In analogous fashion, we can reduce the coefficients modulo n
and consider SL2(Zn) n Z2

n acting on Z2
n in a natural manner. Since SL2(Zn) n Z2

n acts on
Z2
n, we also have a natural action of SL2(Zn)nZ2

n on `2(Z2
n), which we will denote by ρn(g),

given by:
(ρn(g)f)(x) = f(g−1 · x)

Theorem 3.8. Choose any symmetric finite generating set S for SL2(Z) n Z2. Let πn :
SL2(Z) nZ2 → SL2(Zn) nZ2

n be the natural projection map. The family of Schreier graphs
Gn = Sch(SL2(Zn) n Z2

n, πn(S)) forms a family of one-sided expanders.

Proof. The proof will proceed as follows. By contradiction, we assume that Gn are not
expanders, so we can find a sequence of “almost invariant” functions fn of mean zero. Using
Fourier transform, we turn each fn into an “almost invariant” measure µ, which, by Lemma
3.7, will have most of its mass concentrated on {0}. On the other hand, fn has mean zero
and properties of Fourier transform will imply that µ({0}) = 0, a contradiction.

Suppose by contradiction that Gn = Sch(SL2(Zn) n Z2
n, πn(S)) is not a family of ex-

panders. By passing to a subsequence, we can assume that λ(Gn) = o(1). It then follows
that if fn is the second largest eigenvector associated to Gn, we have for all s ∈ S:

‖ρn(s)fn − fn‖`2(Z2
n) = o(1) (7)

In particular, if we take ei, i = 1, 2 to be translations along each coordinate, we have:

‖ρn(ei)fn − fn‖`2(Z2
n) = o(1)

Now, take the Fourier transform of the left side and recall that Fourier transforming changes
translation to multiplication by phase, by Plancherel identity we get:∥∥∥(e−

2πai
n − 1)f̂n

∥∥∥
`2(Z2

n)
= o(1) (8)

This implies that f̂n must have almost all of its mass concentrated on a ball Bn of radius
o(n). More precisely: ∥∥∥f̂n∥∥∥

Bn
= 1− o(1)

Indeed, note that: ∥∥∥(e−
2πai
n − 1)f̂n

∥∥∥
`2(Z2

n)
=
∥∥∥2 sin

πa

n
f̂n

∥∥∥
`2(Z2

n)

so if f̂n had a constant fraction of mass on some set A = {(a, b)} ⊆ Z2
n where, |a| > cn or

|b| > cn for some constant c > 0, we would have
∣∣sin πa

n

∣∣ ≥ C on A, so A gives a constant

contribution to
∥∥∥2 sin πa

n
f̂n

∥∥∥
`2(Z2

n)
, which contradicts 8.
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We can embed Z2
n into Z2, so every fn is also a function on Z2. We would like 7 to hold

also if fn is treated as a function on Z2, i.e.:

‖ρn(s)fn − fn‖`2(Z2) = o(1) (9)

In principle, passing from Z2
n to Z2 could increase this norm (think of f = 1A, which

translated on Z2 and rounded modulo n has larger overlap with itself than without the
rounding). However, fn has almost all of its mass concentrated on a ball Bn of radius o(n),
so, for sufficiently large n, this cannot happen.

Let gn equal f̂n restricted to Bn, now treated as a function on Z2. From 9, it follows that
after Fourier transform we get:

‖gn ◦ s∗ − gn‖`2(Z2) = o(1) (10)

Consider a measure on Z2 with “density” |gn|2:

µ(A) :=

∫
A

|gn|2

Now, 10 implies that ‖s∗µ− µ‖TV = o(1), so using Cauchy-Schwartz:

‖s∗µ− µ‖TV = sup
A⊆Z2

|s∗µ(A)− µ(A)| = sup
A⊆Z2

∣∣∣∣∫
s−1A

|gn|2 −
∫
A

|gn|2
∣∣∣∣ =

sup
A⊆Z2

∣∣∣∣∫
A

(
|gn ◦ s∗|2 − |gn|2

)∣∣∣∣ ≤ sup
A⊆Z2

(∫
A

(|gn ◦ s∗| − |gn|)2

) 1
2
(∫

A

(|gn ◦ s∗|+ |gn|)2

) 1
2

≤(∫
Z2

(gn ◦ s∗ − gn)2

) 1
2
(

2

∫
Z2

(
|gn ◦ s∗|2 + |gn|2

)) 1
2

≤
√

2 ‖gn ◦ s∗ − gn‖`2(Z2) = o(1)

By Lemma 3.7, this implies that µ({0}) = 1−o(1), so gn(0) = 1−o(1). But recall that fn has

mean zero, so f̂n(0) = 0 - from this it follows that gn(0) = 0, which gives a contradiction

Although the proof we have presented does not give an estimate of the spectral gap, it
can be obtained using similar Fourier-analytic techniques [HLW06, Section 8].

4 Lecture 4: zig-zag product

In the previous lecture we saw that expanders can be explicitly constructed by algebraic
means. The drawback of this approach is that spectral properties of Cayley or Schreier
graphs used there depend on rather intricate details of their algebraic structure and quality
of the expander obtained is not easy to analyze. A more direct combinatorial construction
would be desirable. Finding such a construction has been a major breakthrough in the field
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([RVW02]) and can be achieved by a simple iterative procedure known as the zig-zag product
of graphs.

The construction relies on a few combinatorial operations on graphs, used to build larger
graphs from smaller graphs while preserving good expansion. The first operation is the graph
product.

Definition 4.1. Let G = (V,E) be a graph with n vertices and degree d. The k-th power
of G, denoted Gk, is a graph whose vertex set is V and two vertices u, v are connected by
an edge if they are connected by a path of length k in G. Gk has degree dk and if A is the
adjacency matrix of G, then Ak is the adjacency matrix of Gk.

The new graph Gk may have multiple edges or loops, but this will not be a problem in
the construction that follows.

Taking the product of a graph with itself improves the expansion, as the eigenvalues are
raised to some power, but at the cost of blowing up the degree. We will need an operation
which enables us to keep good expansion and small degree while enlarging the graph.

This is the replacement product. It takes two graphs G and H, with G having n vertices
and degree m and H having m vertices and degree d and, and returns a new graph G©r H
with nD vertices and degree d+ 1. We will think of G as being a “large” graph and of H as
being “small”. The replacement product takes G and replaces its every vertex by a copy of
H. For a vertex v ∈ G we will call the copy of H corresponding to v the cloud of v. Because
G has the same degree as the number of vertices in H, we will connect the vertices in the
clouds so that the new graph will have degree d.

This is done in the following way. For any vertex v ∈ G order its neighbors in an arbitrary
way - we will denote them by e1

v, . . . , e
m
v (here we treat each unoriented edge as a pair of

oriented edges, so that u as a neighbor of v may have a different number than v as a neighbor
of u). Let {(v, i) : i = 1, . . . ,m} denote the cloud of v. Two vertices (u, i) and (v, j) are
connected in the product if v is the i-th neighbor of u and u is the j-th neighbor of v or, in
other words, u = ejv and v = eiu. Also, vertices (v, i) and (v, j) are connected if i and j are
connected in H.

Definition 4.2. For an m-regular graph G = (VG, EG) with |VG| = n and a d-regular graph
H = (VH , EH) with |VH | = m, the replacement product G©r H is a d+ 1-regular graph with
a vertex set VG × VH and the set of edges E defined in the following way (given an ordering
of neighbors of each vertex as above):

• for all v ∈ G we have (v, i) ∼ (v, j) in G©r H whenever (i, j) ∈ EH

• if u = ejv and v = eiu, then (u, i) ∼ (v, j) in G©r H

Figure 1, showing the replacement product of a clique G = K5 with a cycle H = C4,
perhaps makes the definition clearer.

The last operation is the zig-zag product, which will be the most important ingredient
in the construction. The simplest way to describe is to by using the replacement product
G©r H - the zig-zag product G©z H has the same vertex set and two vertices (u, i), (v, j)
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R =

Figure 1: Replacement product of a clique K5 with a 4-cycle C4

are connected by an edge if there is a path of length 3 in G©r H such that the first edge
connects (u, i) to a vertex in the same cloud, the second edge leads from the cloud of u to
the cloud of v and the third edge leads to (v, j). This justifies the name of this operation
- the first and the third step are “cloud-type” edges (defined only by edges of H) and the
second step is an “inter-cloud” step (defined by the edges of G). Note that the middle step
is uniquely determined, as for given (v, l) there is exactly one (u, k) such that eku = elv.

Definition 4.3. For an m-regular graph G = (VG, EG) with |VG| = n and a d-regular graph
H = (VH , EH) with |VH | = m, the zig-zag product G©z H is a d2-regular graph with a vertex
set VG × VH and the following set of edges E: there is an edge (u, i) ∼ (v, j) if there exist
some k, l ∈ {1, . . . ,m} such that (j, k), (i, l) ∈ EH and eku = elv.

The crucial property of the zig-zag product is that it preserves the degree of the graph
and enlarges it by a constant factor while making the expansion not much worse than in the
original graph.

For the sake of brevity we introduce a bit of notation - if G has n vertices, degree d
and its second largest eigenvalue in absolute value is at most αd, then we will call G an
(n, d, α)-graph.

The following lemma is the most important part of the construction:

Lemma 4.4. If G is an (n,m, α)-graph and H is an (m, d, β)-graph, then G©z H is an
(nm, d2, α + β + β2)-graph.

With this lemma constructing a family of expanders is easy. We start with a fixed-size
base graph H with reasonably good expansion and then iteratively at each step take the
zig-zag product of a power of the previous graph with H. The degree is kept constant at
each step, while the number of vertices grows exponentially and the spectral gap is preserved.

Theorem 4.5. Let H be a (d4, d, 1/5)-graph for some constant d. If we define a family of
graphs Gn by:

G1 = H2, Gn+1 = G2
n©z H

then Gn is a (d4n, d2, 1/2)-graph. In particular, Gn form a family of expanders.
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Proof. We proceed by induction. The claim is true for n = 1 by definition of H. Now suppose
that Gn is a (d4n, d2, 1/2)-graph. Then G2

n is a (d4n, d4, 1/4)-graph and it has the same degree
as the number of vertices of H, so we can take the zig-zag product. By Lemma 4.4 G2

n©z H is
a (d4n+1, d2, 1/2)-graph, since the new expansion parameter is at most 1/4 + 1/5 + (1/5)2 ≤
1/2.

Since the base graph needed in the construction has constant size, one can find such a
graph by exhaustive search, since we know that a randomly chosen graph with high prob-
ability will have good expansion. Another option is to use a simple deterministic algebraic
construction which has good enough parameters:

Exercise 4.1. Let Fp be a finite field with p elements, where p is a prime, and let t < p.
Consider the set Ft+1

p and for each x ∈ Fp, a, b ∈ Fp introduce edges (x, x + b), (x, x + ab),
. . ., (x, x+ atb). Show that the resulting graph is a (pt+1, p2, t

p
)-graph.

Thus to satisfy the assumptions on the base graph in Theorem 4.5 it is enough to take,
for example, p = 37, t = 7.

There are several improvements to this construction which give graphs with smaller
degree, faster growing size and more succinct representation in terms of memory needed to
store the graph (some of these modifications are particularly important from the point of
view of applications in complexity theory, see [HLW06, 9.5]).

It remains to prove Lemma 4.4.

Proof of Lemma 4.4. Throughout the proof it will be convenient to work with transition
matrices, i.e. adjacency matrices divided by the degree of the graph. Denote by A the
transition matrix of A and by B the transition matrix of H.

By the way the zig-zag product is defined each step of a random walk in G©z H can be
decomposed into three steps: a random step in the cloud of the initial vertex, a deterministic
step to another cloud and again a random step in the new cloud. Thus if we denote the
transition matrix of G©z H by M , then we have M = B̃P B̃, where B̃ is a block matrix
consisting of |G| blocks equal to B (this corresponds to the walk on each cloud) and P is a
permutation matrix defined by:

P(v,k),(u,l) =

{
1 if ekv = elu
0 otherwise

Let 1M denote the constant vector on G©z H. We want to show that the second largest
eigenvalue of M is at most α + β + β2 or in other words:

|〈f,Mf〉|
‖f‖2 ≤ α + β + β2

for every f ⊥ 1M .
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For any f we define f as its average over each cloud:

f(v, i) =
1

m

m∑
j=1

f(v, j)

so that f is constant on each cloud. Let f ′ = f − f . By definition f ′ sums up to zero on
each cloud. We have:

| 〈f,Mf〉 | = |〈f, B̃P B̃f〉| ≤ |〈f, B̃P B̃f〉|+ 2|〈f, B̃P B̃f ′〉|+ |〈f ′, B̃P B̃f ′〉|

Because f is constant on each cloud, we have B̃f = f . Similarly, because f ′ is orthogonal
to constant on each cloud, we have ‖B̃f ′‖ ≤ β ‖f ′‖ by definition of the spectral gap for H.
Thus:

| 〈f,Mf〉 | ≤ |〈f, Pf〉|+ 2|〈f, P B̃f ′〉|+ |〈B̃f ′, P B̃f ′〉| ≤ |〈f, Pf〉|+ 2β‖f‖ · ‖f ′‖+ β2‖f ′‖2

It remains to estimate the first term. Let g(v) =
√
m · f(v, i) be a function on G. We

have ‖g‖ = ‖f‖. Now note that
〈
f, Pf

〉
= 〈g, Ag〉, because P essentially encodes the

information about edges in G. We assumed that f ⊥ 1M , so f ⊥ 1M and g ⊥ 1G. Therefore
| 〈g, Ag〉 | ≤ α ‖g‖2 by definition of the spectral gap for G. This implies |

〈
f, Pf

〉
| ≤ α‖f‖2,

so:
| 〈f,Mf〉 | ≤ α‖f‖2 + 2β‖f‖ · ‖f ′‖+ β2‖f ′‖2

Since f and f ′ are orthogonal, so ‖f‖2 = ‖f‖2 + ‖f ′‖2, it is straightforward to see that the
right hand side of the expression above is at most α+β+β2 if ‖f‖ = 1, so we are done.

5 Lecture 5: Selected applications

5.1 Error reduction in randomized algorithms

Suppose that we want to solve an algorithmic problem, e.g. deciding if an input graph
satisfies some property P , efficiently (in polynomial time). Quite often, we can come up
with an efficient randomized algorithm A that, on input x, samples a random bit string
r ∈ {0, 1}k and deterministically computes the answer A(x, r). Usually, there will be some
nonzero probability that the algorithm gives the wrong answer. For a moment let us deal
with one-sided error, i.e. if the input x has the property we are considering, A always outputs
“yes”, regardless of the random string r, but if x does not have the property, A outputs the
wrong answer with some probability β < 1. We are interested in reducing the probability of
error to arbitrarily small number using as few random bits as possible.

One obvious approach is to run the algorithm t times, each time with a new random
string, and output “no” if at least one of the runs answered “no”. The total probability of
failure will be βt, which can be made arbitrarily small by choosing t large enough. However,
this approach requires O(tk) random bits, k for each of the runs. In computational settings
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when random bits are expensive, we would like to achieve similar exponential error reduction
using much fewer random bits.

To achieve such a reduction, we will use a suitable expander graph. Let G be a (2k, d, α)-
expander with vertex set V = {0, 1}k and α such that β + α < 1 (note that this necessarily
puts a lower bound on d). Now, consider the following algorithm on input x:

1. pick a uniformly random starting vertex v0 ∈ V

2. starting from v0, performs t steps of a random walk (v0, v1, . . . , vt)

3. output
∧t
i=0 A(x, vi)

If we denote by Bx ⊆ {0, 1}k the subset of strings r such that A(x, r) gives wrong answer,
it is clear that the above algorithm is correct on input x if at least one vertex vi visited by
the random walk avoids Bx. To estimate the probability of this event, we use the following
theorem (see [HLW06, 3.6] for the - not difficult - proof):

Theorem 5.1. Let G be an (n, d, α)-graph and B ⊆ V, |B| = βn for some β > 0. The
probability that a t step random walk starting from a uniformly random vertex v is confined
to B is bounded from above by:

P(∀i vi ∈ B) ≤ (β + α)t

Since the original probability of error was β, we see that |Bx| = β2k and applying the
theorem gives us exponentially small error probability ≤ (β + α)t. This approach uses only
k + t log d = k + O(t) random bits (k for choosing the initial vertex and log d for sampling
neighbors during each step of the walk). Note that in order to obtain an efficient algorithm,
the expander used must be efficiently constructible, which can be achieved using an explicitly
given expander arising e.g. from the zig-zag construction.

The case of two-sided error, when the algorithm can err also on ,,yes” instances, can
be resolved in a similar fashion using majority voting - simply replace step 3 by taking the
majority of A(x, vi). A simple union bound, which can be refined using Chernoff inequality,
gives exponential error reduction (see [HLW06]).

5.2 Expander codes

Another application is closely related to the original motivation for considering expander
graphs, namely error correcting codes. This is a huge topic in itself, so we only introduce
basic definitions and show the construction of expander codes.

The setup is as follows - suppose we want to transmit some message x ∈ {0, 1}k via a
faulty communication channel. In the simplest model each bit of the input message is flipped
independently with probability p, where p is the parameter of the channel. The receiver of
the message sees an output string y which in general may be corrupted and we want to
encode our message in a possibly larger number of bits so that the probability of incorect
decoding is minimized.
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An error correcting code is a subset C ⊆ {0, 1}n (we think of each message as being
associated to a unique codeword in C). The minimum distance of the code is:

∆ = min{d(x, y) : x, y ∈ C}

where d(x, y) is the Hamming distance of two strings x, y. We will also sue the relative
distance δ = ∆

n
. Obviously greater minimum distance implies better error-correcting proper-

ties, as we may decode each output string to the closest (with respect to Hamming distance)
codeword and then at least d∆

2
e bit flips must occur to cause a decoding error. At the same

time we would like to use as short codewords as possible, maximizing the rate of the code,
defined as R = log |C|

n
.

An important class of codes are linear codes, for which C is a linear subspace of {0, 1}n
(where we {0, 1}n treat as a linear space over Z2). Note that for such codes the minimum
distance ∆ is equal to the lowest possible Hamming weight of a codeword. Each such a
code can be represented by its parity check matrix, defined as an m× n matrix A such that
C = kerA, where we assume that dimC = m (this representation is of course not unique).

Two natural questions are:

(a) is it possible to have a family of codes Cn ⊆ {0, 1}n with size n → ∞ and δn ≥ δ0,
Rn ≥ R0 for some constants δ0, R0 > 0?

(b) if yes, do these codes have efficient encoding and decoding algorithms?

Shannon showed that such asymptotically good codes as in (a) exist, and in fact a ran-
domly chosen code will have good parameters. Unfortunately, this application of the prob-
abilistic method gives no efficient decoding algorithm and it is known that the problem of
decoding linear codes is NP-hard in general ([HLW06, Section 12]). Therefore to achieve
asymptotically nonvanishing rate and distance and at the same time obtain an efficient
decoding algorithm we need to construct the desired code in a more systematic way.

This can be achieved using expander graphs.
With each linear code we can associate a bipartite graph. If the code is specified by an

k×n parity check matrix A, then G = (VL∪VR, E) has the left vertex set with |VL| = n, the
right vertex set with |VR| = k (we assume k ≤ n) and there is an edge between vi ∈ VL and
wj ∈ VR if Aji = 1. We assume that each vertex on the left has degree d (having constant
degree as n→∞ will be important for fast decoding).

If to each left vertex (row of A) we associate a variable xi, then each right vertex (column
of A) can be thought of as defining an equation involving xi’s, so that codewords all exactly
those vectors of xi’s which satisfy all the equations.

The variant of expansion we need here is the vertex expansion for the left vertices, defined
by:

h(α) = min
S⊆VL
|VL|≤α

|N(S)|
|S|

We have h(α) ≤ d. We will not prove it here, but using the zig-zag product machinery it
can be shown that there exist graphs with any k = Ω(n) and h(α) > (1− ε)d for α = Ω(n)
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([HLW06, Section 12]). Having k = Ω(n) is necessary to get nonvanishing rate R and now
we show that the relative distance is also nonvanishing.

Lemma 5.2. If h(α) > d
2
, then ∆ ≥ α. For α = Ω(n) this in particular implies that the

relative distance δ is asymptotically nonvanishing.

Proof. First note that for each S ⊆ VL of size at most α there exists a neighbor w ∈ VR
such that |N(w) ∩ S| = 1. This is because there are d|S| edges between S and N(S) and
by expansion |N(S)| > d

2
|S|, so there must be at least one vertex in N(S) with only one

neighbor in S.
To show that ∆ ≥ α, we need to show that every nonzero codeword has Hamming weight

at least α. Let x be a codeword and let S be the set of vertices corresponding to coordinates
xi 6= 0. If |S| < α, then by the neighbor property above there exists some w which has
only one neighbor in S. But this implies that the w-th coorodinate of Ax is equal to 1, so x
cannot be a codeword. Therefore |S| ≥ α, which means that ∆ ≥ α.

The main advantage of expander codes is that they can be decoded in polynomial time by
means of the so-called belief propagation algorithm. Consider the following iterative decoding
algorithm: given an input string y, if there is any variable which has more unsatisfied
equations than satisfied ones, flip its value. Repeat this procedure until all the equations are
satisfied and output the resulting string as the decoded codeword.

Lemma 5.3. If h(∆) > 3
4
d and y is a string whose distance from a codeword x is at most

∆
2

, then the algorithm above terminates on input y after a number of steps linear in n and
returns x as output.

Proof. Let y(0) = y denote the input string and let y(j) be the string after the j-th iteration
of the algorithm. Let Aj denote the set of incorrect bits in y(j), i.e. Aj = {i : y

(j)
i 6= xi}. We

want to show that At is empty for some t = O(n), so that y(t) = x.
We first show that if at every step the distance of y(j) from x never exceeds ∆, then the

algorithm terminates after a linear number of steps with x as the output. Take A = Aj
and divide N(A) into sets S corresponding to satisfied equations and U corresponding to
unsatisfied ones. We have |A| ≤ ∆, so by expansion:

|S|+ |U | = |N(A)| > 3

4
d|A|

On the other hand there are at least |U | edges going from U to A and at least 2|S| edges
from S to A (note that each satisfied vertex must have an even number of neighbors in A).
Since there are d|A| edges going out of A, we have:

2|S|+ |U | ≤ d|A|

Combining these two inequalities gives:

|U | > d

2
|A|
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This implies that there exists some variable with more than d
2

unsatisfied neighbors, so it
will be flipped (without the assumption |A| ≤ ∆ we wouldn’t be able to employ expansion
and the algorithm might get stuck with no variable to flip). This decreases |U |, so after at
most |VR| = Θ(n) steps we will have |U | = 0, which implies |A| = 0, so the output string is
x.

To show that |A| ≤ ∆ for every iteration, note that at each step |Aj| changes by ±1, so
if it exceeds ∆, there must be some t for which |At| = ∆. By the inequality above we then
have:

|Ut| >
d∆

2

On the other hand we started with |A0| ≤ ∆
2

, so |U0| ≤ |N(A0)| ≤ d∆
2

, since the left degree
is d. We get |Ut| > |U0|, but |Uj| is always nonincreasing (regardless of the size of Aj), so
this is a contradiction. Therefore |Aj| ≤ ∆ at each step of the algorithm.

Of course this decoding procedure can be improved in terms of time performance and
generally linear time decoding for expander-based codes is of great interest in theoretical
computer science.

References

[DSV03] Giuliana Davidoff, Peter Sarnak, and Alain Valette, Elementary number the-
ory, group theory, and Ramanujan graphs, London Mathematical Society Student
Texts, vol. 55, Cambridge University Press, Cambridge, 2003.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson, Expander graphs and their
applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561 (electronic).

[Kas07] Martin Kassabov, Symmetric groups and expander graphs, Inventiones Mathemat-
icae 170 (2007), 327–354, 10.1007/s00222-007-0065-y.

[LGT11] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan, Multi-way spectral par-
titioning and higher-order cheeger inequalities, CoRR abs/1111.1055 (2011).

[LPW09] D.A. Levin, Y. Peres, and E.L. Wilmer, Markov chains and mixing times, Ameri-
can Mathematical Society, 2009.
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