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Our goal is to present the construction of Gromov’s monster group - a finitely generated
group which does not embed coarsely into any Hilbert space. This is perhaps the most
prominent example of how random objects can be useful in geometric group theory. We
don’t provide all the details and proofs here, since some parts of the construction, involving
small cancellation theory and hyperbolicity of random groups, are rather involved. More
comprehensive references for the topic include:

• Gromov’s original paper [Gro03] (contains lots of ideas, but only sketches of proofs)

• Arzhantseva and Delzant’s paper fleshing out Gromov’s ideas [AD08] (somewhat hard
to read, but contains all ingredients of the construction, including a general approach
to graphical small cancellation theory)

• Ollivier’s expository paper [Oll03] and references therein (easier to read than the pre-
vious two, sketches a different, combinatorial approach to small cancellation in random
groups; see also [Oll05])

The main motivation for constructing groups which do not embed coarsely into Hilbert
spaces came from looking for counterexamples to the Baum-Connes conjecture, although
this is something I know very little about (see references in [AD08] for more context).

In these notes whenever we use the term “with high probability” it means “with proba-
bility approaching 1 as relevant parameters (e.g. relation length in a group presentation or
size of a graph) go to infinity”.

1 Outline of the construction

Theorem 1.1 (main theorem). There exists a finitely generated group G∞ which cannot be
coarsely embedded into any Hilbert space.

Recall that a map f : X → Y between two metric spaces X, Y is a coarse emebedding if
for all x, x′ ∈ X:

ρ−(d(x, x′)) ≤ d(f(x), f(x′)) ≤ ρ+(d(x, x′))
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for some functions ρ−, ρ+ such that ρ±(t)
t→∞−−−→ ∞. If X is a group with the word metric

associated to a finite generating set (or more generally, a graph), then we can actually assume
that any coarse embedding is a Lipschitz map, so the only interesting part is the bound on
ρ−(t).

The idea of the construction is to find a group which in an appropriate sense contains
an infinite sequence of expander graphs (this is natural since expanders embed badly into
Hilbert spaces). More precisely, suppose we have an infinite sequence of expanders {Γn}∞n=1

(satisfying some additional assumptions to be spelled out later). We will start with a group
G0, say, the free group, and inductively construct a sequence of groups G1, G2, G3, . . . such
that:

• Gn+1 is a quotient of Gn

• Γn can be embedded quasi-isometrically into Gn and all subsequent quotients

The monster group will then be the direct limit G∞ = lim−→Gn.
The groups Gn will be random groups in the following sense. To each graph Γn we

will associate a random labelling of its edges by generators of G0. This will define a set of
random words R(Γn) (coming from cycles in Γn) and Gn+1 will be the quotient of Gn by
R(Γn). With high probability the random labelling will be “nice enough”, so that the natural
map fn : Γn → Gn+1 = Gn/〈R(Γn)〉 will be a quasi-isometric embedding. Furthermore, the
random labelling will satisfy certain small cancellation condition, which is needed to prove
that the groups we obtain are infinite, non-elementary and hyperbolic (hyperbolicity will be
important for proving the quasi-isometricity of the embedding fn).

For this construction to work our graphs Γn must have sufficiently quickly growing girth
(recall that girth(Γ) is the length of the shortest cycle in Γ). Roughly speaking, girth of
Γn will be equal to the typical relation length in R(Γn). As the size of Γn grows and we
take more relations, the relation length has to be large enough, otherwise there will likely
be cancellations between the relators and we will not get an infinite group (compare this to
the situation in the density model [Oll05] of random groups).

In addition, Γn will have to satisfy a certain “thinness” condition, meaning that they
cannot have too many distinct paths of given length. How “thin” Γn has to be will depend
on the spectral radius of Gn. Thus a crucial part of the construction will be obtaining a
uniform bound on the spectral radii of the subsequent quotients Gn (otherwise we might have
to take thinner and thinner graphs and lose expansion). This is were property (T) comes into
play - we will show that with high probability a random group in the model above satisfies
property (T) and this will imply the bound on the spectral radius.

There will be many parameters in the construction (like spectral radii and hyperbolicity
constants of groups, injectivity radii of quotient maps, girth of graphs) which depend on
each other in a complex way - we try to indicate these dependencies in the statements of
theorems and lemmas. The issue of how quickly the parameters like girth and hyperbolicity
constants grow is related to the notion of a lacunary hyperbolic group, see [AD08].
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2 Randomly labelled graphs

Let Γ be a (finite or infinite) graph. Consider a finite set of generators S = {a1, . . . , ad}.
From now on all groups will be generated by the fixed set S.

A labelling of Γ is assigning to each edge of Γ an element of S ∪ S−1 and an orientation.
When traversing an edge labelled with some generator s, we read off s if we traverse the
edge in the direction consistent with the orientation and s−1 if we traverse it in the opposite
direction.

Figure 1: A graph Γ (with a chosen basepoint) labelled with {a, b}

Each directed path in Γ corresponds to a word over S ∪S−1 (not necessarily reduced, i.e.
it may have adjacent pairs of the form ss−1). In what follows whenever a graph Γ appears,
we implicitly assume that it comes with some labelling, so we will be often confusing paths
in the graph and words corresponding to labels read off these paths.

Pick a vertex in Γ and consider the fundamental group of Γ with that vertex as the
basepoint. This group is generated by words read along simple cycles in Γ. For example, for
the graph from Figure 2 one set of generators is aaa, ababa−1a−1 and a−1b−1aabba. Denote
this set of words by R(Γ) (if the graph is not connected, we take the union of these sets
over all connected components). Given any group G0 generated by S, we can now consider
a natural quotient group associated to the labelled graph:

G(Γ) := G0/〈R(Γ)〉

Of course this group does not depend on the basepoint.
In the example above, if G0 is the free group, the group G(Γ) is given by the presentation

〈a, b|aaa, baba−1, aab〉 (note that we have cyclically reduced the words from R(Γ)). We can
think of the Cayley graph of G(Γ) as being formed by “gluing together” copies of Γ.

Note that this notion generalizes the usual presentation of groups in terms of generators
and relations - if G = 〈S|r1, . . . , rk〉 for some words r1, . . . , rk, by taking Γ to be a disjoint
union of k cycles labelled by r1, . . . , rk and G0 to be the free group, we get that G(Γ) =
G0/〈R(Γ)〉 = G.

In our construction we will be interested in properties of random labellings. A random
labelling consists of choosing each edge label and orientation at random, independently and
uniformly over all elements of S ∪ S−1 and orientations.
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Now, given a labelled graph Γ and the group G(Γ), we have a natural map from the graph
(considered as a metric space with the shortest path metric) to the group (with the word
metric associated to the generating set S) - we pick a basepoint in Γ and for each vertex
we choose a simple path leading to that vertex. The vertex is then mapped to the group
element represented by the word read off from the label on the path. Note that this map is
well defined, since two different simple paths leading to the same vertex close a cycle, but
cycles are killed in G, so the paths represent the same group element.

In general this map doesn’t respect the metric structure of Γ. In the example above the
basepoint and the rightmost vertex have distance 3 in Γ, but the corresponding words ε (the
empty word) and a−1b−1a give us group elements e and a in G(Γ), which have distance 1.
We can see that this is because there are distinct cycles which have large segments labelled
with the same words, which enforces very short relations in G. However, we will see that
this cannot happen provided the labelling satisfies certain small cancellation conditions. In
particular, we will show that for a randomly chosen labelling the map from Γ to G with high
probability will be a quasi-isometry.

3 Small cancellation conditions

Since we won’t be providing any details regarding small cancellation conditions which hold
for random groups (see [Oll07] and other papers by Ollivier for a comprehensive treatment),
we only describe the idea briefly. We start with the classical notion of small cancellation.
Suppose we have a set of words R over S ∪ S−1. A piece is a subword which appears in two
distinct words from R. For example if R = {aaab, aacc, abcd}, then aa and ab are pieces of
length 2. Small cancellation conditions say that for a given set of relations R pieces cannot
be too long. The two most common conditions are:

• C ′(λ): R satisfies C ′(λ) condition if for every piece w appearing in a word r ∈ R we
have |w| < λ|r|, where λ > 0 (note the strict inequality)

• C(p): R satisfies C(p) condition if every word in R is a concatenation of at least p
pieces, where p is a natural number

For groups we usually assume that the set of relations R is closed under cyclic permuta-
tions and taking inverses.

For example, the presentation Z2 = 〈a, b|aba−1b−1, ba−1b−1a, a−1b−1ab, b−1aba−1〉 satisfies
C(4) condition (since all pieces are single letters), but not C ′(1/4) (since the inequality in
the definition of C ′(λ) is strict). Of course C ′(λ) condition implies C(b1/λc+ 1) condition.

It is a classical result that if the group presentation satisfies C ′(1/6) condition, then the
group is hyperbolic. We will need a similar result in the context of presenation coming from
labelled graphs - this is called graphical small cancellation theory.

Given a labelled graph Γ, a graphical piece is a word which appears as a label on two
distinct paths embedded in Γ. In the example from Figure 2, aa is a graphical piece, since
it appears on two distincts paths (in the upper and the lower right triangle).

The graphical small cancellation conditions are:
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• Gr′(λ): a labelled graph Γ satisfies Gr′(λ) condition if for every piece w appearing on
a simple cycle c we have |w| < λ|c|

• Gr(p): a labelled graph Γ satisfies Gr(p) condition if every simple cycle in Γ is a
concatenation of at least p pieces

There are also other variants of the definitions, see [Oll03]. In the case where Γ is
a disjoint union of cycles, graphical small cancellation conditions reduce to the classical
small cancellation conditions. The fact we will need is that for some λ < 1/6 a random
group satisfies Gr′(λ) condition - this will imply that the group is hyperbolic, infinite, non-
elementary and torsion-free.

4 Assumptions about expanders

In the construction we will need a family of bounded-degree expanders {Γn}∞n=1 satisfying
the following conditions:

• |Γn| → ∞ as n→∞ (where |Γn| is the number of vertices in Γn)

• diam(Γn) ≤ Cgirth(Γn) for all n and some universal constant C > 0 (in particular
girth(Γn)→∞ as n→∞)

• graphs Γn are b-thin for some b > 0, meaning that:

#{simple paths in Γn of length at most
1

2
girth(Γn)} ≤ K (2d)b girth(Γn)

for some universal constant K > 0 (recall that d is the number of generators in the
group presentations we are considering).

Note that since obviously diam(Γn) ≥ 1
2
girth(Γn) we must have C > 1/2. From now

on we will often denote girth(Γn) by gn. The high girth assumption will be crucial in the
construction, in particular we will need a subsequence of {Γn}∞n=1 such that the girths grow
exponentially quickly (in groups defined by labelled graphs the girth will correspond roughly
to the shortest relation length).

In what follows we will need the thinness parameter b to be sufficiently small. A simple
way to obtain arbitrarily small thinness while preserving the expander property of Γn is to
to perform a subdivision of edges. Fix j ≥ 2 and denote by Γjn a graph obtained from Γn
by dividing each edge of Γn into j new edges (this introduces a number of new vertices of
degree 2). Obviously both diameter and girth increase j times after this operation, so the
assumptions on girth are still satisfied. However, the number of paths in Γjn of length at
most 1

2
girth(Γjn) is at most j2 times the number of paths in Γn of length at most 1

2
girthΓn

(subdividing the edges doesn’t introduce any new paths apart from the possibility of choosing
the starting and end vertex in j2 ways). Thus:
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#{simple paths in Γjn of length at most
1

2
girth(Γjn)} ≤ j2K 2b girth(Γn) = j2K 2

b
j
girth(Γjn)

and the new thinness is b
j
. The subdivision decreases the spectral gap of Γn roughly by a

factor of j2, so as long as j is independent of n we stil obtain an expander family.

5 Main lemmas: quasi-isometries and hyperbolicity

The essence of the inductive construction described in the outline is the following lemma:

Lemma 5.1. Let G0 be hyperbolic, infinite with spectral radius ρ < 1. Let Γ be a graph
satisfying the last two assumptions from Section 4. Fix λ < 1/6 and pick a random labelling
of Γ. Then, provided that g = girth(Γ) is large enough and thinness of Γ is small enough,
with high probability we have the following:

(a) For any word w labelling a (not necessairly simple) path in Γ we have:

‖w‖G0
≥ A(|w| − εg)

for some constant A > 0, depending only on ρ, and ε > 0, depending on ρ and λ (here
w denotes the element of G0 represented by the word w and ‖·‖G0

is its distance from
the identity in G0)

(b) G = G0(Γ) satisfies Gr′(λ) small cancellation condition

The lemma says that all words appearing on simple paths in Γ can be embedded as
quasi-geodesics in G0 (remember that φ which maps w to w is a map from the set of paths
in Γ, or the universal cover of Γ, and not from Γ). Note that G0 doesn’t “know” anything
about the metric structure of Γ. The idea of the proof is that for short lengths a randomly
labelled path in Γ will emulate the simple random walk in G0 and for long words we will
employ hyperbolicity to promote local quasi-geodesics to global quasi-geodesics.

Proof. Let Wn denote the simple random walk in G0. Since G0 has spectral radius ρ < 1,
we have the bound on return probabilities:

P(Wn = e) . ρn = (2d)−κn

for κ = − log2d ρ and sufficiently large n (“.” means an inequality up to a universal constant).
We want to apply this inequality for all n, so we can e.g. introduce a factor of 1/2 in the
exponent - we get that for all n:

P(Wn = e) . (2d)−
1
2
κn
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Let w be a word appearing in Γ on a fixed path of length between εg and g
2
, where ε > 0 is

some small universal constant to be determined later. Since this has to be a simple path, its
labels are chosen independently and with the same distribution under the random labelling;
thus w has the same distribution as Wn. It’s easy to show [Oll04, Proposition 17] that:

P
(
‖w‖G0

≤ κ

2(1− κ)
|w|

)
≤ (2d)−

κ
4
|w| (1)

for sufficiently large |w| (i.e. the simple random walk on G0 has linear speed). Take g large
enough so that this estimate holds for all w of length between εg and g

2
. Let A = κ

2(1−κ)
. We

call a word w bad if ‖w‖G0
≤ A|w|. The estimate (1) says that:

P
(

a fixed path of length between εg and
g

2
gives a bad word

)
≤ (2d)−

κ
4
|w|

Now we do the union bound over all possible paths of length at most g
2

in Γ. If Γ is b-thin,
then:

#{simple paths in Γ of length at most
g

2
} ≤ K (2d)bg

for some universal constant K > 0. Thus:

P
(
∃ a path of length between εg and

g

2
which gives a bad word

)
≤ K (2d)bg(2d)−

κ
4
|w|

≤ K (2d)(b−κ
4
ε)g

as |w| ≥ εg. We want this probability to go to 0 as g →∞, so we need:

b <
κ

4
ε

By discussion in Section 4 we can assume that b satisfies this condition by performing a
subdivision of edges if necessary, replacing Γ with Γj. Crucially, what j we need to take
depends only on ρ and not on G0 or any other parameters.

Thus if b is small enough (depending on ρ), then with high probability every word w
appearing in Γ on a path of length between εg and g

2
satisfies:

‖w‖G0
≥ A|w|

Recall that a map f : X → Y is an (α, β, γ)-local quasi-isometric embedding if for every
x, x′ such that d(x, x′) ≤ γ we have:

αd(x, x′)− β ≤ d(f(x), f(x′)) ≤ 1

α
d(x, y) + β

Thus the map w 7→ w is an (A,Aεg, g
2
)-local quasi-isometric embedding. We want to

have a global quasi-isometric embedding, i.e. have the same inequality (with possibly worse
parameters) for w of all lengths.

To get this, we use the fact that in hyperbolic groups local quasi-geodesics are in fact
global quasi-geodesics:
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Proposition 5.2. [AD08, Theorem 3.7] If X is a δ-hyperbolic space, then for sufficiently
large γ (depending on α, β and δ) every (α, β, γ)-local quasi-isometric embedding in X is an
(α

2
, β)-quasi-isometric embedding. Furthermore, one can take:

γ(α, β, δ) = η(α, δ) + 8β

where η is a function independent of β.

We assumed that G0 is hyperbolic and in our case α = A, β = Aεg and γ = g
2
. So we

need:
g

2
≥ η(A, δ) + 8Aεg

where δ is the hyperbolicity constant of G0. It is enough if we take ε such that, say, 8Aε < 1/4
(depending only on ρ) and g large enough (depending only on on ρ and δ).

Thus the map w → w is an
(
A
2
, Aεg

)
-quasi-isometric embedding and for every word w

we have:
‖w‖G0

≥ A(|w| − εg)

as desired.
We skip the proof of the small cancellation condition, as it is rather involved.

We know how to quasi-isometrically embed words appearing on paths in Γ into G0. The
next step is to obtain a quasi-isometric embedding of the graph Γ into the quotient group
G0(Γ). Let f : Γ → G0(Γ) denote the natural map from the labelled graph to the quotient
(this comes of course from the map w 7→ w on words).

Theorem 5.3. Let Γ be a labelled graph satisfying Gr′(λ) condition for some λ < 1/6 and
such that that the map φ from Lemma 5.1, mapping w to w, is an

(
A
2
, Aεg

)
-quasi-isometric

embedding. Then:

(a) The group G0(Γ) is infinite hyperbolic torsion free

(b) The injectivity radius of the quotient map π : G0 → G0(Γ) is at least Ag
4

(c) The map f : Γ→ G0(Γ) is an
(
A
4C
, Aεg

)
-quasi-isometric embedding

Recall that C is the constant such that diam(Γ) ≤ Cgirth(Γ) and injectivity radius of π
is the largest r such that the quotient map π : G0 → G0(Γ) is injective on the ball of radius
r around identity in G0.

Proof. We skip the proofs of parts (a) and (b), since they are more involved (see [Oll03]).
We only show how to put the pieces together to obtain the quasi-isometric embedding.

Let r be the injectivity radius of the quotient map. Take any x, y ∈ Γ. We have two
possible cases:
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(1) d(f(x), f(y)) ≤ r

Because the quotient map is injective on a ball of radius r, we can actually find points
from G0 which are mapped onto f(x) and f(y), respectively, such that:

d(f(x), f(y)) = d(φ(x), φ(y)) ≥ A

2
d(x, y)− Aεg

by the quasi-isometry assumption about φ (here we are confusing x and y with the paths
representing them in Γ with respect to a given basepoint).

(2) d(f(x), f(y)) > r

Since the distance between x and y is at most diam(Γ), we have in particular:

d(f(x), f(y)) > r ≥ r
d(x, y)

diam(Γ)
≥ Ag

4

1

Cg
d(x, y) =

A

4C
d(x, y)

by part (b) and the assumption diam(Γ) ≤ Cgirth(Γ).

From C ≥ 1/2 we have A
4C
≤ A

2
, so by combining the two bounds above we get the

desired quasi-isometry.

6 Gromov monster group: construction

Now we proceed to construct the Gromov monster group.
Start from any group G0 which is non-elementary hyperbolic, infinite and torsion-free (for

example the free group Fd). Let {Γn}∞n=1 be the expander sequence satisfying assumptions
from Section 4 and let gn = girth(Γn) (we identify Γn with the subdivision Γjn to avoid
notational complications).

We put a random labelling on Γ1 and consider the random group G1 := G0(Γ1). We
can assume that girth(Γ1) is high enough and that Γ1 is thin enough. By Lemma 5.1 with
high probability the assumptions of Theorem 5.3 will be satisifed and G1 will be an infinite,
torsion-free hyperbolic group. Furthermore, the natural map f1 : Γ1 → G1 is an

(
A
4C
, Aεg1

)
-

quasi-isometric embedding, where A and ε depend only on the spectral radius of G0.
Now we can iterate this construction. Suppose that at the n-th step we have a group Gn

which is hyperbolic, infinite and torsion-free. By passing to a subsequence, we can always
assume that Γn+1 has sufficiently high girth and is thin enough, so that when we put a
random labelling on Γn+1, with high probability the assumptions of Theorem blaa will be
satisifed. Thus we get the next quotient group Gn+1 = Gn(Γn+1), which is hyperbolic,
infinite and torsion-free, and the map fn+1 : Γn+1 → Gn+1 is an

(
A
4C
, Aεgn

)
-quasi-isometric

embedding.

9



Note that at each step the parameters A, ε and the parameter j of the subdivision, needed
to obtain thinness, depend on the spectral radius of the group Gn of the previous step (and
not otherwise on the group). It could happen that this spectral radius is not bounded away
from 1, so the quasi-isometry constants could get worse as n grows and Γn could cease being
an expander sequence. In what follows we assume that for all groups Gn their spectral radii
are uniformly bounded from above by ρ, the spectral radius of G1. This is the case if G1 has
property (T) ([AD08]), which is true for random groups (see [Sil03]).

In this way we obtain a sequence of successive quotients:

G0 � G1 � . . .� Gn � . . .

and maps fn : Γn → Gn such that for any x, y ∈ Γn we have:

A

4C
d(x, y)− Aεgn ≤ d(fn(x), fn(y)) ≤ d(x, y)

Let G∞ be the direct limit of the sequence Gn. It is a finitely generated (possibly infinitely
presented) group which “coarsely contains” a sequence of expanders in the following sense:

Theorem 6.1. There exist maps fn : Γn → G∞ such that for any x, y ∈ Γn we have:

A

4C
d(x, y)− Aεgn ≤ d(fn(x), fn(y)) ≤ d(x, y)

Proof. As each for each group Gn we have a quotient map from Gn to G∞, this also defines
the maps fn : Γn → G∞ in a natural way (compose fn : Γn → Gn with the quotient to G∞).

We already know that the quasi-isometric embedings fn : Γn → Gn satisfy the inequality
above. So the expander Γn embeds nicely into Gn, but it could get squashed when passing
through subsequent quotient maps. We can ensure that this does not happen in the following
way. The map fn : Γn → Gn is 1-Lipschitz, so if the injectivity radius of πn is greater
than the diameter of Γn, the image fn(Γn) will map injectively into all subsequent groups
Gn+1, Gn+2, . . . and thus into G∞. This will give us the inequality in the statement of the
theorem.

To ensure that the injectivity radius is greater than the diameter, note that the injectivity
radius of the map πn : Gn → Gn+1 is at least Agn+1

4
by Theorem 5.3 and we have diam(Γn) ≤

Cgn. So it is enough to have Agn+1

4
≥ Cgn, which can be ensured by passing to a subsequence

of {Γn}∞n=1.

Technically speaking this does not give us a coarse embedding of the disjoint union
tΓn into G∞, since we can have sequences of pairs (xn, yn) such that d(xn, yn) → ∞, but
A
4C
d(xn, yn)−Aεgn stays bounded, for example when d(xn, yn) = o(gn). Nevertheless this is

enough to prove our main result.
Note that the condition gn+1 ≥ C

4A
gn from the proof implies the exponential growth of the

girth sequence gn. This is related to the notion of lacunarity mentioned in the introduction.
From this we almost immediately get the main result:
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Theorem 6.2. The group G∞ cannnot be coarsely embedded into any Hilbert space.

Proof. It is well known that if {Γn}∞n=1 is a family of expanders, then one can find sequences
of vertices xn, yn ∈ Γn such that d(xn, yn) = Ω(log |Γn|), but under any Lipschitz embedding
of the family Γn into a Hilbert space, the images of xn, yn stay within a bounded distance
from each other (in other words, an expander on n vertices has `2 distortion Ω(log n)).

Suppose there exists F : G∞ → H - a Lipschitz coarse embedding into a Hilbert space.
By composing fn with F we obtain Lipschitz embeddings Fn : Γn → H.

Let xn, yn ∈ Γn be such that d(xn, yn) ≥ K log |Γn| for some K > 0, but Fn(xn), Fn(yn)
are within distance bounded from each other. As F is a coarse embedding, d(fn(xn), fn(yn))
is bounded if and only if d(Fn(xn), Fn(yn)) is bounded.

However, by Theorem 5.3:

d(fn(xn), fn(yn)) ≥ A

4C
d(xn, yn)− Aεgn ≥

AK

4C
log |Γn| − Aεgn

Assumptions about high girth of our expanders imply that log |Γn| ≥ Lgn for some L > 0
(both gn and diam(Γn) are of the order of ∼ log |Γn|), so:

d(fn(xn), fn(yn)) ≥ AKL

4C
gn − Aεgn

If we take ε to be small enough in our construction, the right hand side goes to infinity as
gn → ∞. Thus d(fn(xn), fn(yn)) goes to infinity while d(Fn(xn), Fn(yn)) stays bounded - a
contradiction.

The only remaining point to be addressed is whether the expander family {Γn}∞n=1 satis-
fying the assumptions from Section 4 actually exists. It turns out that one can use Phillips-
Lubotzky-Sarnak expanders for this purpose (see discussion in Section 7 from [AD08]).
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