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1 Polynomials of several variables

We will be working with polynomials of several variables, sometimes over an arbitary field
F, but usually over a finite field such as Zp for prime p. For example:

P (x, y) = x2 + y2 − xy + 1

is a polynomial of two variables x, y and:

Q(x1, x2, . . . , xn) = x1 . . . xn + x1 + . . .+ xn

is a polynomial of n variables.
The set of all polynomials over a field F in variables x1, . . . , xn is often denoted by

F[x1, . . . , xn].
For n variables x1, . . . , xn a monomial is a polynomial of the form axc11 . . . x

cn
n , where

ci ≥ 0 and a is a coefficient from the field F. The total degree (or simply degree) of a
monomial is the sum c1 + . . .+ cn. Every polynomial can be written as a sum of monomials
with nonzero coefficients and the total degree of a polynomial is the maximum degree of its
monomials. For example, x2yz has degree 4, while x2 + y + z has degree 2, since x2 highest
term.
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Sometimes we will be interested in treating all variables but one as ”fixed” and considering
the polynomial as a polynomial of only one remaining variable, with its coefficients now being
polynomials in the other variables. For example, if we treat P (x, y) = x2y + x2 + xy3 as a
polynomial of variable x only, then the coefficient of x2 in P (x, y) is y+ 1 and the coefficient
of x is y3.

A tuple (s1, . . . , sn) ∈ Fn is called a zero of a polynomial P (x1, . . . , xn) of n variables
if P (s1, . . . , sn). A familiar property of polynomials of one variable is that a polynomial of
degree t can have at most t zeroes (possibly repeated). This is of course not true for polyno-
mials of several variables - for example, P (x, y) = xy as a polynomial over R vanishes on all
pairs (x, 0), (0, y), x, y ∈ R, so it has infinitely many zeroes. Nevertheless in a certain sense
the zero set of a polynomial of low total degree cannot be too ”complex”, it cannot ”wind”
too much, in the same way as a polynomial of one variable cannot change its sign too often
without having many zeroes. This observation, formulated more precisely in Combinatorial
Nullstellensatz below, turns out to be surpisingly useful in solving combinatorial problems
and will be the starting point of this course.

Before we get to the combinatorial meat, a few remarks about polynomials over finite
fields would be in place. Every polynomial P of n variables over a field F can be treated as a
function P : Fn → F, simply by evaluating the polynomial on every tuple from Fn. However,
as we will see below, it is important to distinguish between the polynomial as an algebraic
expression, involving some monomials and their coefficients, and the corresponding function,
mapping field elements (or tuples of elements) to field elements.

For example, suppose we have a function of one variable f(x) over a finite field F and
we know its values at k distinct points s1, . . . , sk. Then it is easy to find a polynomial P (x)
which agrees with f on those points by Lagrange interpolation:

P (x) =
d+1∑
i=1

f(si)
d+1∏
j=1
j 6=i

x− sj
si − sj

One readily checks that P (si) = f(si) for all i. In particular every function can be represented
by a polynomial of degree at most |F| simply by taking s1, . . . , sk to be all elements of F.
Thus over finite fields there is no difference between polynomials and arbitrary functions if
we are interested only in values they take and not in their algebraic form. Note however
that this representation is not unique - consider for example two polynomials:

P (x) = 0

Q(x) = xp − x

over Zp. For every y ∈ Zp we have Q(y) = yp − y = 0 mod p by Fermat’s little theorem. So
although Q(x) is not equal to zero as an algebraic expression, as a function from Zp to Zp it
is equal to a constant zero function.

Since we will be interested mostly in algebraic or combinatorial properties of various
objects, for us the zero polynomial will be a polynomial with all coefficients equal to 0 and
not simply a constant zero function.

2



2 Combinatorial Nullstellensatz

Theorem 2.1 (Combinatorial Nullstellensatz). Let P (x1, . . . , xn) be a polynomial in n vari-
ables over arbitrary field F. Suppose that P has degree d and the coefficient of xd11 . . . xdnn ,
with d1 + . . .+dn = d, is nonzero. Then for any sets S1, . . . , Sn ⊆ F such that |Si| > di there
exist s1, . . . , sn, with si ∈ Si, such that P (s1, . . . , sn) 6= 0.

Proof. We use induction on n. The base case n = 1 is obvious, so assume n ≥ 2 and that
we have proved the theorem for n− 1.

Suppose by contradiction that P (s1, . . . , sn) for all si ∈ Si. For any s ∈ S1 we can write:

P (x1, . . . , xn) = (x1 − s)Q(x1, . . . , xn) +R(x1, . . . , xn)

for some polynomials Q and R. The polynomial R does not depend on x1. By the assumption
on the coefficient of xd11 . . . xdnn in P the polynomial Q must have nonzero coefficient of
xd1−11 . . . xdnn and we have deg(Q) = d− 1.

Now if we substitute any (s, s2, . . . , sn), si ∈ Si, into the equation above, we have
P (s, s2, . . . , sn) = 0 by assumption, so R(s, s2, . . . , sn) = 0. But R does not actually de-
pend on the first variable, so R vanishes for any s2, . . . , sn. Now substitute (s′, s2, . . . , sn)
into the equation for some s′ 6= s. Then we get:

0 = P (s′, s2, . . . , sn) = (s′ − s)Q(s′, s2, . . . , sn) +R(s′, s2, . . . , sn) = (s′ − s)Q(s′, s2, . . . , sn)

so we must have Q(s′, s2, . . . , sn) = 0 for any s′ 6= s and s2, . . . , sn. But by induction
hypothesis Q cannot vanish on every point of (S1\{s}) × S2 × . . . × Sn, so we arrive at a
contradiction.

Before we move to the applications of the theorem, a few words about terminology.
The name ”Combinatorial Nullstellensatz” comes from an analogy with the fundamental
Hilbert’s Nullstellensatz in algebra. In one of its variants it states that if P,Q1, . . . , Qm are
polynomials in variables x1, . . . , xn over an algebraically closed field and f vanishes over all
common zeroes of g1, . . . , gm, then there exists some polynomials H1, . . . , Hm such that:

P k = H1G1 + . . . HmGm

for some integer k.
What we call Combinatorial Nullstellensatz is a consequence of a more general theorem

which bears more resemblance to Hilbert’s Nulstellensatz and works over an arbitrary field
(although we will not need it in combinatorial applications).

Theorem 2.2. Let S1, . . . , Sn be subsets of an arbitrary field F and let:

Gi(xi) =
∏
si∈Si

(x− si)
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be polynomials over F. If P (x1, . . . , xn) is a polynomial such that P (s1, . . . , sn) = 0 for all
si ∈ Si, then:

P = H1G1 + . . .+HnGn

for some polynomials Hi satisfying deg(Hi) ≤ deg(P )− deg(Gi)

Combinatorial Nullstellensatz is often used to show the existence or prove lower bounds
on the size of a combinatorial object. Such proofs are nonconstructive, i.e. they don’t show
how to construct objects that we are interested in, but nevertheless sometimes this is the
easiest way to obtain the desired bound. A typical way of proving a lower bound on the size
of a set with desired properties would be as follows:

• Assume by contradiction that the set we are investigating is small

• Find a polynomial which vanishes on our set

• Show that the appropriate coefficient in the polynomial is nonzero

• If our set is small, the polynomial’s degree is likely to be low, so we can conclude
by Combinatorial Nullstellensatz that there must exist a point in our set where the
polynomial is nonzero

• The contradiction proves that our set cannot be too small

This type of argument captures the intuition that low-degree polynomials can vanish only
on sets which in some sense have ”low complexity”. We will see different variants of such
proofs in the problems.

Problem 2.1 (Cauchy-Davenport Theorem). Let p be a prime number and let A,B be
nonempty subsets of Zp. Let:

A+B = {a+ b : a ∈ A, b ∈ B}

Prove that:
|A+B| ≥ min{p, |A|+ |B| − 1}

Proof. If |A|+ |B| > p, then A+ B = Zp - for any x ∈ Zp we have |B| = |x− B|, so A and
x − B have nonempty intersection, which implies that a = x − b for some a ∈ A, b ∈ B, so
x = a+ b and x ∈ A+B as desired.

So let |A|+ |B| ≤ p and suppose that |A+B| ≤ |A|+ |B| − 2 < p. Let C be the subset
of Zp such that A+B ⊆ C and |C| = |A|+ |B| − 2. Consider a polynomial:

P (x, y) =
∏
c∈C

(x+ y − c)

Its degree is equal to |A|+|B|−2. By definition of C we have P (a, b) = 0 for all a ∈ A, b ∈ B.
The coefficient of x|A|−1y|B|−1 in P (x, y) is

(|A|+|B|−2
|A|−1

)
6= 0 in Zp, since |A| + |B| − 2 < p.

By Combinatorial Nullstellensatz applied to S1 = A, S2 = B we have that there exists a
pair a′ ∈ A, b′ ∈ B such that P (a′, b′) 6= 0, which is a contradiction. Thus |A + B| ≥
|A|+ |B| − 1
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Problem 2.2. Let p be a prime number and let A,B be nonempty subsets of Zp with |A| 6=
|B|. Let:

A+̂B = {a+ b : a ∈ A, b ∈ B, a 6= b}
Prove that:

|A+̂B| ≥ min{p, |A|+ |B| − 2}
Deduce the Erdős-Heilbronn conjecture:

|A+̂A| ≥ min{p, 2|A| − 3}

Proof. As before, we can assume that |A|+ |B| − 2 ≤ p - if not, then for any x ∈ Zp we have
|A|+ |x−B| ≥ p+ 3, which implies that |A∩ (x−B)| ≥ 2. Therefore there exists elements
a, a′ ∈ A, a 6= a′, and b, b′ ∈ B, b 6= b′, such that a + b = a′ + b′ = x. If a 6= b or a′ 6= b′,
then we are done. If not then we have 2a = 2a′ which implies a = a′, a contradiction, unless
p = 2, but the theorem is trivial in the latter case. Therefore A+̂B = Zp.

Suppose now that |A+̂B| ≤ |A|+ |B| − 3. We use the same approach as in the previous
problem. Let C be such that A+̂B ⊆ C and |C| = |A|+ |B| − 3. Consider a polynomial:

P (x, y) = (x− y)
∏
c∈C

(x+ y − c)

It has degree |C| + 1 = |A| + |B| − 2. Since A+̂B ⊆ C, we have P (a, b) = 0 for all a ∈ A,
b ∈ B. The coefficient of x|A|−1y|B|−1 is:(

|A|+ |B| − 3

|A| − 2

)
−
(
|A|+ |B| − 3

|A| − 1

)
=
|A| − |B|
|B| − 1

(
|A|+ |B| − 3

|A| − 2

)
6= 0

since |A|+ |B| − 3 ≤ p− 1 (note that we can assume |B| 6= 1, since the theorem is trivial in
that case). By applying Combinatorial Nullstellensatz with S1 = A, S2 = B there exists a
pair a′ ∈ A, b′ ∈ B such that P (a′, b′) 6= 0, a contradiction. Therefore |A+̂B| ≥ |A|+ |B|−2.

To deduce the Erdős-Heilbronn conjecture, simply delete any element from A and apply
the previous result to A and the obtained set.

Erdős-Heilbronn conjecture can be thought of as a generalization of Cauchy-Davenport
theorem in which we restrict the allowed values a+ b to those which satisfy a certain polyno-
mial condition - for example, the condition a 6= b means that the polynomial h(x, y) = x− y
must be nonvanishing on a, b. It turns out that the same technique as above can be used to
solve restricted sumset problems for general polynomial conditions.

Problem 2.3. Let A1, . . . , Ak be nonempty subsets of Zp and let h(x1, . . . , xk) be a polynomial
over Zp. Let:

Ah = {a1 + . . .+ ak : ai ∈ Ai, h(a1, . . . , ak) 6= 0}
and m = (|A1|+1)+ . . .+(|Ak|+1)−deg(h). Prove that if the coefficient of x

|A1|−1
1 . . . x

|Ak|−1
k

in
(x1 + . . .+ xk)

mh(x1, . . . , xk)

is nonzero, then:
|Ah| ≥ m+ 1
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Proof. Suppose by contradiction that |Ah| ≤ m and let B be the smallest set containing Ah
such that |B| = m. Consider the polynomial:

P (x1, . . . , xk) = h(x1, . . . , xk)
∏
b∈B

(x1 + . . .+ xk − b)

Note that P vanishes on all points (a1, . . . , ak) ∈ A1 × . . .× Ak, since either a1 + . . .+ ak ∈
Ah ⊆ B or h(a1, . . . , ak) = 0.

Because of the assumption on the coefficient of x
|A1|−1
1 . . . x

|Ak|−1
k we have deg(P ) =

m + deg(h). On other hand by definition of B we have that P vanishes on every point
of A1 × . . .× Ak, which contradicts Combinatorial Nullstellensatz.

Of course, the whole difficulty of using this approach to solve restricted sumset prob-
lems lies in calculating the coefficient of x

|A1|−1
1 . . . x

|Ak|−1
k in the appropriate polynomial.

An example where this requires nontrivial combinatorics, but gives a nice generalization of
Problem 2.2, is the following problem.

Problem 2.4. Let A1, . . . , Ak be nonempty subsets of Zp such that |Ai| 6= |Aj| for i 6= j and
|A1|+ . . .+ |Ak| ≤ p+

(
k+1
2

)
− 1. For:

A = {a1 + . . .+ ak : ai ∈ Ai, ai 6= aj for all i 6= j}

prove that:

|A| ≥ |A1|+ . . .+ |Ak| −
(
k + 1

2

)
+ 1

Hint: show that for m = a1 + . . .+ an −
(
n
2

)
the coefficient of xa11 . . . xann in

(x1 + . . .+ xn)m
∏
i<j

(xi − xj)

is
m!

a1!a2! . . . an!

∏
i<j

(ai − aj)

Proof. See [ANR96].

Problem 2.5. Suppose we want to find a family of hyperplanes in Rn such that their union
covers all vertices of the unit cube {0, 1}n but one (i.e. exactly one vertex is left uncovered).
Prove that at least n hyperplanes are needed.

Proof. We can assume that the uncovered vertex is (0, . . . , 0). Let the i-th hyperplane Hi

be defined by the equation
Hi = {x ∈ Rn : ai · x = bi}

where x = (x1, . . . , xn), ai are vectors in Rn, bi ∈ R and ”·” denotes the standard inner
product. Note that bi 6= 0 for all i, since we assume that (0, . . . , 0) is not covered.
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Suppose that we can find a family of m < n hyperplanes with the desired property.
Consider the polynomial of n variables:

P (x1, . . . , xn) = (−1)m+n+1(b1 · . . . · bm)
n∏
i=1

(xi − 1) +
m∏
i=1

(x · ai − bi)

First observe that:

P (0, . . . , 0) = (−1)m+n+1(b1·. . .·bm)(−1)n+
m∏
i=1

(−bi) = (−1)m+1(b1·. . .·bm)+(−1)m(b1·. . .·bm) = 0

The polynomial has degree n (as m < n, so the term involving inner products is of lower
degree) and the coefficient of x1 . . . xn is (−1)m+n+1b1·. . .·bm 6= 0. By applying Combinatorial
Nullstellensatz for Si = {0, 1} there exists a point s ∈ {0, 1}n such that P (s) 6= 0. Because
P (0) = 0, we have s 6= 0, so it is covered by some hyperplane Hj, which implies s ·aj−bj = 0.
But then the second product in P (x) is 0 and the first product is also 0, since s 6= 0 has some
coordinate equal to 1. This gives P (s) = 0, a contradiction, so we must have m ≥ n.

Problem 2.6 (IMO 2006). Let:

S = {(x, y, z) ∈ R3 : x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

be a subset of R3. Determine the smallest number of hyperplanes such that their union covers
all elements of S, but (0, 0, 0) is not covered by any hyperplane.

Proof. It’s easy to find a set of 3n such hyperplanes - take {z = 1}, . . . , {z = n}, {x + y =
1}, . . . , {x+ y = 2n}. We now show that this is the smallest possible number.

The proof is analogous to the proof from the previous problem. Suppose that we can find
a set of m < 3n hyperplanes with the desired properties. Let the i-th hyperplane be defined
by the equation:

aix+ biy + ciz + di = 0

where (x, y, z) ∈ R3. Consider the polynomial:

P (x, y, z) =
m∏
i=1

(aix+ biy + ciz + di)− δ

(
n∏
j=1

(x− j)

)(
n∏
k=1

(y − k)

)(
n∏
l=1

(z − l)

)

where δ is such that P (0, 0, 0) = 0. We have δ 6= 0, so the coefficient of xnynzn is nonzero
(note that the first product in P (x, y, z) has degree m < 3n, so it doesn’t contribute to
this term). By Combinatorial Nullstellensatz applied to S1 = S2 = S3 = {0, 1, . . . , n},
|Si| > n, we have that there exists some (x′, y′, z′) such that x′, y′, z′ ∈ {0, 1, . . . , n} and
P (x′, y′, z′) 6= 0. This implies that (x′, y′, z′) 6= (0, 0, 0), so it must be covered by some
hyperplane Hi. But this implies aix

′ + biy
′ + ciz

′ + di = 0, so the first product in the
definition of P is 0. The second one is also 0, since at least one of x′, y′, z′ is nonzero. This
contradicts P (x′, y′, z′) 6= 0, so we must have m ≥ 3n.
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As remarked before, over a finite field the same function can be represented by different
polynomials. This motivates the following definition - we will say that a polynomial over Zp
is reduced if its degree in every variable xi is at most p−1. For any polynomial P (x1, . . . , xn)
denote by P̃ (x1, . . . , xn) the polynomial obtained from P by successively replacing every
occurence of xpi by xi until we get a reduced polynomial. Note that P and P̃ represent the
same function from Zp to Zp,as spi = si for any value si ∈ Zp.

Problem 2.7. Let P (x1, . . . , xn), Q(x1, . . . , xn) be two reduced polynomials representing the
same function f : Znp → Zp. Show that P = Q as polynomials in x1, . . . , xn.

Proof. The polynomial R(x1, . . . , xn) = P (x1, . . . , xn)−Q(x1, . . . , xn) represents the constant
0 function. On the other hand if P 6= Q as polynomials, then there exists some monomial
xa11 . . . xann , ai ≤ p− 1, which has nonzero coefficient in R. By Combinatorial Nullstellensatz
applied to Si = Zp we have that there exists (s1, . . . , sn) such that R(s1, . . . , sn) 6= 0, a
contradiction since R represents the constant 0 function. Hence P = Q as polynomials.

Problem 2.8. Let P (x1, . . . , xn) be a polynomial in n variables over arbitrary field F. Sup-
pose that P has degree d and denote the coefficient of xd11 . . . xdnn , with d1 + . . . + dn = d, by
cd1,...,dn(P ). Let S1, . . . , Sn ⊆ F be such that |Si| > di and let:

fi(x) =
∏
si∈Si

(x− si)

Prove that:

cd1,...,dn(P ) =
∑
s

P (s1, . . . , sn)

f ′1(s1) . . . f
′
n(sn)

(1)

where the sum is over all s = (s1, . . . , sn) ∈ S1 × . . .× Sn and:

f ′i(si) =
∏
t∈Si
t6=si

(si − t)

Note that the formula 1 gives another proof of Combinatorial Nullstellensatz - if cd1,...,dn(P ) 6=
0, then in particular at least one term in the sum must be nonzero, so there exists some
(s1, . . . , sn), si ∈ Si, such that P (s1, . . . , sn) 6= 0.

Proof. First note that it is sufficient to prove the formula for monomials with coefficient 1,
since the formula is linear - for any polynomials P and Q we have:

cd1,...,dn(P +Q) = cd1,...,dn(P ) + cd1,...,dn(Q)

and: ∑
s

(P +Q)(s1, . . . , sn)

f ′1(s1) . . . f
′
n(sn)

=
∑
s

P (s1, . . . , sn)

f ′1(s1) . . . f
′
n(sn)

+
∑
s

Q(s1, . . . , sn)

f ′1(s1) . . . f
′
n(sn)
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The case of n = 1 is simply the interpolation formula:

P (x) =
∑
s1∈S1

P (s1)
f1(x)

f ′1(s1)(x− s1)

Now if P (x1, . . . , xn) = xc11 . . . x
cn
n is a monomial, then:∑

s

P (s1, . . . , sn)

f ′1(s1) . . . f
′
n(sn)

=
∑
s

sc11 . . . s
cn
n

f ′1(s1) . . . f
′
n(sn)

=
∑

s1,...,sn

sc11
f ′1(s1)

· sc21
f ′2(s2)

· . . . · scnn
f ′n(sn)

=

=

(∑
s1

sc11
f ′1(s1)

)(∑
s2

sc22
f ′2(s2)

)
. . .

(∑
sn

scnn
f ′n(sn)

)
= cd1(x

c1
1 )cd2(x

c2
2 ) . . . cdn(xcnn )

by the 1-dimensional case and:

cd1(x
c1
1 )cd2(x

c2
2 ) . . . cdn(xcnn ) = cd1,...,dn(xc11 x

c2
2 . . . x

cn
n ) = cd!,...,dn(P )

which finishes the proof.

Problem 2.9 (Dyson’s conjecture). Let a1, . . . , an be natural numbers and let:

P (x1, . . . , xn) =
∏
i 6=j

(
1− xi

xj

)ai
Show that the constant term in P (x1, . . . , xn) is equal to:

(a1 + . . .+ an)!

a1! . . . an!

Hint: for a = a1 + . . .+an the constant term of P is equal to the coefficient of xa−a11 . . . xa−ann

in :
Q(x1, . . . , xn) =

∏
i<j

(−1)aj(xj − xi)ai+aj

Proof. Denote the coefficient we want to compute by D. We would like to use the formula
1 for Q(x1, . . . , xn) and suitably chosen Si. Because we are interested only in the highest
term of Q, we are free to add lower order terms to Q so that the calculation for the modified
polynomial Q will be simpler. We would like to define Q so that it assumes only one nonzero
value on S1 × . . .× Sn, so by 1 this will give us the desired coefficient.

We will replace each term (xj − xi)ai+aj by another polynomial which will give the same
highest order term, but in such a way that only one (s1, . . . , sn) will give nonzero value of
the whole product. For any 0 ≤ si ≤ a− ai consider the interval ∆i(si) of length ai starting
at si:

∆i(si) = {si, si + 1, . . . , si + ai − 1}
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For s1 = 0, s2 = a1, s3 = a1 + a2, . . . , sn = a1 + . . . + an−1 we have that ∆i(si) ⊆ {0, . . . , a}
and intervals ∆i(si) are pairwise disjoint. These are the only possible value of si which have
this property and it can be encoded by a polynomial:

Dij(x1, . . . , xn) =

aj∏
k=−ai+1

(xj − xi + k)

We haveDij(s1, . . . , sn) if and only if ∆i(si) and ∆j(sj) are disjoint. Note also thatDij(x1, . . . , xn)
contributes the same highest order term as (xj − xi)ai+aj . Therefore if we replace each term
(xj − xi)ai+aj in Q by Dij we will obtain:

Q =
∏
i<j

(−1)ajDij(x1, . . . , xn)

and the whole product is nonzero only for one tuple (s1, . . . , sn). When we apply 1 to Q the
only surviving term will be the one containing si as above, which gives:

D =

∏
i<j(−1)ajDij(s1, . . . , sn)

f ′1(s1) . . . f
′
n(sn)

where fi is the characteristic function of Si.
We calculate easily that:

f ′i(si) = (−1)ai+1+...+an(a1 + . . .+ ai−1)!(ai+1 + . . .+ an)!

and:

Dij(s1, . . . , sn) =
(ai + . . . aj)!

ai+1 + . . . aj−1

After inserting this into the formula for C and cancelling all the necessary factorials we get
the desired result.

Problem 2.10. Let A = {a1, . . . , an}, B = {b1, . . . , bn} be two nonempty subsets of Zp (p >
2) such that |A| = |B| = n. Prove that there exists a permutation σ : {1, . . . , n} → {1, . . . , n}
such that the sums a1 + bσ(1), a2 + bσ(2), . . . , an + bσ(n) are all distinct.

Proof. We can assume that n < p and A 6= B, since the other case is trivial. Define a
polynomial:

P (x1, . . . , xn) =
∏
i<j

(xj − xi)(xj − xi + aj − ai)

We have deg(P ) = n(n − 1) and the coefficient of xn−11 . . . xn−1n is, up to a sign, n! (by
applying Problem 2.9), which is nonzero in Zp. By Combinatorial Nullstellensatz applied
to Si = B there exists some b′1, . . . , b

′
n ∈ B such that P (b′1, . . . , b

′
n) 6= 0. This means that

b′i 6= b′j for i 6= j and ai + b′i 6= aj + b′j. By defining σ so that bσ(i) = b′i we get the desired
permutation.
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Problem 2.11 (Chevalley-Warning theorem). Let Pi(x1, . . . , xn), i = 1, . . . , k, be polyno-
mials over Zp such that Pi has degree di. Prove that if d1 + · · · + dk < n, then the set of
common zeros of all Pi’s has size divisible by p.

Proof. Let Z = {(x1, . . . , xn) : P1(x1, . . . , xn) = . . . = Pk(x1, . . . , xn) = 0} be the set of
common zeroes of Pi’s. We want to show that |Z| = 0 mod p. Consider the polynomial
P (x1, . . . , xn) representing the characteristic function of Z:

P (x1, . . . , xn) =
k∏
i=1

(1− Pi(x1, . . . , xn)p−1)

that is, P (x1, . . . , xn) = 1 if and only if (x1, . . . , xn) is a common zero of all Pi’s. P has
total degree (p− 1)(d1 + . . .+ dn) < (p− 1)n, so the reduced polynomial P̃ has also degree
< (p− 1)n.

On the other hand the characteristic function of Z can also be written as:

Q(x1, . . . , xn) =
∑
c∈Z

k∏
i=1

(1− (xi − ci)p−1)

where the sum is over all c = (c1, . . . , cn) ∈ Z. If |Z| 6= 0 mod p, then the coefficient of
xp−11 . . . xp−1n in Q is equal to (−1)n|Z| 6= 0 mod p. Thus Q has degree (p−1)n and is clearly a
reduced polynomial. But then we have deg(P̃ ) < deg(Q) and P̃ , Q are reduced polynomials
representing the same function, which is impossible. Hence we must have |Z| = 0 mod p.

Problem 2.12 (Erdős-Ginzburg-Ziv theorem). Let a1, . . . , a2p−1 be elements of Zp. Prove
that there exist a set of indices I ⊆ {1, . . . , 2p− 1} of size p such that:∑

i∈I

ai = 0 mod p

Proof. Consider polynomials:

P (x1, . . . , x2p−1) =

2p−1∑
i=1

aix
p−1
i

Q(x1, . . . , x2p−1) =

2p−1∑
i=1

xp−1i

Since P (0, . . . , 0) = Q(0, . . . , 0) = 0 and deg(P ) + deg(Q) ≤ 2p− 2 < 2p− 1, by Chevalley-
Warning theorem there exists (c1, . . . , c2p−1) 6= (0, . . . , 0) such that:

P (c1, . . . , c2p−1) = Q(c1, . . . , c2p−1) = 0

11



so:

2p−1∑
i=1

aic
p−1
i = 0

2p−1∑
i=1

cp−1i = 0

Let I be the set of those indices i for which ci 6= 0. Since cp−1i is equal to 1 if ci 6= 0 and 0
otherwise, we have: ∑

i∈I

ai = 0∑
i∈I

1 = 0

The second equation implies |I| = 0 mod p, but |I| ≤ 2p− 1, so |I| = p, which finishes the
proof.

Problem 2.13. Let v1 = (a1, b1), . . . , v2p−1 = (a2p−1, b2p−1) be elements of Zp × Zp. Prove
that there exist a set of indices I ⊆ {1, . . . , 2p− 1} such that:∑

i∈I

vi = 0 in Zp × Zp

Proof. Consider polynomials:

P (x1, . . . , x2p−1) =

2p−1∑
i=1

aixi

Q(x1, . . . , x2p−1) =

2p−1∑
i=1

bixi

and

R(x1, . . . , x2p−1) =
(
1− P (x1, . . . , x2p−1)

p−1)) (1−Q(x1, . . . , x2p−1)
p−1))− 2p−1∏

i=1

(1− xi)

R has total degree 2p−1 and the coefficient of x1 . . . x2p−1 is 1. By Combinatorial Nullstellen-
satz applied to Si = {0, 1} there exists (c1, . . . , c2p−1) ∈ {0, 1}2p−1 such thatR(c1, . . . , c2p−1) 6=
0. Now take I to be the set of indices i such that ci = 1. By the same argument as in the
previous problem we see that

∑
i∈I
vi = 0.

Problem 2.14. Let p be a prime number and let G = (V,E) be a graph with average degree
bigger than 2p − 2 and maximum degree at most 2p − 1. Prove that G contains a p-regular
subgraph.

12



Proof. Associate a variable xe to each edge e and consider the polynomial:

F =
∏
v∈V

1−

(∑
v∈e

xe

)p−1
−∏

e∈E

(1− xe)

F has degree |E|, since the degree of the first product is at most (p − 1)|V | < |E| by
the assumption on the average degree. The coefficient of

∏
e∈E

xe is nonzero, so by applying

Combinatorial Nullstellensatz to Se = {0, 1} we deduce that there are values xe ∈ {0, 1}
such that F 6= 0. Moreover not all values of xe are 0, since F vanishes for the zero vector.
It follows that for every v we must have;

1−

(∑
e3v

xe

)p−1

6= 0 mod p

which is possible only
∑
e3v

xe is 0 mod p. This means that if we take edges e such that xe = 1,

then each vertex in the corresponding subgraph will have degree divisible by p. By the
assumption that the maximal degree is at most 2p− 1 we have that every degree is exactly
p, which gives us the desired p-regular subgraph.

Problem 2.15. A king invites n couples to sit around a round table with 2n+ 1 seats. For
each couple, the king decides a prescribed distance di ∈ {1, . . . , n} so that the spouses in the
i-th couple are separated by exactly di − 1 chairs. Prove that if 2n + 1 is a prime number,
then it is always possible to seat the couples so that these constraints are satsfied. Provide a
counterexample showing that this is not always possible in the case where 2n+1 is composite.

Proof. Let p = 2n + 1 be a prime number. The solution to the seating problem consists of
a tuple (x1, . . . , xn), xi ∈ Zp such that the 2n numbers x1, . . . , xn, x1 + d1, . . . , xn + dn are
pairwise distinct mod p. Consider a polynomial:

P (x1, . . . , xn) =
∏
i<j

(xi − xj)(xi + di − xj)(xi − xj − dj)(xi + di − xj − dj)

We have P (c1, . . . , cn) 6= 0 if and only if (c1, . . . , cn) is a solution to the seating problem, so
we want to show tht P is not 0 everywhere. We have deg(P ) = n(2n−2) and x2n−21 . . . x2n−2n

is a monomial of degree deg(P ). To find its coefficient in P note that we only need to
consider the highest order terms, which are equal to a polynomial:∏

i<j

(xi − xj)4 = x2n−21 . . . x2n−2n

∏
i 6=j

(
1− xi

xj

)2

So we only need to show that the constant term of∏
i 6=j

(
1− xi

xj

)2
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is nonzero. But by Problem 2.9 the constant term equals (2n)!
2n
6= 0 mod p (as (2n)! = (p−1)!).

Therefore by applying Combinatorial Nullstellensatz to Si = Zp we get that there exists
a solution to the seating problem.

In the case of 2n + 1 being a composite number, let k be a nontrivial divisor of 2n + 1
and take di = k for all i. For any j let Cj = {j, j + k, j + 3k, . . .}. Then each couple must
belong to the same set Cj, but each Cj has an odd number of elements, so at least one set
in each Cj must be empty. But there are at least two disjoint sets Cj, Cj′ in Zp, since k > 1
divides 2n + 1 and on the other hand there can be at most one empty seat, so we have a
contradiction.

Problem 2.16. Let M3(n) denote the smallest number of queens that can be placed on an
n × n chessboard so that no three queens are in the same line (where line is a column, a
row or a diagonal), but it is impossible to put any additional queens on the board without
violating this condition. Show that M3(n) ≥ n.

Proof. We cover only the case of n = 4k + 1 for some integer k (the other three cases can
be handled along the same lines). We will treat the n × n board as a subset of the plane,
where the square in the i-th row and j-th column corresponds to the point (i, j) ∈ R2.

Suppose it is possible to place q ≤ n − 1 = 4k queens so that this configuration is
maximal (i.e. there are no three queens in the same line and it is impossible to add any
queensso that this condition is still satisfied). We will construct a polynomial P (x, y) of two
variables of degree 8k which vanishes on every point of the board and reach contradiction
by Combinatorial Nullstellensatz.

If two queens lie in the same line, we can treat this line Li as a subset of R2 described
by one of the equations (depending on whether the line is vertical, horizontal or diagonal):

x− ai = 0

y − bi = 0

x− y − ci = 0

x+ y − di = 0

for some constants ai, bi, ci, di.
By the assumption of maximality each unoccupied square of the board lies in at least

one line Li (otherwise we could put a queen on that square without creating three in a line).
Some of the queens may not be colinear to any other queen. Suppose there are q′ such

queens and for each of them define Ki to be a line passing through the square occupied by
the queen, having arbitrary of the above four types. For the sake of simplicity it is convenient
to choose the types as evenly as possible, so that there are at most d q′

4
e lines Ki of given

type.
For any given type of a line there are at most d4k−q′

2
e lines Li of that type and at most

d q′
4
e lines Ki of that type, so the total number is at most 2k. If it is strictly less than 2k, we

add some ”fake” lines of that type so that the total number is 2k (their form is unimportant).
Thus the total number of lines is 8k.
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If Pi(x, y) is the polynomial defining the i-th line, then let:

P (x, y) =
8k∏
i=1

Pi(x, y)

By the assumption that there are exactly 2k lines of each type we get:

P (x, y) =
2k∏
i=1

(x− ai)(y − bi)(x− y − ci)(x+ y − di)

for some constants ai, bi, ci, di. By definition if (x, y) is contained in one of the 8k lines, then
P (x, y) = 0.

The polynomial has degree 8k and the coefficient of x4ky4k is ±
(
2k
k

)
6= 0. By Combina-

torial Nullstellensatz applied to S1 = S2 = {1, . . . , 4k + 1} there exists a point (x0, y0) such
that P (x0, y0) 6= 0. But then (x0, y0) does not lie in any line, so it is an unoccupied square
with no other queen in the same row, column or diagonal and we can put a new queen on
(x0, y0), violating the maximality assumption. Thus M3(n) ≥ n.

3 Finite field Kakeya conjecture

One of the outstanding open problems, with connections to harmonic analysis and partial
differential equations, is the Euclidean Kakeya conjecture, concerning the dimension (more
precisely, Minkowski or Hausdorff dimension) of Kakeya sets in Rn. A Kakeya set S ⊆ Rn

is a set that contains a unit interval in every direction. A good introduction to the Kakeya
problem can be found here: http://en.wikipedia.org/wiki/Kakeya_set. The conjecture,
which states that Kakeya sets always have Hausdorff dimension n, has only been solved for
n = 2 and is open for n ≥ 3.

As an attempt to attack the conjecture, a variant has been proposed where the Euclidean
space Rn is replaced by a vector space over a finite field Fnq , where |Fq| = q. This leads to
a simplified problem, since finite fields are more amenable to combinatorial or algebraic
techniques than the Euclidean space. An analogue of a set containing a unit interval in
every direction is defined in a natural way:

Definition 3.1. A set K ⊆ Fnq is a Kakeya set if it contains a line in every direction, i.e.
for every x ∈ Fnq there exists y ∈ Fnq such that for all t ∈ Fq y + tx ∈ K.

What is the right analogue of dimension? Recall that the notion of dimension is closely
connected to scaling - intuitively, a set S has dimension d if scaling the set by a factor of c
changes its volume by a factor cd. In a finite field setting there is no concept of scaling, but
we can change the size of the base field Fq instead. This leads to the following conjecture,
which states that Kakeya sets over finitie fields have “dimension” n:

Theorem 3.2 (Finite field Kakeya conjecture). For every n ≥ 1 there exists a constant cn
such that for any Kakeya set K ⊆ Fnq we have:

|K| ≥ cn · qn
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The conjecture has attracted the attention of many brilliant mathematicians, including
Fields medalists - however, up till 2008 the best bound on the exponent was only 4

7
n. In 2008,

Zeev Dvir ([Dvi09b]) provided a “proof from the Book” for the conjecture, which essentially
fits in one paragraph. We present that proof below. Before we proceed we need two lemmas
concerning finite field polynomials in several variables.

Lemma 3.3 (Schwartz-Zippel lemma, simple version). Let f ∈ Fq[x1, . . . , xn] be a nonzero
polynomial of degree d. Then:

zero(f) = |{x ∈ Fnq |f(x) = 0}| ≤ d · qn−1

Proof. Proof is by induction on n. For n = 1 this is simply the fact that a nonzero polynomial
of degree d can have at most d zeroes. For any a1, . . . , an−1 ∈ Fq let fa1,...,an−1 ∈ Fq[t] be
defined as:

fa1,...,an−1(t) = f(a1, . . . , an−1, t)

Notice that:
|zero(f)| ≤

∑
a1,...,an−1∈Fq

|zero(fa1,...,an−1)|

since if (x1, . . . , xn−1, xn) ∈ zero(f), then xn ∈ zero(fx1,...,xn−1). From this it follows that:

|zero(f)| ≤ qn−1 · max
a1,...,an−1∈Fq

|zero(fa1,...,an−1)| ≤ d · qn−1

Problem 3.1. Let S(d, n) ⊆ Fq[x1, . . . , xn] be the subspace spanned by all monomials of
degree ≤ d. What is the dimension of S(d, n)?

Proof. Counting monomials of degree ≤ d is equivalent to counting ways of putting d in-
distinguishable balls into n + 1 distinguishable boxes - we first put k ≤ d balls into first n
boxes, corresponding to variables x1, . . . , xn, and discard the remaining d− k balls into the
last box. Elementary combinatorics shows that this can be achieved in

(
n+d
n

)
ways.

Proof of finite field Kakeya conjecture. Let K be a Kakeya set. Suppose that |K| <
(
q+n−1
n

)
(note that essentially

(
q+n−1
n

)
≈ cn · qn for some cn ≈ 1

n!
). Since

(
q+n−1
n

)
is the dimension of

S(q − 1, n), the space of polynomials of degree ≤ q − 1, there exists a nonzero polynomial
p ∈ S(q − 1, n) such that p(x) = 0 for all x ∈ K.

Now, for any x ∈ Fnq consider hx, the polynomial of one variable defined as restriction of
p to a line in direction x lying in K - hx(t) = p(y + tx). The degree of hx is at most q − 1
and hx vanishes for all t, so it must be identically zero.

Let s = deg(p) and:

p =
s∑
i=0

pi
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where pi is homogenous of degree i. Notice that:

hx(t) = p(y + tx) = tsps(x) +
s−1∑
i=0

tip′i(x)

where p′i ∈ Fq[x1, . . . , xn] is a polynomial of degree i (note that for i < s we may have
pi 6= p′i - however, these polynomials agree for the leading term of degree s). Since hx ≡ 0,
in particular ps(x) = 0 for all x. However, by definition deg ps = s ≤ q−1, so, unless ps ≡ 0,
from Schwartz-Zippel lemma ps can have at most qn−1(q − 1) < qn zeroes - a contradiction.
If ps ≡ 0, we apply the same reasoning to all pi and conclude that pi ≡ 0 for all i, which
contradicts the fact that p is not identically zero.

We have obtained a bound with the constant cn ≈ 1
n!

. On the other hand, there ex-
ist Kakeya sets with size |K| ≈ 1

2n−1 q
n, which we construct below for odd q (the case of

even q can be handled in a similar fashion). The constant in Kakeya conjecture can be im-
proved to almost optimal using an extension of the polynomial method called “the method
of multiplicities” (see [DKSS09]).

Problem 3.2. For q odd, prove that there exists a Kakeya set K of size:

|K| ≤ qn

2n−1
+O(qn−1)

Proof. We will construct a set K which contains lines in all direction of the form b =
(b1, . . . , bn−1, 1) - directions with bn = 0 can be added “by hand” into the O(qn−1) remainder
term. Consider the following set:

K =

{(
v21
4

+ v1t, . . . ,
v2n−1

4
+ vn−1t, t

)
|v1, . . . , vn−1, t ∈ F

}
K contains lines in all required directions - a line in direction b = (b1, . . . , bn−1, 1) passes
through (1

4
b21, . . . ,

1
4
b2n−1, 0) ∈ K. It remains to count how many distinct points there are in

K.
Let x = (

x21
4

+ x1t, . . . ,
x2n−1

4
+ xn−1t, t), y = (

y21
4

+ y1t
′, . . . ,

y2n−1

4
+ yn−1t

′, t′) and suppose
that x = y. This implies t = t′ and, for i = 1, . . . , n− 1:

x2y
4

+ xit =
y2i
4

+ yit

which gives:
(xi − yi)(xi + yi + 4t) = 0

For each fixed xi, this gives 2 choices for yi unless xi = −2t. Therefore, for each fixed t the
number of distinct points equals:

n−1∑
k=0

(
n− 1

k

)(
q − 1

2

)n−1−k
=

(
q + 1

2

)n−1
=
qn−1

2n−1
+O(qn−2)

which upon multiplying by q possible values of t gives the desired answer.
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4 Lines and joints

Another interesting problem with a geometric flavor where the polynomial method yields a
simple and elegant solution is the lines and joints problem. Consider a set of lines in Rk. A
joint is a point such that the lines intersecting at it do not all lie in a (k − 1)-dimensional
hyperplane. In other words, direction vectors of lines intersecting at a joint span all Rk.
What is the largest number of joints that can be created using n lines in Rk?

Throughout this section the set of lines will be denoted by L and the set of their joints
by J . We take n = |L| and m = |J |. Let fk(n) denote the maximal m as a function of n. It
is easy to give a lower bound on fk(n) - consider a k-dimensional cube {1, . . . , a}k and take
L to be the set of all lines parallel to the axes in Rk and intersecting the cube. It is easy
to prove by induction that there are n = kak−1 such lines and their intersection points are
vertices of the cube. Each such intersection point is a joint, so we have m = ak. This gives
us:

m =
(n
k

) k
k−1

so:
fk(n) ≥ ckn

k
k−1

where ck = (1/k)
k

k−1 is a constant depending only on k. It turns out that this simple
construction is optimal up to a constant - there exists Ck > 0 such that:

fk(n) ≤ Ckn
k

k−1

This bound is proved using the polynomial method (which also gives the value of Ck).
The first step of the proof is a direct application of Problem 3.1.

Lemma 4.1. For any set of m points in Rk there exists a nonzero polynomial P (x1, . . . , xk)
such that P vanishes on this set and its degree is at most dkm

1/k for some constant dk > 0.

The next step will be proving that no nontrivial polynomial of low degree can vanish on
the set of joints for a given set of lines.

Lemma 4.2. If P (x1, . . . , xk) is a polynomial of degree at most m/2n vanishing on the set
J of m joints, then P must be identically zero.

By combining Lemma 4.1 and 4.2 we get that:

m/2n ≤ dkm
1/k

which after rearranging gives us:

m ≤ (2dkn)
k

k−1

and finishes the proof of our bound.

Proof of Lemma 4.2. The first step is to restrict our attention to lines which intersect many
joints - given L and J we construct sets L′ ⊆ L and J ′ ⊆ G such that:
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• each line L′ contains more than m/2n points of J ′

• every point of J ′ is a joint of L′

This is done by a simple iterative procedure. Start with L0 = L and J0 = J . At the i-th step
remove all the lines from Li which intersect at most m/2n points from Ji and then remove
the points from Ji which lay on those lines. Take Li+1 to be the set of remaining lines and
Ji+1 to be the set of remaining points. Since at each step we are removing at most m/2n
points and we started with n lines and m points, this procedure will eventually halt with at
least m/2 points left. In particular, the set of lines will be nonempty, so we obtain L′ and
J ′ satisfying the above two properties.

Now let P be a polynomial of degree at most m/2n vanishing on J ′. We will show that
P is identically zero. First we claim that P vanishes on each line from L′. To see this, let l′

be a line from L′ and parametrize it by;

l′ = {a+ tv : t ∈ R}

where v = (v1, . . . , vk) ∈ Rk is the direction vector of l′ and a = (a1, . . . , ak) ∈ Rk is any
point on l′. Since l′ intersects more than m/2n points from J ′, the polynomial:

Q(t) = P (a1 + tv1, . . . , ak + tvk)

has more than m/2n roots. However, its degree can be at most m/2n, since P had total
degree at most m/2n, so Q must be identically zero. Therefore P vanishes on each point of
l′.

To show that P is identically zero we will show that all its partial derivatives vanish.
Take any a ∈ J ′ and let l′1, . . . , l

′
k be a set of k lines passing through a and not lying in a

(k − 1)-dimensional hyperplane (note that a is a joint, so we can always find such lines).
Take one of these lines, say l′1, and parametrize it as before:

l′1 = {a+ tv1 : t ∈ R}

where v1 ∈ Rk.
We will need to do some differentiation here. Recall that for a differentiable function

f : R→ R of one variable we have for any x ∈ R:

f(x+ t) = f(x) + tf ′(x) +O(t2)

where f ′ is the derivative of f and O(t2) denotes the terms that go to 0 as t→ 0 faster than
linearly. An analogous formula holds for functions of many variables - for any sufficiently
nice function f : Rk → R (for example a polynomial) and any a ∈ Rk, v ∈ Rk, we have:

f(a+ tv) = f(a) + t 〈(∇f)(a), v〉+O(t2)

where ∇f =
(
∂f
∂x1
, . . . , ∂f

∂xk

)
is the vector of partial derivatives of f and 〈·, ·〉 denotes the

inner product in Rk.
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Now let us apply this formula to P . We have:

P (a+ tv1) = P (a) + t 〈(∇P )(a), v1〉+O(t2)

Since P vanishes on each line from L′, we have P (a+ tv) = P (a) = 0, so;

t 〈(∇P )(a), v1〉 = O(t2)

which, by taking t small enough, implies that 〈(∇P )(a), v1〉 = 0. This means that (∇P )(a)
is orthogonal to v1. But we can repeat the same argument for any l′i instead of l′1 and we
will get that (∇P )(a) is orthogonal to all direction vectors of l′1, . . . , l

′
k. Since a is a joint,

the direction vectors span all Rk, so each coordinate of (∇P )(a) must be 0.
Therefore we have obtained that each partial derivative ∂P

∂xi
vanishes on points from J ′.

Since this derivative still has degree at most m/2n, we can apply to it the same argument as
to P to show that it vanishes on each line from L′ and prove that second partial derivatives
of P vanish on points from J ′. By continuing this argument we get that all derivatives of P
vanish on all lines from L′, but this is possible only if P is identically zero, which finishes
the proof.

5 Further reading

We have presented here only a few applications of the polynomial method and there are many
topics that we haven’t touched upon at all. Below are some references to papers dealing with
the material in more depth.

The paper which first proved Combinatorial Nullstellensatz and where many more ap-
plications can be found is [Alo99]. Another paper featuring applications of Combinatorial
Nullstellensatz to restricted sumset problems is [ANR96]. A good source on additive com-
binatorics (a rich subfield of mathematics to which sumset problems belong) is the book
[TV06] (see especially Chapter 9).

More about Kakeya problem, apart from the Wikipedia article, can be found in Ter-
ence Tao’s survey [Tao00] and Zeev Dvir’s survey [Dvi09a]. Finite field Kakeya conjecture
was proved in [Dvi09b] (the paper is only 5 pages long!). Improvements using ”the method
of multiplicities” come from [DKSS09]. Other applications, including randomness extrac-
tors (an interesting topic in theoretical computer science we haven’t mentioned at all), are
discussed in [DKSS09] and [DW11].

Problems for Combinatorial Nullstellensatz section were taken from various sources,
mostly research papers, including [Alo99], [ANR96], [TV06], [KP12], [CPSW12].

The application of the polynomial method to lines and joints problems comes from [Qui10]
and [KSS10].
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