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Abstract

Projects from the Numerical Differential Equations - for volunteers. As part of com-
pleting the project, one needs to know the basic properties of the methods implemented
in the project. One has to prepare a short report describing the basic properties of the
implemented methods and the results of the tests, I may also ask to show me the code and
to run it.
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1 Adaptive ODE schemes
(easy - the maximum grade is 4.5) Write two adaptive ODE schemes based on two Runge Kutta
explicit methods: Heun and an appropriate third-order one. Use two approaches to chage the
step.

1. Compute s such that s ∗ h is the right step giving the error below prescribed tolerance,
then use the new step sh

2. if h is too large or two small, then take h/2 or 2 ∗ h as new steps.
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Find the details of the methods i.e., how to estimate the local (global) error. Implement the
methods in octave. Test it for some differential equations with known solutions.

2 Nonconforming Crouzeix-Raviart FEM in 2D
Consider a BVP:

−a4u∗ +~bT∇u∗ + cu∗ = f in Ω = (0, 1)2

u = g on ∂Ω

where a > 0,~bT = (b1, b2), c ≥ 0 constants.
Program in octave (or eg, C / C ++ but it will take more time) Crouzeix-Raviart finite

element method on standard uniform triangulation of the unit square - i.e. we introduce fine
squares with vertices: (k ∗ h, l ∗ h) for h = 1/N and divide them by a diagonal. That is, create
in the appropriate nodal base a system of linear equations for the values of the approximate
solution and solve it using the appropriate octave solver.

Then test it for different values of the a, b1, b2, c constants.
In particular, experimentally examine the order of convergence in the maximum norm, type

L2 and H1 for known smooth and non-smooth solutions, we compare the FEM solution with
the extension of the exact solution that we know. The extension is ICRh u∗ - a function from the
CR FEM space taking values of u∗ at the centers of the edges of the triangles (i.e., at the nodal
points of the CR method).

As part of the project, one should familiarize himself with the method, implement the code,
and conduct tests. As part of the course one needs to know the basic properties of the method
e.g., what is the order of convergence in the H1 standard, so-called broken or L2?

3 Bilinear FEM in 2D
Consider a model problem:

−4u∗ + b ∗ ∂x1u∗ + cu∗ = f in Ω = (0, 1)2

u = g on ∂Ω

where b, c ≥ 0 constants.
Program in octave (or e.g. C / C ++ but it will take more time) Bilinear finite element

method on standard uniform triangulation rectangle into small sub-rectangles
That is, create in the appropriate nodal base a system of linear equations for the values of the

approximate solution and solve it using the appropriate octave solver. Then test it - for different
values of the b, c constants.

In particular, experimentally examine the order of convergence in the maximum norm, type
L2 and H1 for known smooth and non-smooth solutions to, we compare the FEM solution with
the extension of the exact solution that we know. For extension, we take Ihu∗ - a function from
the bilinear FEM space taking values of u∗ at the vertices of rectangles, i.e., at the nodal points.

As part of the project, one should familiarize with the method, implement the code, and
conduct tests. One needs to know the basic properties of the method e.g., what is the order of
convergence in the maximum, H1 or L2 norm?
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4 Quadratic element in 2D
A quadratic finite element method for the model problem:

−4u∗ + b ∗ ∂x2u∗ + cu∗ = f in Ω = (0, 1)2

u = g on ∂Ω

where b, c ≥ 0 constants.
Program in octave (or eg C / C ++ but it will take more time) quadratic finite element method

on standard uniform triangulation square - i.e. we introduce squares with vertices: (k ∗ h, l ∗ h)
for h = 1/N and divide them by a diagonal.

That is, create in the appropriate nodal base a system of linear equations for the values of
the approximate solution and solve it using the appropriate octave solver.

Then test it - for different values of the b, c constants.
In particular, experimentally for known smooth and non-smooth solutions to examine the

order of convergence in the maximum norm, type L2 and H1, we compare the MES solution
with the extension of the exact solution that we know. For extension, we take Ihu∗ - a function
from the square space of FEM taking values of u∗ at the vertices and centers of the edges of the
triangles, i.e. at the nodal points of the FEM quadratic method, cf.
http://mst.mimuw.edu.pl/lecture.php?lecture=nrr&part=Ch12#S1.SS3.

As part of the project, one should familiarize with the method, implement the code, and
conduct tests. One needs to know the basic properties of the method, e.g., what is the order of
convergence in the standard H1 or L2.

For calculating the right hand side, i.e.
∫

Ω
fφx dx for φx of the base nodal function for node

x use the triangle quadrature τ : Qτv =
∫
τ
Iτ,1(v) dx ≈

∫
τ
v dx, where Iτ,1(v) is a function linear

such that Iτ,1(v)(x) = v(x) for x vertex of the triangle τ . Then the approximation
∫

Ω
fφx dx

(here v = fφx) is the sum of approximations of integrals after the triangles into the support φx,
i.e. after the triangles with x as the vertex.

5 FDM - Neumann condition - schemes with the higher or-
der

Implement the finite difference method of order two in octave (or perhaps more labor-intensive
in another language) for the model equation:

−4u∗ + cu∗ = f in Ω = (0, 1)2

∂u∗

∂n
= g1 on Γ1

u∗ = g2 on ∂Ω \ Γ1

where c > 0 constant, Γ1 open right edge of the square edge.
Consider an even grid, i.e. Ωh = (k ∗ h, l ∗ h) for h = 1/N Let us discret Laplacians by the

standard difference of five points a normal derivative increasing the order - we assume that the
equation is also met for Γ1 and using this we increase the order because at the edge of the grid
x ∈ Γ1:

∂u∗

∂n
(x) =

∂u∗

∂x1

(x) = ∂1,hu
∗(x) + 0.5

∂2u∗

∂x2
1

(x)h+O(h2)
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now using the assumption that the output equation met in x ∈ Γ1 we see

∂2u∗

∂x2
1

(x) = −∂
2u∗

∂x2
2

(x) + c ∗ u∗(x)− f(x) = −∂∂2,hu
∗(x) + c ∗ u∗(x)− f(x) +O(h2)

From these two equations we construct a scheme of the order of two.
The task is to refine the details, then implement and test. I.e., create a system of linear

equations on the values of the approximate solution of the grid points and solve it using the
appropriate octave solver. Then test it for different values of the c constant and different values
of f and gk.

In particular, experimentally for known smooth and non-smooth solutions, examine the order
of convergence in a discrete maximum norm and a L2 norm. Compare the schema solution with
the extension of the exact solution that we know. We take the mesh function as the extension
taking values of u∗ at grid points

As part of the project, one needs to familiarize onerself with the method, implement the code
and conduct tests, in particular for known smooth solutions, test the convergence order in the
discrete L2

h standards and the discrete maximum standard.
As part of the course one also needs to know the basic properties of the method e.g. what is

the order of convergence in the discrete maximum norm or L2
h.
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6 Finite difference method in 2 dimensions - non-rectangular
area, i.e. sphere - Dirichlet condition - Collatz approxi-
mation

Implement the finite difference method of two on octave (or perhaps more labor-intensive in
another language) for the model equation:

−4u∗ + cu∗ = f in Ω = K(0, 1)

u∗ = g on ∂Ω

where c > 0 constant.
Consider the grid equal to [−1, 1]2 cut from Ω, i.e. Ωh = (−1 + k ∗ h,−1 + l ∗ h) ∩ Ω for

h = 2/N . Let us discretize Laplacians by the standard difference of five points. On the mesh
edge, we will use Collatz approximations of the boundary condition: for the edge point xk,l, let
xk−1,l be the inner point of the grid and xk,l + (h, 0) will be outside Ω, i.e. outside the grid then
there is a point p = xk,l + (αh, 0) ∈ ∂Ω for 0 < α < 1 - let l(t) a linear interpolation polynomial
such that l(0) = uk−1,l, l(h) = uk,l and then the value of the grid operator for xk,l is equal to
l((1 + α)h) = u(p) = g(p) (we know the right side). Similarly, we proceed for all mesh border
points, obtaining a scheme of the order of two (which should be justified).

The task is to refine the details, then implement and test. Ie. create a system of linear
equations on the values of the approximate solution of the grid points and solve it using the
appropriate octave solver. Then test it - for different values of the c constant and different values
of f and g.

In particular, experimentally for known smooth and non-smooth solutions, examine the order
of convergence in a discrete maximum norm and a L2 norm. Compare the schema solution with
the extension of the exact solution that we know. We take the mesh function as the extension
taking values of u∗ at grid points

As part of the project, one needs to familiarize with the method, implement the code and
conduct tests, in particular for known smooth solutions, test the convergence order in the discrete
L2
h standards and the discrete maximum standard.
As part of the course one also need to know the basic properties of the method Â e.g. what

is the order of convergence in the discrete maximum norm or L2
h.

7 FEM - mixed boundary condition
Let Ω = (0, 1)2 a unit square -the boundary comprise 4 edges: ∂Ω =

⋃
k,l=0,1 Γk,l. (let Γ0,0 the

left edge, Γ1,0 the right one, Γ0,1 the lower one, Γ1,1 the upper one).
Consider a BVP with the mixed bnd conditions

−4u∗ + cu∗ = f in Ω

lk,lu = gk,l on Γk,l

where a positive constant c

lk,lu(s) =

{
u(s) k = 0
∂u
∂n

(s) k = 1

Here ∂u
∂n

normal derivative to the given edge. We set a A Dirichlet condition at the vertices, i.e.
we assume that we know the solution values in the vertices.
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Program in octave (or e.g. C / C ++ but it will take more time) linear finite element method
on standard uniform triangulation square - i.e. we introduce squares with vertices: (k ∗ h, l ∗ h)
for h = 1/N and divide them by a diagonal.

Ie. create in the appropriate nodal base a system of linear equations for the values of the
approximate solution and solve it using the appropriate octave solver.

Then test it - for different values of the c constant and different values of f and gk,l.
In particular, experimentally for known smooth and non-smooth solutions to examine the

order of convergence in the maximum norm, type L2 and H1, compare the MES solution with
the extension of the exact solution that we know. For extension we take Ihu∗ - a linear function
from the MES space taking values of u∗ at the vertices of the triangles (i.e. at the nodal points
of the linear FEM method). Let us take the maximum from the module of a given function at
nodal points as an approximation of the maximum norm.

One should familiarize himself with the method, implement the code and conduct tests, in
particular for known smooth solutions, test the convergence order in the standards H1, L2, the
discrete maximum standard.

As part of the course one also need to know the basic properties of the method e.g., what is
the order of convergence in the standard H1 or L2?

8 Cubic element in 2 dimensions
Cubic finite element method for the model equation:

−4u∗ + b ∗ ∂x1u∗ + cu∗ = f in Ω = (0.1)2

u = g on ∂Ω

where b, c ≥ 0 fixed.
Program in octave (or eg C / C ++ but it will take more time) cubic finite element method

on standard uniform triangulation square - i.e. we introduce squares with vertices: (k ∗ h, l ∗ h)
for h = 1/N and divide them by a diagonal.

That is, create in the appropriate nodal base a system of linear equations for the values of
the approximate solution and solve it using the appropriate octave solver.

Then test it - for different values of the b, c constants.
In particular, experimentally for known smooth and non-smooth solutions to examine the

order of convergence in the maximum norm, type L2 and H1, we compare the MES solution
with the extension of the exact solution that we know. For extension we take Ihu∗ - a function
from the MES cubic space taking values of u∗ at the vertices, center of gravity, two points of the
inner edges (at a distance of 1/3 and 2/3 of the edge length from the fixed end of this edge) of
triangles, i.e. at the nodal points of the cubic FEM method, cf.
http://mst.mimuw.edu.pl/lecture.php?lecture=nrr&part=Ch12#S1.SS3.

As part of the project, one should familiarize himself with the method, implement the code
and conduct tests.

As part of the course one needs to know the basic properties of the method e.g. what is the
order of convergence in the standard H1 or L2.

For calculating the right hand side, i.e.
∫

Ω
fφx dx for φx of the base nodal function for the

node x, use either a procedure using the function quad () in octave or quadrature on triangle
τ : Qτv =

∫
τ
Iτ,2(v) dx ≈

∫
τ
vdx where Iτ,2(v) is a quadratic function on a triangle τ such that

Iτ,2(v)(x) = v(x) for x vertex or the middle of the edge of the triangle τ . Then the approximation
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∫
Ω
fφx dx (here v = fφx) is the sum of approximations of integrals after the triangles into the

carriers φx, i.e. after the triangles with x as the vertex.

9 Cubic element in 1 dimension - different boundary condi-
tions

(easy - the maximal grade 4.5)
Implement a continuous FEM cubic method on an uneven grid with Robin or Dirichlet bound-

ary conditions or mixed for the equation

−u′′ + cu = f x ∈ (a, b)

Write an octave function solving this task, i.e. the parameters should be:

• Input:

1. F - pointer (function handle) to the function f

2. c - value of c ≥ 0

3. bca - as a scalar, we assume the Dirichlet boundary condition in a, i.e. u(a) = bca, as
a two-element vector is bca(1) value of Robin condition coefficient a bca(2) right side
in Robin condition i.e. −u′(a) + bca(1)u(a) = bca(2)

4. bcb - by analogy but for b - for the Robin condition: u′(b) + bcb(1)u(b) = bcb(2)

5. a, b - episode ends

6. x - vector with nodes [x0, x1, ..., xn] flocks should be a = x0, b = xn - if x is not given,
the default value is 101 even nodes [a, b]

7. QUAD - the option to calculate the right side - 0 - we count the Simpson square on
each sub-dot, 1 with the octave function quad ()

• Output

1. y - grid with nodal points of cubic FEM, i.e. we have points x0, x0 + (1/3)h0, x0 +
2h0/3, x1, ...., xk, xk + hk/3, xk + (2/3)hk, xk+1, ..., xn for hk = xk+1 − xk

2. u - solution values in nodal points of cubic FEM, i.e. uk = u(yk)

3. h - vector with subsection lengths hk = xk+1 − xk
4. A stiffness matrix (corresponding to discretization

∫ b
a
u′v′ in the nodal database)

5. M mass matrix (corresponding to discretization
∫ b
a
uv in the nodal database)

The M and A matrices can then be used to compute discrete errors in the standard H1 and L2

norms, i.e. |uh|H1(a,b) =
√
~uTA~u and ‖uh‖L2(a,b) =

√
~uTM~u for ~u - a vector with uh values in FEM

nodes. A discrte error is the error of uh − Ihu∗. To compute a rela error (or its approimation -
one has to use a finer mesh and some integration formulas.

The values of the right side, i.e. the integrals
∫ b
a
f(x)φk dx can be calculated using the

appropriate octave function (quad()) or use, for example, Simpson’s complex quadrature (i.e.
Simpson’s quadrature on each sub-dot included in the support of the corresponding nodal func-
tion). The function user will be able to choose which integration method to use.

Tests:
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• The simplest test - please take the familiar smooth function e.g. u = sin(x) and check on
the section [−1, 3] will we get a good approximation of this function by choosing f and
boundary values, respectively.

• Another simple test: u polynomial of various degrees 1, 2, 3, 4 etc. (of course, the boundary
conditions and f should be chosen accordingly)

• Convergence test in the standard L∞, H1 and L2 for an even or slightly disturbed grid, e.g.
xk = a+ (k + epsk)hh = (ba)/n z epsk random value z [−1, 1]/10 for k − 1, . . . , N − 1.

• Test of convergence taking an uneven grid e.g. hk = 0.7hk−1 with a fixed h1 (then one can
compare the error ratios for the grids with half the h1.)

• Error tests for the grid as above taking a solution strongly oscillating near the right end of
the segment eg u = sin(x2) to [0.4] - one can draw an error graph, i.e. the Ihu− uh graph
(Ihu nodal interpolator - uh discrete solution)

• Test of diffusive properties - we take the same right side e.g. f(x) characteristic function
of the segment [0, 1] and we count solutions with zero boundary conditions −u′′ + cu = cf
on [−2, 2] for c = 10k for k = −4,−3,−2,− 1,0,1,2,3,4.

For all convergence tests - compare the results when the right side is counted in both ways.
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