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Our problem

Let Qr := Q x (0,T) for a bounded open domain @ C R", n > 2,and T" > 0.
The signed porous medium equation (PME):

8tqu(|u|m_1u) =0 inQr. J

@ m > 1: degenerate case (slow diffusion)
In this case, disturbances propagate with finite speed and solutions
might vanish outside of a compact subset of the spatial domain.

@ m < 1:singular case (fast diffusion)

In this case, solutions exhibit infinite propagation speed and we may
observe extinction in finite time.
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Let Qr := Q x (0,T) for a bounded open domain @ C R", n > 2,and T" > 0.
The signed porous medium equation (PME):

8tqu(|u|m_1u) =0 inQr. J

@ m > 1: degenerate case (slow diffusion)
In this case, disturbances propagate with finite speed and solutions
might vanish outside of a compact subset of the spatial domain.
@ m < 1:singular case (fast diffusion)
In this case, solutions exhibit infinite propagation speed and we may
observe extinction in finite time.
Introduce a vector valued function A(z,t,u,&) : Qr x R x R™ — R™ which is
measurable in (z,t) and continuous in (u, ). In addition, A satisfies the
following ellipticity and growth conditions with some constants
O<v<L<oo:
2
Azt u,0) & 2 vIEL, for a.e. (z,t) € Qr and all (u, &) € R x R™.
|A(z,t,u,8)| < L],

We can consider a generalization of the signed PME,
Ou — div A(z,t,u, Du™) =0 in Qr,

where u™ := |u|™ 1.



Our problem

We now consider the obstacle problem related to the equation

du — div A(z, t,u, Du™) = g — divF  in Qr, (1)J

with an obstacle constraint given by the condition v > + a.e. in Q.
@ We restrict our attention to the case m > 1.
@ We consider inhomogeneities

FeL*(Qr,R") and ge L*(Qr,R),

and an obstacle function 1 : Q7 — R with

2m

™ e L0, T;WH3(Q) and 9™ € LEn-1(Qr).

@ We define the function classes
Ky = {w € CD([O,T];Lm'H(Q)) :
w™ e L*(0,T;W'?(Q), w > ae. inQr}

and

2m

Ky = {w € Ky : Opw™ € LZm—1 (QT)}




Our problem

Definition
We say that a function v € K, is a local weak solution of the obstacle
problem related to the equation (1) if the variational inequality

{Opu, an(w™ —u™)) + // aA(z, t,u, Du™) - D(n(w™ —u™)) dzdt
Qp
> // a(F-D(n(w™ —u™)) + ng(w™ — u™)) dzdt
Qr
holds true for all comparison maps w € K, , any cut-off function

a € Wy ([0, T], R>o) in time, and any cut-off function n € W,">°(Q,Rx0) in
space. Here, the term containing the time derivative is defined by

{(Oru, an(w™ — u™)) = // n{o/(ﬁwmﬂ —uw™) — audyw™ } dadt.
Qr

(Note: A corresponding existence result was showed by Bbgelein, Lukkari,
and Scheven in Math. Ann, 2015.)



m

|0vp™|7m=T, | DY™|, |F|, |g| € Lit” () for some v > 0

loc

—> The gradient Du™ of a local weak solution is more integrable than
assumed in the definition. More precisely, | Du™| € L2117 (Qr) for some
o1 > 0.




A brief history

@ Elliptic p-Laplace problems (1 < p < o0): Meyers and Elcrat (1975)
Letu € W\ (Q) be a weak solution of the equation

div(|Du|’?>Du) =0 inQ.

= There exists € > 0 such that

][ |DuPTedz < (3(][ \Du|pdaz)
Ba,

r

pte
P

for any ball B, C Q.



A brief history

(Idea of the proof)
1. An energy estimate and Sobolev-Poincaré inequality:

£ opuras < Sfu @, P

s Bar
P

< c(][ |Du\p*dx) .
B,
2. A reverse Hoélder inequality:

P
][ |DulPdz < c(][ |Du|p*dx> "
Ban

™

for any ball By, C €.

3. Gehring’s lemma:
There exists € > 0 such that

][ \Du|p+adx§c<][ |Du\pdx)
Bay

T

pte
P




A brief history

Parabolic problems with p-Laplacian type

@ Parabolic systems

@ p = 2: Giaquinta and Struwe (Math. Z., 1982).
Q> 772% Kinnunen and Lewis (Duke Math. J., 2000).
— an intrinsic scaling method
@ Global higher integrability
@ p > 2: Parviainen (Ann. Mat. Pura Appl., 2009).
Q p > ;2 Parviainen and Bigelein (NoDEA, 2010), Byun, Kim, and Lim
(Forum Math., 2020).

@ p(z,t)-Laplacian: Bogelein and Duzaar (Publ. Mat., 2011).

@ Obstacle problems

@ Bogelein and Scheven (Forum Math., 2012).
@ p(x,t)-Laplacian: Erhardt (JMAA, 2016).



A brief history

Porous medium type equations/systems

@ Gianazza and Schwarzacher:
nonnegative solutions of porous medium type equations

// wdd —mu™ 'Du- Dopdadt =0, forany ¢ e C5° ()
Qr

@ m > 1 (Amer. J. Math., 2019):
m+41
= |Du 3 | € LYte(Qr) for some & > 0.

loc

Q "2t <m <1 (JFA, 2019):

= |Du™| € LZI5(Qr) for some & > 0.

loc

@ (Intrinsic scaling) They consider cylinders Q

0,002 = Bo X (=002, 60%) with

m+1
75[ w™tl dadt ~ 9T-m
Q 2

o0



A brief history

Porous medium type equations/systems

@ Signed porous medium type systems
// uwdrp — D(Ju|™ 'u) - Dpdzdt =0, forany ¢ € C5°(Qr,RY).
JQp

= |Du™| = |D(Ju|™ "u)| € L2 (Qr) for some e > 0.

loc
@ m > 1: Bbgelein, Duzaar, Korte, and Scheven (Adv. Nonlinear Anal., 2019)

Q ("7;2;* < m < 1: Bégelein, Duzaar, and Scheven (J. Reine Angew. Math.,
2020).
@ (Intrinsic scaling) They consider cylinders Q,,s = B, x (—s, s) such that
s m
— = 0™ with 6™ related to ‘"—Tl
r m

@ Global higher integrability (m > 1): Moring, Scheven, Schwarzacher, and
Singer (CPAA, 2020).




Intrinsic geometry

O — A(lu|™ 'u) =0

From the modulus of ellipticity of the equation, we consider cylinders
B, x (=Xe®, Ao%)

with A ~ |u|™™.
However, we are going to prove an estimate for Du™. Now setting
o™ ~ [u|™

o

fu™ AT
~N —_— N —

[ 0

0 m

This leads to the cylinders

m+1

).

m+

—-—m 1 —-m
QY = By x (=0 "o 0o

(m > 1) We call a cylinder QE,G) intrinsic iff

|u|2m

75[ M dzdt ~ 6™
QY @



We work with cylinders of the following form:
Q4" (20) = Bo(wo) x A (t0),

for zo = (zo,t0) € R™ x (0,T), where B,(z,) denotes the open ball with
radius ¢ > 0 and center z, € R™ and

m1 m+1
AP (t,) = (to — 00"ty + 0 ")

for some scaling factor 6 > 0. If 8 = 1, we use the following abbreviation:
Qo(20) = QM (20) and  Ay(to) == AL (Lo).
We next define a boundary term
blu™,a™] = mL+1(|a|m'H — [u|™) —u(a™ —u™),

for u,a € R.



Main theorem [C. and Scheven (NoDEA, 2019)]

There exists a constant o, = o,(n, m, v, L) € (0,1] such that if

U = 9™ T =T + | D™ + | F| + |g| € L3 (Qr)

loc

for some v > 0, then we have

Du™ € LI (Qr,R™),

loc

where o1 := min{o,,v}. Furthermore, for any o € (0, 1] and any cylinder
Q2r(z0) € Qr with R € (0, 1], the following quantitative local higher
integrability estimate is satisfied:

75[ |Du™[** dzdt
QRr(20)

om m+1
1+ 75[ {'“' — + \1/2} dxdt} 7§[ |Du"™|*dadt
Qer(zo) L B Q2r(z0)

+ec 7§[ U7 dadt,
Q2r(z0)

with a constant ¢ = ¢(n,m, v, L) > 1, where we considered the parabolic

cylinders Qr(zo) := Br(zo) X (to — R, to + R™5).

<c




Sketch of the proof

- Our strategy
1. an energy estimate
2. a Sobolev-Poincaré type inequality < a gluing lemma
3. (1)+(2) = a reverse Hdlder type inequality
4. covering argument and the gradient estimate



Sketch of the proof

1. An energy estimate
There exists a constant ¢ = ¢(m, v, L) > 0 such that on any cylinder

QS’)(zO) € Qr with 0 < ¢ < 1and 0 > 0, the energy estimate

sup ][ 0’”*1de+ ﬁ[ }Dumfdmdt
B (o) QY (20)

teAﬁB)(to) rom
. u™ —a™ 2 b u'm7am
< c# {' 2| +om! m[+1 n]+ }dmdt
. Q(Qg>(zo) (Q - T) o m —r m

2m
75[ o |FP gl + [DY™ [ + (0™ 277 dadt
Qg (Zo)

holds true for all » € [0/2, 0) and all a € R.

(Test function: w™ := max{a™,¥™} =a™ + (Y™ —a™)4+ > Y™ a.e.)



Sketch of the proof

2. A gluing lemma: This compares the means at different time slices, and
will be used for a Poincaré type inequality.

We consider a cylinder ng’)(zo) € Qrwith0<p<1landf > 0and
times t1,t2 € AY (t,) with ¢, < t2. Then, for a.e. r € [£, o], we have the

estimates

(W) (tl)—( Jaoir(t2)]

Cgm n—
— g'm om—1 ][(9) ][ |D’LL | + ‘FD dH 1dt
(to)/ 0Br(z0)

1
bfu™, ™ + ™) da
W™ Brl J(B,.(20) x {01 0 {wm <apm - }

m41
co m

em 1 ‘Q(9)| //Q(B) (zo)N{um™ <gpm4pm}
m+1

co m
dxdt
+ gm—1 fj[Q(ga)(zG) |g| Lt

where ¢ = ¢(n, m,v, L) and . > 0 is an arbitrary parameter.

(1Oep™ | + | DY™ | + |F|?) dzdt




Sketch of the proof

3. A Sobolev-Poincaré type inequality on sub-intrinsic cylinders

Consider cylinders Qﬁf)(zo) € Qr with 0 < p < 1and 0 > 0that are
sub-intrinsic in the sense

2m
7§[ [l 4 at <29P29°™ ford=n+1+4 L. (2)
O (2) 0? m

Then, for any given ¢ € (0, 1] we have the Sobolev-Poincaré type
inequality

m (9) 2
— (™
# kil CADLE WY
()(Z) 1%

b[u™ (1), (u™) ]

m—1 2y ) 030

][ o e dz
o(zo) o m

1
+< M[ | Dum‘Qq"dxdt} et cﬁ[ V2 dadt,
en LWQ (20 Q) (z0)

where c is a universal constant depending only on n, m, v, and L, and ¢,

is defined by ¢, := max{™=1, 1 2} < 1.

<e sup
teAl? (z,)” B




Sketch of the proof

Proof of a Sobolev-Poincaré type inequality
(1) Applying the gluing lemma, the sub-intrinsic property (2),Poincaré’s
inequality, and Mean value’s theorem, there exists ¢ € [£, o] such that

1][ ][ ’ m m 2
— Waio(t) — (Wasso 7')‘ dtdr
O IA (1) JAL (1) (Wiall) = (Wawsal

1
< c<7§[ \Dum\quxdt> s c# T dzdt,
Ml (z0) Ml (o)

for ¢ := max{™-1,1} <1 and a constant ¢ = c(n,m,v, L).




Sketch of the proof

Proof of a Sobolev-Poincaré type inequality

(1) Applying the gluing lemma, the sub-intrinsic property (2),Poincaré’s
inequality, and Mean value’s theorem, there exists ¢ € [£, o] such that

][(9>(t0)][(e)(t )’( aoso(t) — (W) an;a(T )‘thdT

1
< c<7§[ \Dum\quazdt> s c# T dzdt,
Ml (z0) Ml (o)

for ¢ := max{™-1,1} <1 and a constant ¢ = c(n,m,v, L).
(2) We then add and subtract the slice-wise means (u)Z' . ;(t), to obtain

m my\(0) |2
u —(u Zoj3
ﬁ[ H#dmdt
Q(ge) (20) 4

2
m _ m A t
3 ﬁ[ il COESYIOT
Q57 (20)

92

<

1

0% JA® (1)

][ (W) p(r)dr — (™)),
AP (10)

2

dt

]{(f)(to) [(u)g";é(t) - (u);no;é(T)] dr

1

92

2] =:3[1+ 11410



Sketch of the proof

Proof of a Sobolev-Poincaré type inequality

(3) We get
. 1 .
q
Il < c<7§[ \Dum\2qudt> te 7§[ V2dzdt,
QY (z0) HQY (z0)

2

m<i< cﬁ[ [u” = (u ool I gaa.
QY (z0) ¢

and

Finally, we have the inequality

m my(0) |2
U — (U )z
ﬁ[ H%dxdt
(96>(Zo) e
2

1

" — (U)ot q

Scﬁ[ ‘ ( 2) ool )| dxdt+c<]§[ \Dum‘quxdt)q
QY (z0) 4 QY (z0)

c ﬂ U2dzdt.
Q¥ (z0)




Sketch of the proof

Proof of a Sobolev-Poincaré type inequality
(4) Using the properties for b[-, -] and the sub-intrinsic coupling (2), we infer

2
" — (U)ot
ﬁ[ | ( 2) oio(t)] dedt
QY (z0) 4
2* NIl z0) e

<ec gm—1 b[umv (@m)ro;g(t)] da
(0) m+1
Ay’ (to) LW Bo(zo) o m

um = @)W ] 1 7
- u"L _ uT’L Tos — d n
. {]l ol dm:| dt} .
By (zo) 042

From Sobolev’s inequality slicewise for a.e. t € AY (¢,),

9 d
u™ — (u™ To; t ' "
i i Cp BRG] dwdtgcw[ ’Dum|ddxdt}
@ (z0) 0 Q" (z0)

blu™ (- 1), (u™)) =
wp [f OGNS )
terAl® (t,) LY Belwo) o m

_4 2n_
T |u™ = (u")ay0 (1) |7 dadt

v




Sketch of the proof

Proof of a Sobolev-Poincaré type inequality
(5) Combining with the estimate

() |2

n u"L _ u’VVL P
# [ = w™)zoiol” (2 )zoie dzdt
HQP (z0) 0
2

1

U — (U)ot q

< c]é[ | ( 2) oie( ){ dmdt+c<7§[ \Du’"\zqudt> !
Q% (20) 0 M (z0)

c # U2dzdt
Q¥ (z0)

and applying Young’s and Holder’s inequality, this deduces

2

m my(0)
U —\u )z
7§[ H#dxdt
QY (20) 4

blu™ 1), m (Ze)
7[ om—l [u’ ( ) _Eu’ ) o,g} diE
Bo(zo)

<e sup
teAl? (£,

1
+ M[ |Dum]2q°dxdt} v +c7§[ W2 dadt
en LW (z0) Q% (z0)

forany e € (0,1] and for go := max{q, 2} = max{Z-2 1 2} < 1. O




Sketch of the proof

4. A reverse Holder type inequality
Let Q%) (z,) € Qr for 0 < o < L and 6 > 0. Whenever the cylinder

Q') (z,) fulfills the following couplings:
20

either ) .
ﬁ[ [ul ~dadt < 6*™ < ﬁ[ |“|2 dzdt 3)
9z, (20) QP (=) ©
or 5
75[ [l _dzdt < 0°™ < K [|Dum\2 + \I'Z]dxdt 4)
() (20) Q% (z0)
for some constant K > 1,

we have the reverse Holder type inequality

ﬁ[ |Du™|*dadt < ¢ 75[ |Du™|** dadt
QP (20) QD (20)

+ c]§[ Uidzdt,
Q<9)(zo)

20

1

do

for some constant ¢ = ¢(n, m,v, L, (K)) > 0 and

Qo 1= max{mrgl, %, <1




Sketch of the proof

Proof of a reverse Holder inequality

For radii r, s with o < r < s < 2p,
@ the energy estimate:

J b m .7 t , 7,L (9)
sup gt [w"(, 1), (u d + |D'u,m | dxdt
B (z ) m+41 (9)

tenl? (1) rom

- [ — (@) . 1b[ u™) ]
Ql (z0) (s—r) Q= ) 5%

m — 17 m
cﬁ[ W2 dzdt
Q9 (z0)

=1+ +1L




Sketch of the proof

Proof of a reverse Holder inequality

For radii r, s with o < r < s < 2p,
@ the energy estimate:

J b m .7 t , 7,L (9)
sup g1 [u SDIC d + |D'u,m | dzdt
B (z ) m+41 (9)

terAl® (t,) rom
m m\(0) |2 m (0)
u” —(u")z)r mo1 0w (U") 20
Scﬁ[ ’(—)Q'dxdt+c7§[ 0 1%@&
Q9 (20) (s—7) 9 (20) STm — 1 m
cﬁ[ U2 dzdt
QL (20)
=14+ 1+l

@ We use the notation
m—+1
S 2m

Rrs = Ml mtl
§$2m — 1 2m

@ [ is estimated by

m m (0 2
| <RI [ = @ g
R [ FICTa '

2



Sketch of the proof
Proof of a reverse Holder inequality
@ For the second term Il

2m |u|2m _ .
(1) "™ <4 ) S—dadt —(3)2:
Q) (z0) @

Il =c¢ em—lb[umi(um)gi)ﬁ
= Qge) ZO) m+41

ﬂ]d:pdt
s m

—r m
m (pym)(0)
S CR2 75[ 97n—1 b[u 7(u )
Qt” (z0)

ZoiT

Y } dadt

s m
fwn? 1%
2
S CRT,S |:7[/.[ ge)(zo)

Ap m m <0)
m b s 2.0
]
s Q' (z0)
o m 0
< cR? }u —(u )( )
N T’S~1§Q§9><z>

I dxdt
s m
za,'r|
5 dzdt
n m )
< eR2 [um = @™ [ dzdt.
)8 (0) 2
HQ® () s



Sketch of the proof

Proof of a reverse Hélder inequality

@ For the second term II,

@) 0> < K [|Dum|2 + \112]dzdt —(4)a:

(6
Qg (20)
We first use Young’s inequality, to infer for any = € (0, 1]
m(6)
b m7 ZosT
||§R27S7§[ , em—l[u+l)°’]dxdt
e Qg )(ZO) s m

4m

Ml m (6)
< 7?4 Rrs blu, (u )z"”] " dzdt
= ) (20) 52

m—
T m+1 S

4m

< 72m 4 772:7?1 75[ o — S dzdt
QP (z0)

m— 2
TmT 1 s

4m

§792m+ CR;?/;& 7[/.[ |’LL (um)zo | dxdt.
Q" (20)

m—1 2
T m¥1 s

Meanwhile, the coupling (4)2 and ¢ < r < 2p lead to

0*m < 20Kl o [[Du™|? + wP]dadt.
Qr"’ (20)



Sketch of the proof

Proof of a reverse Holder inequality
@ We obtain for both cases

m— b u’m('vt% (um)((i)w m|2
sup ][ g1 [ ) z }dx+]§[<e) |Du™|"dadt
tgAge)(to) By (o) T m Qr" (20)
m m\(0) |2
4m u —(uw 2018
<RI ﬁ[ [ = @] e + cﬁ[ v dzdt.
Q4 (20) s QY (z0)

@ Observe that Q\” (z,) is sub-intrinsic, and use the Sobolev-Poincaré
type inequality:

[um = (w™) O
7%2.2‘”(%) s? dodt
blu™(-,t), (u™) ]

<e sup ][ "t T —dz
Bs (o)

tenl® (to) s m

+ % {# }Dum|2q°d$dt} g c# U2 dzdt.
en LQ® (20 ) (z0)




Sketch of the proof

Proof of a reverse Hélder inequality
@ Combining the previous estimates and choosing a suitable ¢,

blw"(-,t), (u™)?
o, ][< )G"H = (737;(? ) }dx+]§[<e>( )|Dum‘2dzdt

teA(Te)(to) T m

m my (0
][ gm0, L
Bs(zo)

S m

< sup

teal” (to)

Am(n+2) ) i
+ Ry {ﬁ[ ’Dum ’ do dxdt}
Q) (20)

4m
R 75[ W2 dzdt.
Qé?(%)

@ We finally apply an iteration lemma to get the result.

1
2




Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Hoélder
inequality can be applied.



Sketch of the proof

5. Covering argument and the gradient estimate
e Construct a suitable system of cylinders on which the reverse Hoélder
inequality can be applied.

— We have the reverse Holder type inequality on the cylinder Qée)(zo),
whenever the cylinder Q(Qg) (z0) fulfills the following couplings:

either ) )
m m
7§[ lul S dadt < 6°™ < 75[ |“|2 dzdt
) (z0) (20) Q¥ (z0) ©

or

2m
7§[ , [ul S dedt < 6°™ gKﬁ[ o [[Dwm [+ w2 dadt
Q¥ (z0) (20) QY (20)

for some constant K > 1.



Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Holder
inequality can be applied. ~
— For a given center z and radius p, we select 6., with

2m
‘u| dzdt = 92777,
(9z g)( ) Q




Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Holder
inequality can be applied. ~
— For a given center z and radius p, we select 6., with

(W™ g = gom
ﬁ[(em() dadt = 027,

However, the mapping ¢ — 6., might not be monotone, and so we
introduce the modification

0.0 := max0,.,.
e r>0 !



Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Holder
inequality can be applied. ~
— For a given center z and radius p, we select 6., with

79[ ‘u|27n ~
. dadt = 6027
Q(QQZ;Q)(Z) 92 z0

However, the mapping ¢ — 6., might not be monotone, and so we
introduce the modification

0.0 := max0,.,.
e r>0 !

Then the mapping o — 6.;, has the following properties:

1. monotonically decreasing (i.e., 2,02;9)(2) C Qggz”)(z) if o <s).
2. Qw(fg“)(z) are sub-intrinsic for all » > o.

3.30 > ps.t. Q(;Z@(z) is intrinsic.



Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Holder
inequality can be applied. ~
— For a given center z and radius p, we select 6., with

‘u|21n ~
. dadt = 6027
7%929“)@) o? e

However, the mapping ¢ — 6., might not be monotone, and so we
introduce the modification

0.0 := max0,.,.
e r>0 !

Then the mapping o — 6.;, has the following properties:

1. monotonically decreasing (i.e., (Oz 9)( ) C Q(gz S)(z) if o <s).
2. anez g)(z) are sub-intrinsic for aII r > o.

3.30 > ps.t. Q(;Z@(z) is intrinsic.

Now, we choose g so that either

922): = Cﬁé(ez;gz)(z) |:|Dum{2 * \1/2:| dadt
ez

or
e () € QU (2) € Qe (2) c QU (2),

20z



Sketch of the proof

5. Covering argument and the gradient estimate
e Construct a suitable system of cylinders on which the reverse Hélder
inequality can be applied.
@ Cover the super-level set of | Du™| with these cylinders in the sense of a
Vitali-type covering.



Sketch of the proof

5. Covering argument and the gradient estimate
e Construct a suitable system of cylinders on which the reverse Hélder
inequality can be applied.
@ Cover the super-level set of | Du™| with these cylinders in the sense of a
Vitali-type covering.
o Applying the reverse Holder inequality on each of the cylinders, we get a
quantitative estimate for | Du»"|? on the super-level sets in terms of

|Du™|2% and U2 = (|8y9p™ |21 + D™ + |F| + |g])°.




Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Hélder
inequality can be applied.

@ Cover the super-level set of | Du™| with these cylinders in the sense of a
Vitali-type covering.

o Applying the reverse Holder inequality on each of the cylinders, we get a
quantitative estimate for | Du»"|? on the super-level sets in terms of

| Du™ 240 and W2 = (9™ 20T + |Dy™| + |F| + |g])°.
e In a standard way, the estimate on the super-level sets leads to the higher
integrability estimate for Du™.




Sketch of the proof

5. Covering argument and the gradient estimate

e Construct a suitable system of cylinders on which the reverse Hélder
inequality can be applied.

@ Cover the super-level set of | Du™| with these cylinders in the sense of a
Vitali-type covering.

o Applying the reverse Holder inequality on each of the cylinders, we get a
quantitative estimate for | Du»"|? on the super-level sets in terms of

| Du™ 240 and W2 = (9™ 20T + |Dy™| + |F| + |g])°.
e In a standard way, the estimate on the super-level sets leads to the higher
integrability estimate for Du™.

@ Remark
We have a similar result for the singular case in [C. and Scheven, JMAA,
2020].




Thank you for your attention!
Dziekuje Ci!
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