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Archimedes of Siracusa (287BC - 212BC)
Father of the application of scientific knowledge

Quasiconformal
Geometry and Nonlinear Elasticity share compelling
beauty through variational integrals.

- Tadeusz of SyracUSA
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My special thanks go to
Iwona Chlebicka

Good ”morning”; it is 9:00 am here in Syracuse. I am happy to

welcome many distinguished participants and friends of mine.

No doubt, your seminars are fabulous and stimulating.

It is a pleasure and honor that I can speak on this occasion about

my joint studies with Jani Onninen of the mathematical foundations

of Nonlinear Elasticity (NE)
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Indeed, our passion for Nonlinear Elasticity, and our rather modest

engagement in this area, grew out of the very early pioneering

”ABC” papers by S.S. Antman, J. Ball and P.G. Ciarlet

(folklore nowadays)
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Nonlinear Hyperelasticity
(in a few words)

One enquires into deformations h : X onto−→ Y of smallest stored energy

E [h] =
∫
X E(x, h,Dh) dx , E : X× Y× Rm×n → R

The accustomed hypothesis on E is convexity, polyconvexity or

quasiconvexity with respect to the deformation gradient Dh ∈ Rm×n .

This secures lower semicontinuity of the energy functional; that is,∫
X
E(x, h,Dh) dx 6 lim inf

∫
X
E(x, hk, Dhk) dx

whenever hk ⇀ h , weakly in a relevant Sobolev space, usually in

W 1,p(X,Y).
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p -Harmonic Energy
(widely used model of convex energy functionals)

Think of two particular cases of convex energy-functionals in the planar

domains (plates) or surfaces (thin films); the Dirichlet and the p -harmonic

integrals.

E2[h] =
∫
X |Dh(x)|2 dx Ep[h] =

∫
X |Dh(x)|p dx

These are ideal examples, good enough to demonstrate the essence of

the problems and the ideas of solving them. Thus the natural domain of

definition is the space of mappings:

h : X onto−→ Y , of class W 1,p(X,Y) , 1 < p <∞.
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Non-interpenetration of Matter

It is a common struggle in mathematical theory of NE to establish existence

of the energy-minimal deformations which are invertible.. Direct method

in the Calculus of Variations reveals that injectivity is lost when passing

to the limit of an energy-minimizing sequence of homeomorphisms. Some

parts of the material body are squeezed to lower dimensional pieces of the

deformed configuration. From the topological point of view this property

is characteristic of monotone mappings. It is for this reason that we must

adopt:

Sobolev Monotone Mappings
as legitimate deformations in the Theory of Hyperelasticity.

Such deformations turn out to be weak W 1,p -limits of homeomorphisms.
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Monotone Mappings
A topological concept due to C.B. Morrey (1935)

A continuous map h : A onto−→ B between compact metric spaces is

said to be monotone if every fibre h−1{b} of a point b ∈ B is

connected.

In fact, the preimage h−1(B) of any connected set B ⊂ B turns out

to be connected in A as well (G.T. Whyburn) .

Theorem (Kuratowski-Lacher, 1968) If the target space B is locally

connected, then the space of all monotone mappings from A onto B is

closed under uniform convergence.
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Theorem of J. W. T. Youngs (1948)
Homeomorphic approximation to monotone mappings

Let A and B be topologically equivalent compact 2-manifolds (with or

without boundary). Then a continuous map h : A onto−→ B is monotone if

and only if there is a sequence of homeomorphisms hj : A onto−→ B converging

uniformly to h .
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It is in this way that we went into exciting adventures. Myriad challenging

problems of Nonlinear Elasticity (NE) and numerous elegant conjectures are

very appealing to us. It is from the point of view of GFT (generalization

of Riemann’s mapping theorem, in particular) that we were especially

interested in traction free energy-minimal deformations (deformations that

are sliding freely along the boundary). We were able to answer some of the

basic questions and solve long standing conjectures.

In what follows the abbreviation [IO] refers to a joint work of T. Iwaniec

and J. Onninen.

Let us begin with some prerequisites for the discussion.
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Diffeomorphic Approximation of
Sobolev Homeomorphisms

[IO] and L. Kovalev

Arch. Ration. Mech. Anal. (2011)

Every homeomorphism h : X → Y between
planar open sets that belongs to the Sobolev class
W 1, p(X,Y) , 1 < p < ∞ , can be approximated
uniformly and in W 1, p(X,Y) , with C∞-smooth
diffeomorphisms hj : X onto−→ Y , j = 1, 2, ...
Actually hj − h ∈ W 1, p

◦ (X,R2) , for j = 1, 2, ... 1

1Somewhat later the case p = 1 has been handled by S. Hencl and A. Pratelli.
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Diffeomorphic Approximation of
Monotone Sobolev Mappings

([IO], ARMA, 2016)

Let X , Y ⊂ R2 be Jordan domains (multi connected) of the

same topological type, Y being Lipschitz. Then for every

monotone (continuous) map h : X onto−→ Y of Sobolev class W 1,p(X,Y) ,

1 < p <∞ , there exists a sequence of homeomorphisms hj : X onto−→ Y
converging to h uniformly and in the norm topology of W 1,p(X,R2) .

Actually, the mappings hj : X onto−→ Y can be C∞ -diffeomorphisms.
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Existence of Traction Free
Energy-Minimal Deformations

[IO], ARMA (2016)

Let X, Y ⊂ R2 be bounded Lipschitz domains of the same topological

type. Among all monotone mappings h : X onto−→ Y of Sobolev class

W 1,p(X,Y) , p > 2 , there exists h◦ : X onto−→ Y of smallest energy.

This also holds when a monotone boundary data is prescribed on

some of the components of ∂X .
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No Lavrentiev Discrepancy [IO]∫
X |Dh◦(x)|p dx =

inf
{∫

X |Dh|p ; homeomorphisms h : X onto−→ Y
}

Behind this result is the following fact:

The weak sequential closure and strong closure of homeomorphisms

h : X onto−→ Y of Sobolev class W 1,p(X,Y) , p > 2 , are the same
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Squeezing Phenomenon (and Nitsche Conjecture,

IO and L. Kovalev, JAMS (2011)) R∗ >
1
2

(
R
r + r

R

)

h(z) =

{
z
|z| , r < |z| < 1

(
squeezing into

concave boundary

)
1
2

(
z + 1

z

)
, 1 < |z| < R

(
critical harmonic

Nitsche map

)
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Among all traction free monotone mappings the Nitsche
map h(z) is a unique (up to rotation) of smallest energy.
Surprisingly, h is C 1,1 -smooth in the entire annulus and
its Hopf quadratic differential is analytic.

Q(z) dz ⊗ dz = hz hz̄ dz ⊗ dz

= −1
4z2 dz ⊗ dz , r 6 |z| 6 R
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Inner Variation of the Dirichlet Energy

Injectivity of an energy-minimal map is lost exactly in a neighborhood

where it fails to be harmonic. (IO, Cal.Var. PDE (2015))
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An Example [IO], ARMA (2013)

The round annulus is too fat. Consequently, cracks are inevitable

along vertical trajectories of the Hopf quadratic differential.
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No Formation of Cracks

THEOREM (IO, Koh, Kovalev, Invent. Math. 2011) Among
all homeomorphisms h : X onto−→ Y between bounded doubly
connected domains such that

ModX 6 ModY

there exists one of smallest Dirichlet energy. This is
a harmonic diffeomorphism, unique up to conformal
automorphisms of X.
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Nevertheless, an energy-minimal monotone map that fails to be

invertible tells us when to stop the minimizing sequence of

homeomorphisms prior to the conditions favorable to the formation

of cracks.

Theoretical prediction of failure of bodies caused by
cracks is a good motivation that should appeal to

MATHEMATICAL ANALYSTS
and researchers in the ENGINEERING FIELDS.
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Dirichlet Problem for Hopf-Laplace Equation

It is clear that every harmonic homeomorphism h : X onto−→ Y of Sobolev

class W 1,2
loc (X,Y) solves the Hopf-Laplace equation.

∂
∂z̄

(
hz hz̄

)
= 0

Conversely (which is a non-trivial fact) W 1,2 - homeomorphic solutions are

harmonic. There are, however, Lipschitz continuous bizarre solutions.

A well posed boundary value problem for the Hopf-Laplace equation

is to find W 1,2 - monotone solutions subject to a given monotone

boundary data. Without restriction to monotone mappings the

problem would be ill posed.
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THEOREM. Suppose that X , Y ⊂ R2 are simply connected Jordan

domains, Y being Lipschitz regular. To every monotone map

g : X onto−→ Y of Sobolev class W 1,2(X,Y) there corresponds a

monotone Hopf-harmonic h : X onto−→ Y of Sobolev class W 1,2(X,Y)

which agrees with g on ∂X . Actually h is locally Lipschitz on X
(non-trivial).

h(z) = z− z− i[z3/2− z3/2]

This monotone Hopf-harmonic map h : X onto−→ Y squeezes the segment

[0, 1 ] into a point in ∂Y , exactly where ∂Y fails to be convex.
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Global Invertibility versus Non-interpenetration
of Matter

In connection with the results by J. Ball (1981) , P. G. Ciarlet & J. Nečas

(1987) on global invertibility, regarded as non-interpenetration of matter,

let me bring on stage the following:

THEOREM (Injectivity of h : h−1(Y) onto−→ Y ) [IO]

Any monotone Hopf-harmonic solution h : X onto−→ Y of Lipschitz domains is

a diffeomorphism of h−1(Y) into X .

For a comparison, the term global invertibility (by J. Ball, P.G.Ciarlet and

J. Nečas) refers to mappings h : X onto−→ Y such that the preimage h−1(y◦)

of almost every point y◦ ∈ Y is a singleton.
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Uniqueness

THEOREM (Uniqueness) [IO]. The monotone Hopf-harmonic boundary

value problem admits unique solution whenever Y is somewhere

convex; for example, when Y is C 2 - smooth.
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Monotone Hopf-harmonics are the energy minimizers.

Let Y ⊂ R2 be a simply connected Lipschitz domain and g : X onto−→ Y a

homeomorphism of Sobolev class W 1,2(X,R2) (Dirichlet data). Then a

monotone Sobolev mapping h ∈ g+W 1,2
◦ (X,R2) satisfies the Hopf-Laplace

equation if and only if∫
X |Dh(x)|2 dx =

infH∈Diffg(X,Y)

∫
X |DH(x)|2 dx
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Afterthought

Planar Monotone Sobolev Mappings (Cellular
Sobolev Mappings in higher dimensions) are
profoundly insightful and as such should take
legitimate place in the theory of Nonlinear
Elasticity.

Thank You
for Listenning
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Abstract: We are primary concerned with Sobolev homeomorphisms and their weak and strong limits.
Such limits turn out to be monotone mappings. This includes the weak limits of energy-minimizing sequences
of homeomorphisms (hyperelastic deformations). Usually, the injectivity is lost when passing to the limit of
homeomorphisms. Call such circumstance weak collapse of matter. In case of Dirichlet energy, we shall
provide plausible mathematical explanation of the collapsing phenomena and, consequently, formation of
cracks.

• The interpenetration of matter occurs exactly in the region of the body where the energy-minimal
monotone Sobolev map fails to satisfy the Lagrange-Euler equation.

• Cracks propagate along trajectories of the Hopf quadratic differential associated with the inner variation
of the energy integral.

• We believe that planar Monotone Sobolev Mappings (Cellular Sobolev Mappings in higher dimensions)
are profoundly insightful and as such should take legitimate place in the theory of Nonlinear Elasticity.
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