Gradient estimates of very weak solutions to nonlinear equations with nonstandard growth

Sun-Sig Byun
Joint work with Minkyu Lim
Seoul National University, Korea

Monday's Nonstandard Seminar 2020/21, October 23, 2020

Standard growth

- Consider variational integrals

$$
w \in W^{1,1} \rightarrow \int_{\Omega} f(x, D w(x)) d x
$$

$f(x, \xi)$ denoting a given Lagrangian and Ω a bounded domain in \mathbb{R}^{n} with $n \geq 2$.

- Standard growth condition is

$$
|\xi|^{p} \lesssim f(x, \xi) \lesssim|\xi|^{p}+1
$$

for $1<p<\infty$.

Nonstandard growth

- Nonstandard growth condition is

$$
|\xi|^{p} \lesssim f(x, \xi) \lesssim|\xi|^{q}+1
$$

for $1<p<q<\infty$.

- Regularity is to be expected if p and q are not too far away, as observed by Paolo Marcellini in the late '80s.
- A natural and the best/simplist example is the G-Laplacian considered by Gary M. Lieberman in the early '90s.

Nonstandard growth

- Assume $G \in C^{2}(0, \infty), g=G^{\prime}$, is an N-function such that $0<\delta_{0} \leq \frac{g^{\prime}(t) t}{g(t)} \leq g_{0}$ for some constants δ_{0} and g_{0}.
- The problem under consideration is

$$
\left\{\begin{align*}
\operatorname{diva}(x, D x) & =\operatorname{div}\left(\frac{g(|F|)}{|F|} F\right) & & \text { in } \quad \Omega \tag{1}\\
u & =0 & & \text { on } \quad \partial \Omega .
\end{align*}\right.
$$

- The given Carathéodory function $a=a(x, \xi): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is assumed to satisfy
(1) $|a(x, \xi)|+|\xi|\left|D_{\xi} a(x, \xi)\right| \leq L g(|\xi|)$ and
(2) $D_{\xi} a(x, \xi) z \cdot z \geq \nu \frac{g(|\xi|)}{|\xi|}|z|^{2}$
for all $x, \xi \neq 0, z \in \mathbb{R}^{n}$ and some constants $0<\nu \leq 1 \leq L$.
- $F \in L^{g}\left(\Omega, \mathbb{R}^{n}\right)$ is given.

Nonlinear elliptic problems of G-Laplacian type

- $G \in \Delta_{2} \cap \nabla_{2}$.
- There exists a small constant $\delta_{1}=\delta_{1}\left(\delta_{0}, g_{0}\right) \in\left(0, \min \left\{1, g_{0}\right\}\right)$ such that $G^{1-\delta_{1}} \in \Delta_{2} \cap \nabla_{2}$.
- For $g(t)=t^{p-1}$, it becomes the p-Laplacian.

Very weak solution

Very weak solution

Definition

$u \in W_{0}^{1, g}(\Omega)$ is a very weak solution of (1) if

$$
\int_{\Omega} a(x, D u) D \varphi d x=\int_{\Omega} \frac{g(|F|)}{|F|} F D \varphi d x
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$.

Main result (B. - Lim)

Theorem

There exists a small positive constant $\tilde{\delta}=\tilde{\delta}\left(n, \delta_{0}, g_{0}, \nu, L\right)$ such that if $F \in W^{1, G^{1-\delta}}\left(\Omega, \mathbb{R}^{n}\right)$ for all $\delta \in\left(0, \frac{1}{2} \tilde{\delta}\right)$, then any very weak solution $u \in W_{\text {loc }}^{1, G^{1-\tilde{\delta}}}(\Omega)$ to the problem (1) satisfies

$$
u \in W_{l o c}^{1, G^{1-\delta}}(\Omega)
$$

and for each open $\Omega^{\prime} \subset \subset \Omega$ we have the estimate

$$
\|u\|_{W^{1, G^{1-\delta}}\left(\Omega^{\prime}\right)} \leq c\left(\|u\|_{W^{1, G^{1-\delta}}(\Omega)}+\|F\|_{W^{1, G^{1-\delta}}(\Omega)}\right)
$$

the constant c independent of F and u.

History

- We look at

$$
\operatorname{diva}(x, D x)=\mu \operatorname{in} \Omega
$$

whose distributional formulation is

$$
\int_{\Omega} a(x, D u) D \varphi d x=\langle\mu, \varphi\rangle \quad\left(\varphi \in C_{0}^{\infty}(\Omega)\right)
$$

- Due to monotone operators theory, one can assert existence, uniqueness and regularity of weak solutions in $W_{0}^{1, G}(\Omega)$ when $\mu \in\left(W_{0}^{1, G}(\Omega)\right)^{*}$. This is the dual case and it lies in the realm of weak solutions.

The dual case

- We first look at the case when $a(x, \xi) \approx|\xi|^{p-2} \xi$, and $g(t)=t^{p-1}$.
- We consider when the right hand side is in divergence form

$$
\mu=\operatorname{div}\left(|F|^{p-2} F\right) \quad\left(F \in L^{q}(\Omega) \text { with } p \leq q<\infty\right)
$$

- An issue is to show that

$$
F \in L^{q} \Longrightarrow D u \in L^{q} .
$$

- Iwaniec, Studia Math. '83 for the elliptic case.
- Acerbi and Giuseppe, Duke Math. J. '07 for the parabolic case.

The dual case

- We next look at the case when $a(x, \xi) \approx \frac{g(|F|)}{|F|} F$.
- The right hand side is in divergence form

$$
\mu=\operatorname{div}\left(\frac{g(|\xi|)}{|\xi|} \xi\right) \quad\left(F \in L^{H}(\Omega) \text { with } G \prec H\right) .
$$

- An issue is to show that

$$
F \in L^{H} \Longrightarrow D u \in L^{H} .
$$

- Anna Verde, J. Convex Anal. '05 for the elliptic case.
- Yumi Cho, J. Evol. Equ. '18 \& Fengping Yao, J. Differential Equations '19 for the parabolic case.

Below the duality exponent

- We return again to the case when $a(x, \xi) \approx|\xi|^{p-2} \xi$, and $g(t)=t^{p-1}$.
- The distributional formulation,

$$
\int_{\Omega} a(x, D u) D \varphi d x=\langle\mu, \varphi\rangle \quad\left(\varphi \in C_{0}^{\infty}(\Omega)\right)
$$

is well-defined even when $D u \in L^{p-1}$ and we may not have finite L^{p}-energy.

- This is the case below the duality exponent.

Below the duality exponent

- We consider again when the right hand side is in divergence form

$$
\mu=\operatorname{div}\left(|F|^{p-2} F\right) \quad\left(F \in L^{q}(\Omega) \text { with } p-1<q<p\right) .
$$

- An issue is to show that

$$
F \in L^{q} \Longrightarrow D u \in L^{q} .
$$

$p-\delta \leq q$ with δ very small

- Iwaniec and Sbordone, J. Reine Angew. Math. '94: Hodge decomposition.
- John L. Lewis, Comm. Partial Differential Equations '93: Whitney extension theorem.
- Adimurthi and Phuc, Calc. Var. Partial Differential Equations '15 for a global estimate: Uniform p-thick complements.
- Bulicek, Diening and Schwarzacher, Anal. PDE '16 \& Bulicek, and Schwarzacher, Calc. Var. Partial Differential Equations '16.
- Adimurthi and Byun, J. Math. Pures Appl. '19 for the parabolic case.
- When $\mu \in L^{\gamma}$ for $1<\gamma<\left(p^{*}\right)^{\prime}$, Mingione, Math. Ann. '10 for the p-Laplacian type.
- Chlebicka, Nonlinear Analysis 20 for the G-Laplacian type.
- Of course, there have many noteworthy works when μ is a bounded Radon measure or L^{1}-data.

$$
\operatorname{diva}(x, d u)=\operatorname{div}\left(\frac{g(|F|)}{|F|} F\right)
$$

- There are few results when $F \in L^{G^{1-\delta}}$.
- References:
- Adimurthi abd Phuc, Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. Partial Differential Equations 54 (2015).
- Baroni, Riesz potential estimates for a general class of quasilinear equations. Calc. Var. Partial Differential Equations 53 (2015).
- Cianchi and Ferone, Hardy inequalities with non-standard remainder terms. Ann. Inst. H. Poincare Anal. Non Lineaire 25 (2008).
- Diening, Malek and Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM Control Optim. Calc. Var. 14 (2008).
- Harjulehto and Hasto, Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Mathematics, 2236. Springer, Cham, 2019. $\mathrm{x}+167 \mathrm{pp}$.

Maximal function

- Let $0<\delta \leq \frac{1}{2} \delta_{1}$, being determined later.
- Let $u \in W_{0}^{1, G^{1-\delta}}(\Omega)$ be a very weak solution.
- Let $B_{2 r}=B_{2 r}\left(x_{0}\right) \subset \subset \Omega$ be a ball.
- Choose a standard cut-off function $\eta \in C_{0}^{1}\left(B_{2 r}\right)$ such that $\eta=1$ on $B_{r}, 0 \leq \eta \leq 1$ and $|D \eta| \leq \frac{2}{r}$.
- Set $\tilde{u}=\left(u-\bar{u}_{B_{2 r}}\right) \eta \in W_{0}^{1, G^{1-2 \delta}}\left(B_{2 r}\right)$.
- For any $q \in\left(1-\delta_{1}, 1-2 \delta\right]$, define $h(x)=M^{\frac{1}{q}}\left(G^{q}(|D \tilde{u}|)\right)(x)$ for $x \in \Omega$, where M is the Hardy-Littlewood maximal operator.
- Note that $\frac{1}{q}>1$ and $h^{-\delta}$ is in the Muckenhoupt class $A_{\frac{1}{q}}$.

Lipschitz truncation

Lemma

Let $\lambda>0$ and set

$$
E_{\lambda}=E_{\lambda}\left(h, B_{2 r}\right)=\left\{x \in B_{2 r}: h(x) \leq \lambda\right\} .
$$

Then there exists a Lipschitz truncation \tilde{u}_{λ} of \tilde{u} such that

- $\tilde{u}_{\lambda}=\tilde{u}$ and $D \tilde{u}_{\lambda}=D \tilde{u}$ a.e. in E_{λ},
- \tilde{u}_{λ} has support within E_{λ}, and
- $G\left(\left|D \tilde{u}_{\lambda}\right|\right) \leq c \lambda$ a.e. in \mathbb{R}^{n} and for some constant $c\left(\delta_{0}, g_{0}, n\right)>1$.

Very weak solution

Estimates

Take \tilde{u}_{λ} as a test function, multiply the resulting distributional formulation by $\lambda^{-(1+\delta)}$, and integrate with respect to λ, to discover

$$
\begin{aligned}
& \underbrace{\int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{E_{\lambda}} a(D u, x) D \tilde{u}_{\lambda} d x d \lambda}_{I_{1}} \\
& =\underbrace{-\int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{B_{2 r} \backslash E_{\lambda}} a(D u, x) D \tilde{u}_{\lambda} d x d \lambda}_{I_{2}} \\
& +\underbrace{\int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{E_{\lambda}} \frac{g(|F|)}{|F|} F D \tilde{u}_{\lambda} d x d \lambda}_{I_{3}} \\
& +\underbrace{\int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{B_{2 r} \backslash E_{\lambda}} \frac{g(|F|)}{|F|} F D \tilde{u}_{\lambda} d x d \lambda} .
\end{aligned}
$$

Very weak solution

Estimate of I_{3}

$$
\begin{aligned}
I_{3} \leq & \int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{E_{\lambda}} g(|F|)|D \tilde{u}| d x d \lambda \\
& =\int_{B_{2 r}} g(|F|)|D \tilde{u}| \int_{h(x)}^{\infty} \lambda^{-(1+\delta)} d \lambda d x \\
& =\frac{1}{\delta} \int_{B_{2 r}} g(|F|)|D \tilde{u}| h^{-(1+\delta)} d x \\
& \leq \frac{1}{\delta} \int_{B_{2 r}} g(|F|)|D \tilde{u}| G^{-(1+\delta)}(|D \tilde{u}|) d x \\
& \lesssim \epsilon \frac{1}{\delta} \int_{B_{2 r}} G^{1-\delta}(|D u|) d x \\
& +c(\epsilon) \frac{1}{\delta} \int_{B_{2 r}} G^{1-\delta}(|F|) d x .
\end{aligned}
$$

Very weak solution

Estimate of I_{4}

$$
\begin{aligned}
I_{4} \leq & \int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{B_{2 r} \backslash E_{\lambda}} g(|F|)\left|D \tilde{u}_{\lambda}\right| d x d \lambda \\
& =\int_{B_{2 r}} g(|F|) \int_{0}^{h(x)} \lambda^{-(1+\delta)}\left|D \tilde{u}_{\lambda}\right| d \lambda d x \\
& \lesssim \int_{B_{2 r}} g(|F|) \int_{0}^{h(x)} \lambda^{-(1+\delta)} G^{-1}(\lambda) d \lambda d x \\
& \lesssim \int_{B_{2 r}} g(|F|) h^{-\delta} G^{-1}(h) d x \\
& \lesssim \int_{B_{2 r}} G^{1-\delta}(|D u|) d x+\int_{B_{2 r}} G^{1-\delta}(|F|) d x .
\end{aligned}
$$

Very weak solution

Estimate of l_{2}

$$
\begin{aligned}
I_{2} \leq & \int_{0}^{\infty} \lambda^{-(1+\delta)} \int_{B_{2 r} \backslash E_{\lambda}} g(|D u|)\left|D \tilde{u}_{\lambda}\right| d x d \lambda \\
& =\int_{B_{2 r}} g(|D u|) \int_{0}^{h(x)} \lambda^{-(1+\delta)}\left|D \tilde{u}_{\lambda}\right| d \lambda d x \\
& \lesssim \int_{B_{2 r}} g(|D u|) \int_{0}^{h(x)} \lambda^{-(1+\delta)} G^{-1}(\lambda) d \lambda d x \\
& \lesssim \int_{B_{2 r}} g(|D u|) h^{-\delta} G^{-1}(h) d x \\
& \lesssim \int_{B_{2 r}} G^{1-\delta}(|D u|) d x .
\end{aligned}
$$

Very weak solution

Estimate of I_{1}

Partition $B_{2 r}$ into B_{r},
$D_{1}=\left\{x \in B_{2 r} \backslash B_{r}: M^{\frac{1}{q}}\left(G^{q}(|D \tilde{u}|)(x) \leq \delta M^{\frac{1}{q}}\left(G^{q}(|D u|)\right)(x)\right\}\right.$ and $D_{2}=\left\{x \in B_{2 r} \backslash B_{r}: M^{\frac{1}{q}}\left(G^{q}(|D \tilde{u}|)(x)>\delta M^{\frac{1}{q}}\left(G^{q}(|D u|)\right)(x)\right\}\right.$ to
see

$$
\begin{aligned}
\delta I_{1}= & \int_{B_{2 r}} a(x, D u) D u \tilde{u} h^{-\delta} d x \\
= & \underbrace{\int_{B_{r}} a(x, D u) D u \tilde{h^{-\delta} d x}}_{I_{11}} \\
& +\underbrace{\int_{D_{1}} a(x, D u) D u \tilde{h^{-\delta} d x}}_{I_{12}}+\underbrace{\int_{D_{2}} a(x, D u) D u \tilde{u} h^{-\delta} d x}_{I_{13}} .
\end{aligned}
$$

Very weak solution

Estimate of I_{11}

Recall $h(x)=M^{\frac{1}{q}}\left(G^{q}(|D \tilde{u}|)(x)\right.$ and that $h^{-\delta}$ is in the Muckenhoupt class $A_{\frac{1}{q}}$. Consequently,

$$
\begin{aligned}
I_{11}= & \int_{B_{r}} a(x, D u) D u h^{-\delta} d x \\
\geq & \nu \int_{B_{r}} G(|D u|) h^{-\delta} d x \\
\geq & \nu \int_{B_{r}} M^{\frac{1}{q}}\left(G^{q}(|D \tilde{u}|) h^{-\delta} d x\right. \\
\geq & \int_{B_{\frac{r}{2}}} G^{1-\delta}(|D u|) d x \\
& -r^{n}\left[\frac{1}{r^{n}} \int_{B_{2 r}} G^{q}(|D u|) d x\right]^{\frac{1-\delta}{q}} .
\end{aligned}
$$

Very weak solution

Estimates of $I_{12} \& I_{12}$

0

$$
\left|I_{12}\right| \lesssim \delta^{q} \int_{B_{2 r}} G^{1-\delta}(|D u|) d x .
$$

$$
\begin{aligned}
\left|\left.\right|_{13}\right| \lesssim & \epsilon \int_{B_{2 r}} G^{1-\delta}(|D u|) d x \\
& +c(\epsilon) r^{n}\left[\frac{1}{r^{n}} \int_{B_{22}} G^{q}(|D u|) d x\right]^{\frac{1-\delta}{q}} .
\end{aligned}
$$

Very weak solution

Interior $G^{1-\delta}(|D u|)$ estimates

We combine all estimates to conclude that there exists a positive constant $c_{*}=c_{*}\left(n, \nu, L, \delta_{0}, g_{0}\right)$ such that

$$
\begin{aligned}
& \int_{B_{\frac{r}{2}}} G^{1-\delta}(|D u|) d x \leq c_{*}\left(\epsilon+\delta^{q}\right) \int_{B_{2 r}} G^{1-\delta}(|D u|) d x \\
& +[1+c(\epsilon)] r^{n}\left[\frac{1}{r^{n}} \int_{B_{2 r}} G^{q}(|D u|) d x\right]^{\frac{1-\delta}{q}} \\
& +c(\epsilon) \int_{B_{2 r}} G^{1-\delta}(|F|) d x
\end{aligned}
$$

First choose $\epsilon=\delta^{q}$ and then select a small constant δ so that

$$
0<2 c_{*} \delta^{p}<1
$$

to derive the desired estimate.

Related works

- Boundary $G^{1-\delta}(|D u|)$ estimates.
- Parabolic problems.

