A variational approach to fluid-structure interactions J

Sebastian Schwarzacher
in collaboration with B. Benesova and M. Kampschulte

Charles University, Prague

Monday's non-standard seminar Warsaw

October 12, 2020

A variational approach to FSI 12.10.2020 1/10



Fluid-Structure interactions

Q@ Q= QrUQs C R3is the (Eulerian) domain under investigation.

@ The solid will be situated on Q4 which is characterized by its
deformation 7 : w — n(w) = Qs C Q in Lagrangian coordinates.
© The fluid will be contained in ¢, prescribed in Eulerian coordinates

by its velocity v : Qf — R3 and its pressure p : Qf — R.

@ The velocities and stresses are in equilibrium at the interface.
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The solid—and why a variational approach is needed

Unsteady solutions are (formally) given by:
ps021 + dive = psf onin [0, T] x w.

where dive = E’(n) + D2R(n, 0tn).

Here E is the elastic potential of the deformation and R is the dissipation
potential.

The (regularized) Saint Venant-Kirchhoff energy as prototype:

E(n) = /Q %(c(vnTW =0)- (W= + G

Steady solutions are considered to be minimizers over non-convex sets
(e.g. {n € W29(w) : det(Vn) > 0}).

+ 1 ‘Vzn‘qu.
q
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The (regularized) Saint Venant-Kirchhoff energy as prototype:
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Steady solutions are considered to be minimizers over non-convex sets
(e.g. {n € W29(w) : det(Vn) > 0}).
Problem: Energy is not convex—minimizers are not unique, no
linearisation is possible, no fixed point methods...

+ 1 ‘Vzn‘qu.
q

A variational approach to FSI 12.10.2020 3/10



The solid—and why a variational approach is needed

Unsteady solutions are (formally) given by:
ps021 + dive = psf onin [0, T] x w.

where dive = E’(n) + D2R(n, 0tn).
Here E is the elastic potential of the deformation and R is the dissipation
potential.
The (regularized) Saint Venant-Kirchhoff energy as prototype:
1

E():= [ 2(C(VnTVn—=0)-(Vn'Vn—1)+ ——=—+

() /Qs( (Vo' Vn—1) - (Vn'Vn )+(detw)3
Steady solutions are considered to be minimizers over non-convex sets
(e.g. {n € W29(w) : det(Vn) > 0}).
Problem: Energy is not convex—minimizers are not unique, no
linearisation is possible, no fixed point methods...

+ 1 ‘Vzn‘qu.
q

1
Kelvin Voigt dissipation potential: R(n,0:n) = 5 /Q 10:(VnT V)2 dx.
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The weak formulation for a quasi-steady model
Strong formulation: For all t € [0, T] (with simplified dissipation):

dive(n, 0¢m) = psf on in w,
divo(n, 0im) = DE(n) — Ao in w,
—Av 4+ Vp = prf on Q\ n(t,w),

divv =0 on Q\ n(t,w).

At the interface: 0¢n(t, x) = v on(t, x)

and o(t, x)n(x) = (Veymv(t,n(t,x)) - A+ p(t,n(t, x))!)A.
Coupled weak formulation:

T
/0 <El(77)7 §0>w + <V8t777 V(P>w + <vsymV> V§>Qf(t) - <P, diV§>Qf(t) dt

.
:/o PF(f, &) q,u ) + Psfon, ), dt

for all smooth (¢, £) satisfying ¢ = £ on on w.
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How to couple fluid and solid variationally

Theorem: There exists a solution to the quasi-steady FSI (until collision).
Proof: Via De Giorgi's minimizing movements.

Inductive time-stepping tx — tx_1 =7, NT=T.

Principle: Make the scheme explicit w.r.t. fluid-domain, but implicit w.r.t.
the coupled Dirichlet boundary values.

Assume I, 1w — Q and vi_q: Q’f"2 — R3 with

% = Vk_1 O MNk—2 ON ow.
Energy class:

(8. w) € WER(w) < W@ ) - T2 — oy on dw).
(nk, vk) = arg min of

V(B = m-)’ Vaymw|*
/ VB = ma)l 4, | £y +T/ Nomwl oy (puf o mics, 81, — i, W)kt
» 2T k! 2 '
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Estimates and Euler-Lagrange

We take (nk_1, ) as compet|tor and find

2
-t 2

Mk — Nk—1
< E(ii-1) + Tufnoo(nvkngp + | T )
T w

Korn's inequality implies estimates.
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Estimates and Euler-Lagrange

We take (nk_1, ) as compet|tor and find

2
-t 2

Nk — Mk—1
< E(mr) + Tufnoo(nwnﬂp + 1= )

Korn's inequality implies estimates.
Take (&, ¢) such that Eony_1 =
— VO MNk—1 + b OMNk—1 = w (on &u)

<E/(17k)> 80>w + <V%7 VSD>w + <vsyka> V§>Q‘;*1
= pf<f7 §>Q’;_1 + ps<f o, S0>w

E’(n) exists due to the regularizing potentials.
No previous literature on FSI involving large deformations.
Small deformation: (Grandemont 2002).
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Hyperbolic minimizing movements

Theorem: There exists a weak solution to ps0?n + E'(n) — Adwn = psf on.
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Hyperbolic minimizing movements

Theorem: There exists a weak solution to ps0?n + E'(n) — Adwn = psf on.
Parabolic De Giorgi’s MM. Inductive time-stepping. tx — tx_1 = T:

2
= arg min, [ 2L gt £5) —putrons. )

E-L : <M,th) + (El(nk),<;0> = ps(f omk—1,¥).
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Hyperbolic De Giorgi’s MM. Introduce: h = N7 as acceleration

time-scale.

Assume 3{nt~1, ..., n4 1} define:

e e—1_ -1 2

i N (Rt Y
2h 2T

nE—mk_ _ ”f _”fil

V(nk — k- ,
E-L: ps(—F @) +{ (me 1)7V90>+<E(77k),90>:p5<fo7]k71790>

2
dx + E(ﬁ) - ps(f o 77k7175>

nf =arg minB/ Ps

w
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E-L : <M,th) + (El(nk)ﬂﬁ = ps(f omk—1,¥).

Hyperbolic De Giorgi’s MM. Introduce: h = N7 as acceleration

time-scale.

Assume 3{nt~1, ..., n4 1} define:

e e—1_ -1 2

i N (Rt Y
2h 2T

2
dx + E(ﬁ) - ps(f o 77k7175>

0 .
Nk = arg mmB/ Ps
w
00 ¢ o—
M~ Me—1 M "1

E_L: p5< = h = 7(10> +

<V(77k ;nk*1)7v(p> + <El(77k)>§0> = p5<f O MNk—1, 90>

Important: Hyperbolic a-priori estimates are by E-L Equations!
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Solids coupled to Navier Stokes equations

Aim: Find solutions to:

psOfn + E'(n) — Aden = psf o in w,
pf(Orv + [VV]v) = Av — Vp + prf on Q\ n(t,w),
divv =0 on Q\ n(t,w).

And coupling of velocities and stresses at the interface.
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Solids coupled to Navier Stokes equations

Aim: Find solutions to:

psOfn + E'(n) — Aden = psf o in w,
pr(Oev + [VV]v) = Av — Vp + prf on Q\ n(t,w),
divv =0 on Q\ n(t,w).

And coupling of velocities and stresses at the interface.
Introduce the global velocity:

u:0,T]xQ— ]Rd, ulo, = vlq,, ula,=090m 077_1.

Define @ : [0, T] x Q — €, such that 0;P(t, x) = u(t, D(t, x)).

For y = &(t,x) € Qf: Oe(v(t, D(t,x)) = Oev(t,y) + [Vyv(t,y)lv(t,y).
For x € w we find &(t,n(0, x)) = n(t, x).
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Navier Stokes as hyperbolic Minimizing Movements

Let v 1 Q71 — RY be given and @471 : Qf(0) — Q1 = Q\ 5t Hw).
Introduce |nduct|ve|y

0 .
v = arg min / P
.Qf
w:Qf =R Jq (0)

Next introduce @ﬁ such that 8tgl5£ = vf o @f;fl.
For fixed domains see: (Gigli, Mosconi, 2012).

w o @ﬁ_l — vt 45,{_11 2
2h

2
dx—l—/ V] dy —ps(f, w).
[} 2

k—1
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-
Navier Stokes as hyperbolic Minimizing Movements

Let v 1 Q71 — RY be given and @471 : Qf(0) — Q1 = Q\ 5t Hw).
Introduce inductively:

wodi_, — v ogpit ?
2h

2
dx—l—/ V] dy —ps(f, w).
[} 2

Y .
Next introduce @ﬁ such that a@f; = vf o @f;fl.
For fixed domains see: (Gigli, Mosconi, 2012).
Important for FSI:
@ Make the scheme explicit w.r.t. fluid-domain, but implicit w.r.t. the
coupled Dirichlet boundary values.

@ Do not change (mollify) the domain since this masses with the flow
map P.

@ Beware that the domain where the global velocity is divergence free
changes in time.
Open Problem: Existence of steady solutions to fluid-structure
interactions.
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]
Main Result (BeneSovd, Kampschulte, Sch 2020)

There exist n: [0, T] x w — Q, v : [0, T] x Q(t) — R" and
p: [0, T] x Q(t) — R, satisfying an energy inequality. And
T
| =pstoen. e, = patv. o0 = v Vg,
T
+ [ (.00, + (R 0en). 01+ (Vo Tyl

T
—(p,div€)q, dt = /0 ps(f on, o), + pe(f,§)q,dt + initial conditions.

for all (¢, &) smooth, with ¢(t) = £(t) o n(t) on dw.
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