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THE PROBLEM

Regularity results for local bounded minimizers of integral
functionals of the type

]—"(U,Q):/Qf(x,Dv)dx QCR”

in case
e unconstrained problem
e constrained problem

In both cases the integrand f
> ¢ —f(x,§) p-growth

» can be discontinuous with respect to the x-variable.



» R. G. & A. Passarelli di Napoli Regularity results for a priori
bounded minimizers of non autonomous functionals with
discontinuous coefficients Adv. Calc. Var. 12 (2019)

» M. Caselli, A. Gentile, R. G. Regularity results for solutions
to obstacle problems with Sobolev coefficients. ]. Differential
Equations 269 (2020)



ASSUMPTIONS

Let us consider

f(v,Q):/Qf(x,Dv)dx

2 open bounded set in R", n > 2
°v: 0 — RN N>2

of : Q0 x RN — R is a Carathéodory mapping satisfying



ASSUMPTIONS W.R.T £-VARIABLE

there exist p > 2 and positive constants L, ¢, v > 0 s.t.
1
[P =f(x,&) < L1+ [€). (F1)
—2
(Df (x.€) = Def (x.m). € =) = v(L+1EP + [1P) = ¢ —nf (F2)

IDef (x,€) — Def(x,m)| < (1 + €2+ nP) T lg—n|  (F3)

for all ¢, € RN and for almost every x € (.



ASSUMPTIONS W.R.T x-VARIABLE

There exists g(x) € L7(2), o > 1s.t.

fora.e. x,y € Q and for all £ € RN,

IDef(x,€) = Def (4,€)| < (18(0)] + gD x — (1 + |ED)T (F4)



ASSUMPTIONS W.R.T x-VARIABLE

There exists g(x) € L7(2), o > 1s.t.

fora.e. x,y € Q and for all £ € RN,

IDef(x,€) = Def (4,€)| < (18(0)] + gD x — (1 + |ED)T (F4)

Assumption (F4) with g € L

ez

loc

(©) implies that
x = Def (x,€)

1,0
€ W 7(Q,R™N)

(see Hajlasz, Potential Anal. 5 (1996))
(see Kristensen-Mingione, Arch. Ration. Mech. Anal. (2006)-
Arch. Ration. Mech. Anal.(2010))




MODEL CASE

/a(x)(1+|Du|2)§dx .
Q

P22and0>1

tl(x) cL>®n Wl,a(Q)




MODEL CASE

/ a(x)(1+ |Du|2)% dx  with
Q

p>2ando >1

Question:

a(x) € L N W (Q)

How does the regularity of a(x) transfer to Du?




Unconstrained case




ABOUT THE ASSUMPTION ON Xx-VARIABLE

Classical Theory

o x> Def(x,€) € Lip(Q2)
i.e. there exists a constant K > 0

IDef (x,€) — Def(y, €)| < Klx —y|(1 + |¢P)'T

)
(1+ |Du?)"+ Du € W'2



SOBOLEV ASSUMPTION

More recent Developments

o x> Def(x,€) € WH

i.e. there exists a non negative function ¢ € L" such that

IDef (x,€) — Def (, €)| < (1) + [8(w) ) x = yI(1 + €)=
4

Higher differentiability results with integer order
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RESULTS WITH INTEGER ORDER
Beltrami Equations
» Clop, Faraco, Mateu, Orobitg & Zhong - Publ. Mat. (2009)
(n=2and A(x,§) = A(x) - { withdetA =1)
in connections with planar mappings with finite
distortion

Systems and integral functionals

» Passarelli di Napoli - Pot. Anal.(2014), Adv. Cal. Var.(2014)
p=n=2 2<p<n

» Giannetti & Passarelli di Napoli - Math. Z.(2015)
variable exponents

» G. -]. Differential Equation (2015) p=n>2

> G.-NoDEA (2016) Orlicz — Sobolev coefficients

» Cruz Uribe, Moen & Rodney - Ann. Math. Pura
Appl.(2016) Dirichlet problem




WL ASSUMPTION: HIGHER DIFFERENTIABILITY
RESULTS WITH INTEGER ORDER

» Giannetti, Passarelli di Napoli & Scheven - J. Lond. Math.
Soc. (2016) parabolic case- Proc. Roy. Soc. Edinburgh Sect.
A (2019) p-q growth

» Cupini, Giannetti, G. & Passarelli di Napoli - J. Differential
Equation (2018) convexity only at oo

» Gentile - Adv. Calc. Var. (2020) sub-quadratic growth

» Capone & Radice - Journal of Elliptic and Parabolic
Equations (2020) - preprint(2021)lower order terms.

» Cupini, Marcellini, Mascolo & Passarelli di Napoli,
Preprint (2021) degenerate ellipticity



FURTHER RESULTS IN CASE OF SOBOLEV

COEFFICIENTS

» Kristensen & Mingione - Arch. Ration. Mech. Anal. (2010)
» Kuusi & Mingione - J. Funct. Anal. (2012)
» Eleuteri, Marcellini & Mascolo
» Ann. Mat. Pura Appl. (2016),
» Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. (2016)
» Discrete Contin. Dyn. Syst. (2019)
» Adv. Calc. Var. (2020)
» Giannetti & Passarelli di Napoli J. Differential Equation
(2015)
» Cupini, Giannetti, G. & Passarelli di Napoli Nonlinear
Anal.(2017)
» De Filippis & Mingione, Preprint (2020)
» Clop, G., Hatami & Passarelli di Napoli Forum Math.
(2020)
» Cupini, Marcellini, Mascolo & Passarelli di Napoli,
Preprint (2021) D=
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WL < VMO



WL — VMO

» [waniec & Sbordone J. Anal. Math. (1998)

» Kinnunen & Zhou Comm. Partial Differential Equations
(1999)

» Bogelein, Duzaar, Habermann & Scheven, Proc. Lond.
Math. Soc. (2011)

» Bogelein, J. Differential Equation (2012)

» Di Fazio, Fanciullo & Zamboni, Algebra i Analiz (2013)
» Goodrich & Ragusa , Nonlinear Anal (2019)

» Goodrich, Scilla & Stroffolini , Preprint (2021)
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WL — VMO

Iwaniec & Sbordone J. Anal. Math. (1998)

Kinnunen & Zhou Comm. Partial Differential Equations
(1999)

Bogelein, Duzaar, Habermann & Scheven, Proc. Lond.
Math. Soc. (2011)

Bogelein, J. Differential Equation (2012)

Di Fazio, Fanciullo & Zamboni, Algebra i Analiz (2013)
Goodrich & Ragusa , Nonlinear Anal (2019)

Goodrich, Scilla & Stroffolini , Preprint (2021)

Balci, Diening, G. & Passarelli di Napoli preprint (2020)




Question:

What happens if we weaken the assumption on g?




A PRIORI BOUNDED MINIMIZERS
Theorem. [ G.- Passarelli di Napoli (2019)]

Let f : Q x R™N — R be an integrand satisfying the assump-
tions (F1)~(F4) for a function g € L'*2(). Tf u € WP (Q,RN) N

L (Q,RN) is a local minimizer of the functional F, then

(1+ |Du?)™® Du € W-2(Q, R"™N)

loc

Moreover, for every balls Bg C Bor C €2, we have that

I

D<(1 + \Du!z)ﬁDu> ‘zdx

<c [ @ pupiar e [ g
BZR BZR

where ¢ = ¢(||u||0o, R, p,n,N,L,v).




g€ Lr+2



REMARKS

g c Lp+2

1. assumption on the summability of the function g(x) that is
independent of the dimension n.




REMARKS

g c Lp+2

1. assumption on the summability of the function g(x) that is
independent of the dimension n.

2. this is a weaker assumption with respect to previous
papers when2 <p <n—2



PROOF OF THE THEOREM

Step 1: The approximation. We constract the approximating
problems:

Fix a compact set ' € (2, and for a smooth kernel
¢ € C(B1(0)) with ¢ > 0and [ )¢ =1, let us consider the
corresponding family of mollifiers (¢:).o. Put

8e =& * ¢

and

fe(x,8) = : PW)f (x + ew, §) dw

on €, for each positive ¢ < dist (€', ).



Fix a real number a > ||u| \Loo(Q/) and, for m > g, let u. ,, bea
minimizer to the functional

Senl0,) = [ (15.D0) + (ol - )

2m
+

(Carozza — Kristensen — Passarelli di Napoli, Annales Inst. H.
Poincaré (C) Non Linear Analysis , (2011))




PROOF OF THE THEOREM

Step 2: Uniform higher differentiability estimates (by using
interpolation inequality)

T e (X) = e, (X + hes) — e (X)

Choosing ¢ = 757_h(p7’+27'57hu57m) as test function in the
Euler-Lagrange system associated to the functional §. (v, Q')
and using the assumptions and some properties of the
difference quotients we obtain

pt2
/ (P 5 V (Dt )
Bor

4
2

< chp? /B P2 (g(0) + ge(x + 1))2(1 + [Diten)
2R

R 1 1: ll&,ﬂi
B3K

P
2 .



PROOF OF THE THEOREM

By a suitable interpolation inequality we have

Du. ,, € Lt #+2)




PROOF OF THE THEOREM
By a suitable interpolation inequality we have

Du. ,, € Lt #+2)

we can use Holder’s inequality with exponents %2 and

m+1 p
m(p+2)

Im—p to get

p+2
/ (P 5 V (Dt )
Bor

2m—p

2m(p+2) -
< CW(/B Pge(x) +gelx +R)) B )T
2R




PROOF OF THE THEOREM

Step 3: we show that such estimates are preserved in passing
to the limit.



SYSTEMS UNDER SUITABLE STRUCTURE ASSUMPTIONS

We consider elliptic systems of the form

divA(x, Du) ZD% Zal]xDu =0, 1<a<N,inQcR" ()
satisfying
A(x,0) =0 (A0)
(A(x, &) — A(x,m), & —n) > alé —n*(1+ [¢* + \nl2)¥ (A1)
Alx,€) — A(x,m)| < BlE— (1 +1€P + )T (A2)



SYSTEMS UNDER SUITABLE STRUCTURE ASSUMPTIONS

We consider elliptic systems of the form
divA(x, Du) ZDXI Zal]xDu =0, 1<a <N, inQCR" ()
satisfying
A(x,0) =0 (A0)
p—2
(A(x,€) = A(x,m), € = ) > ale =P+ ¢ + )T (A1)
—2
A€ — A )| < Bl =01+ 1P+ )T (A2)
There exists a nonnegative function g € Lfotz(Q), such that
p—1
Ax,€) = Ay, )] < (§(0) +8W))lx —yl A+ 75 (A3)

for every ¢ € R™N and for almost every x,y € Q.



Theorem. [ G.- Passarelli di Napoli (2019)]
Let A: QxRNx"

RN*" be a Carathéodory function satisfying

the assumptions (A0)—(A3). If u € W, (Q) is a local solution of
the system (¥) , then

(1 + [Dul?)'5 Du € Wi2(Q, RN

Moreover, for every ball B, € 2

/ (1+ |Duf?)’= |D%uf? dx < r/ (1+ |Duf?)% dx
Br/4 r

¢ p

TT’ZHMHLP* B

) </B (1+ g(x)P+2 dx) :

for a constant ¢ = ¢(a, 3, p, n)




PROOF OF THE THEOREM
Step 1 A priori estimate
e difference quotient method

e local boundedness of the solutions u € Wl1 OZ(Q) of the
system and following estimate

1

p*
sup |u|<c ][ (Ju| + 1)F" dx
Bg(xo) Br(xo)

(see Cupini, Marcellini & Mascolo,

Manuscripta Math. (2012) J. Optim. Theory Appl.(2015)-
Nonlinear Anal.(2017))

(see also Leonetti Boll. Un. Mat. Ital. (1991))

e interpolation inequality




PROOF OF THE THEOREM
Step 1 A priori estimate
e difference quotient method

e local boundedness of the solutions u € Wl1 OZ(Q) of the
system and following estimate

1

p*
sup |u|<c ][ (Ju| + 1)F" dx
Bg(xo) Br(xo)

(see Cupini, Marcellini & Mascolo,

Manuscripta Math. (2012) J. Optim. Theory Appl.(2015)-
Nonlinear Anal.(2017))

(see also Leonetti Boll. Un. Mat. Ital. (1991))

e interpolation inequality

Step 2 Approximation procedure




REMARK

If is assumed a priori

. np
L7 th
uell wi q>n_p_2

(instead of u € L)
the interpolation inequality gives

Du € Liz#+?

(instead of Du € LP*?2)



REMARK

If is assumed a priori

np

m (inStead Of uc LOO)

uell with g>

the interpolation inequality gives

Du e Lit2#+?) (instead of Du € LP*2)

Such higher integrability allow us to obtain the same higher

differentiability result assuming ¢ € L7~ 7 P+2)

We’d like to point out that for p < n —2 it results (p +2) <



Constrained case




OBSTACLE PROBLEM

We consider the following obstacle problem

min { / F(x,Do(x) : ve ICw(Q)} , 1)
Q
where 2 C R" is a bounded open set,
e ¢ : () = [—00, +00) belonging to Wllo’i] is the obstacle,

o [Cy(Q) ={ve Wl’p(Q,R) :v > 1) a.e. in Q} is the class of the

loc
admissible functions.



OBSTACLE PROBLEMS AND VARIATIONAL
FORMULATION

We observe that

ue Wl1 J(9) is a solution to the obstacle problem in Ky,

)

u € Ky () is a solution to the variational inequality

/ (A(x,Du),D(p —u)dx >0 Vi € Ky(Q),
Q

where A(x,§) = Def(x, ).



REGULARITY

It is well known that:

the regularity of solutions to the obstacle problems depends on the
reqularity of the obstacle itself




Analysis of the extra differentiability of the solutions of the
obstacle problems

/Q (A(x, Du(x)), D(p(x) — u(@)))dx >0 Ve € Ky(Q),

assuming that the gradient of the obstacle Dy has some
differentiability property



ASSUMPTIONS
Let us fix ¢ € Wlloﬁ(Q) and consider

/ (A(x, Du), D(p — u)) dx > 0, (4)
Q

for every ¢ € () = {v € Wll(;Z(Q,R) :v > ae. in Q}

There exist constants v, L > 0 and an exponent p > 2 such that

(A(x,€) — A(x.n), € — ) 2 vl¢ —nP(L+ EF + 1nP)T  (AD)

A(x, &) — A, 0)| < LIE = nl(1+ 6P + 1T (A2)



ASSUMPTIONS
Let us fix ¢ € Wlloi(Q) and consider

/ (A(x, Du), D(p — u)) dx > 0, (4)
Q
for every ¢ € () = {v € Wll(f(Q,R) :v > ae inQ}

There exist constants v, L > 0 and an exponent p > 2 such that

(A(x,€) — A(x.n), € — ) 2 vl¢ —nP(L+ EF + 1nP)T  (AD)
A(x, &) — A, 0)| < LIE = nl(1+ 6P + 1T (A2)

There exists a nonnegative function g € Lf ;Z(Q), such that

A%, €) = AW, 6)] < (800 +8W)x —yl (1 + D)5 (A3)

for all ¢,n € R" and for almost every x,y € €.



REMARK

The regularity of the solutions to the obstacle problem (**) is
strictly connected to the regularity of the solutions to PDE’s of
the form

divA(x, Du) = divA(x, Dv).

It is well known that no extra differentiability properties for the
solutions of equations of the type

divA(x, Du) = divG

can be expected even if G is smooth, unless some assumption is
given on the x-dependence of the operator A.



SOME RESULTS

v

vVvyvyVvyyypy

X A(x,€) € WY with r>n

Eleuteri & Passarelli di Napoli - Calc. Var. Partial
Differential Equations.(2018) - Nonlinear Anal. (2020)

Gavioli - Forum Math. (2019)

Ma & Zhang - J. Math. Anal. Appl. (2019)

De Filippis - J. Math. Anal. Appl. (2019)

Chlebicka&s De Filippis - Ann. Mat. Pura Appl. (2019)
De Filippis & Mingione - (2020)

Gentile - Forum Math. (2021)



Theorem. [Caselli — Gentile — G.(2020)]

Let A(x, &) satisfy the conditions (A1)—(A4) for an exponent p >

2 and let u € K(©2) be a solution to the obstacle problem. Then,
if 1 € L3 () the following implication holds

1,042 e

Dy e Wo 2 (Q) = (u2+ \Du!2> T Due WH(Q),

loc




Theorem. [Caselli — Gentile — G.(2020)]

Let A(x, &) satisfy the conditions (A1)—(A4) for an exponent p >
2 and let u € K(©2) be a solution to the obstacle problem. Then,
if 1 € L3 () the following implication holds

1,042 e

Dy e Wo 2 (Q) = (u2+ \Duyz) T Due WH(Q),

loc

Remark: the assumption ¢ € Li¥ (€2) is needed to get the
boundedness of the solution. Therefore if we deal with a priori
bounded minimizers, then the result holds without the
hypothesis ¢ € L*.

(see Caselli — Eleuteri — Passarelli di Napoli, ESAIM - Control.
Optim. Calc. Var. (2021))



PROOF OF THE THEOREM

e A priori estimate

e Approximation procedure




TEST FUNCTIONS

The main point is the choice of suitable test functions ¢:
1. involving the difference quotient of the solution

2. belonging to the class of the admissible functions /Cy (£2),

Let us consider ¢ := u + 7v for a suitable v € Wé’p () such that
u—yv+10>0 V1 € [0,1], ( % %)

Then ¢ € Ky () for all 7 € [0,1], since ¢ = u + 70 > 7).



TEST FUNCTIONS

Let n be a cut off function, we consider

v1(x) = 7 (%) [(u — ) (x + ) — (u— ) (x)],

v; satisfies (***). Indeed, for a.e. x € 2 and for any 7 € [0, 1]

u(x) — (x) + 701 (x) =
= u(x) = () + 77 (%) [(u — ) (x + h) — (= )(x)]
= () (u— ) (x +h) + (1= 7 (x)) (u — ) (x) >0,

since 11 € K () and 0 < 1 < 1.

So we can use ¢ = u + Tv; as a test function in variational
inequality.



TEST FUNCTIONS

In a similar way, we consider
02(x) = 77 (x) [(1 = ) (x = 1) = (u =) (x)],
and we have (***) still is satisfied for any 7 € [0, 1], since
u(x) —(x) + 702(x) =
= () = () + (%) [(1 — ) (x =) — (u — ) (2)]

= 7 (0) (= ) (x = h) + (1 — () (1 — ) (x) = 0.

So we can use ¢ = u + 7v; as a test function in variational
inequality .



Thanks for your attention!



