Piotr Kalita piotr.kalita@ii.uj.edu.pl Jagiellonian University, Kraków, Poland

> (remotely) Warsaw January 18, 2021

Minty transform

Problei

Musielak-Orli

problem

Talk based on the paper (under the same title: "On renormalized solutions to elliptic inclusions with nonstandard growth") with A. Denkowska and P. Gwiazda.

To appear in Calculus of Variations and Partial Differential Equations, doi: 10.1007/s00526-020-01893-4.

Also available on arxiv. https://arxiv.org/abs/1912.12729

Monotone and maximally monotone multifunctions

Definition (Monotone multifunction)

The multifunction $a: \mathbb{R}^d \to 2^{\mathbb{R}^d}$ is monotone if for every $\mu_1, \mu_1 \in \mathbb{R}^d$ and every $\lambda_1 \in a(\mu_1)$, $\lambda_2 \in a(\mu_2)$ there holds

$$(\lambda_1 - \lambda_2) \cdot (\mu_1 - \mu_2) \geqslant 0.$$

Definition (Maximal monotone multifunction)

The monotone multifunction $a: \mathbb{R}^d \to 2^{\mathbb{R}^d}$ is maximal monotone if and only if whenever $(\mu, \lambda) \in \mathbb{R}^d \times \mathbb{R}^d$ is such that

$$(\lambda - \lambda_1) \cdot (\mu - \mu_1) \geqslant 0$$
 for every $\mu_1 \in \mathbb{R}^d, \lambda_1 \in a(\mu_1),$

then $\lambda \in a(\mu)$.

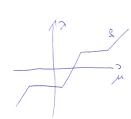
Minty transform

Problen

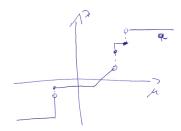
Musielak-Orli

vve come par

Monotone and maximally monotone multifunctions



Monotone Counction



Monobne multifunche

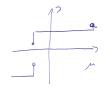
Minty transform

Proble

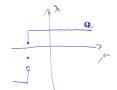
Musielak–Orlicz space

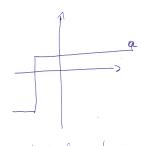
vve come back to the problem

Minty transform



Monotone but NOT





$$e \in \varphi(d) \Leftrightarrow \text{ there exists } \mu \in \mathbb{R}^d, \lambda \in a(\mu) : \mu + \lambda = d, \mu - \lambda = e.$$

Minty transform of monotone multifunction

If a is monotone then φ is a 1-Lipschitz function.

Proof. $e_1 \in \varphi(d_1), e_2 \in \varphi(d_2)$. Denote corresponding μ and λ by $\mu_1, \lambda_1, \mu_2, \lambda_2$.

$$\begin{aligned} |(\mu_1 - \mu_2) + (\lambda_1 - \lambda_2)|^2 - |(\mu_1 - \mu_2) - (\lambda_1 - \lambda_2)|^2 &= 4(\mu_1 - \mu_2) \cdot (\lambda_1 - \lambda_2). \\ |d_1 - d_2|^2 &\geqslant |e_1 - e_2|^2 \\ |e_1 - e_2| &\leqslant |d_1 - d_2| \end{aligned}$$

Minty transform

Proble

Musielak-Orlicz space

problem

If a is maximal monotone then φ is a 1-Lipschitz function with $\operatorname{dom} \varphi = \mathbb{R}^d$.

Proof. Suppose $d \notin \operatorname{dom} \varphi$. By Kirszbraun theorem extend φ to 1-Lipshitz function $\widetilde{\varphi}$ defined on whole \mathbb{R}^d . Denote $e = \widetilde{\varphi}(d)$. Calculate

$$\mu + \lambda = d, \mu - \lambda = e.$$

If $\lambda_1 \in a(\mu_1)$, then

$$|(\lambda_1 - \mu_1) - (\lambda - \mu)| = |\varphi(\lambda_1 + \mu_1) - \widetilde{\varphi}(\lambda + \mu)|$$

$$= |\widetilde{\varphi}(\lambda_1 + \mu_1) - \widetilde{\varphi}(\lambda + \mu)| \leq |(\lambda_1 + \mu_1) - (\lambda + \mu)|.$$

$$|(\lambda_1 - \lambda) - (\mu_1 - \mu)| \leq |(\lambda_1 - \lambda) + (\mu_1 - \mu)|.$$

$$4(\lambda_1 - \lambda) \cdot (\mu_1 - \mu) \geq 0.$$

Which contradicts maximality.

Minty transform

Problem

Musielak-Orlicz space

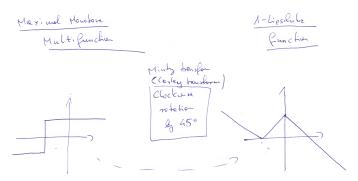
problem

Minty transform

Proble

Musielak–Orlicz space

We come back to the problem



Some literature on Minty transform

[1] George J. Minty, Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29 1962, 341–346.

[2] R. Tyrrell Rockafellar, Roger J.-B. Wets, Variational analysis, Springer 2009 (3rd ed) Minty parameterization.

[3] Giovanni Alberti, Luigi Ambrosio, A geometrical approach to monotone functions in \mathbb{R}^n . Math. Z. 230 (2) 1999, 259–316. Cayley transformation.

[4] Gilles Francfort, Francois Murat, Luc Tartar, Monotone operators in divergence form with x-dependent multivalued graphs, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 23–59.

[5] Piotr Gwiazda, Anna Zatorska-Goldstein, On elliptic and parabolic systems with x-dependent multivalued graphs, Mathematical Methods in the Applied Sciences 30 (2), 213-236. (concept: one needs continuous nonlinearities to work with Young measures)

Minty transform

Problem

Musielak–Orlicz space

Elliptic inclusion

Problem under consideration

Let

- $\Omega \subset \mathbb{R}^d$ be a bounded domain with sufficiently smooth boundary,
- $f \in L^1(\Omega)$ be a function,
- ▶ $A: \Omega \times \mathbb{R}^d \to 2^{\mathbb{R}^d}$ be a multifunction such that $A(x,\cdot)$ is maximally monotone for a.e. x (+nonstandard growth! and measurability w.r. to x)

We want to find the function $u:\Omega\to\mathbb{R}$ with u=0 on $\partial\Omega$ such that

$$-{\rm div}\, A(x,\nabla u(x))\ni f(x).$$

Find function u and the selection $\eta(x) \in A(x, \nabla u(x))$ a.e. x such that in appropriate weak sense

$$-\mathrm{div}\,\eta(x)=f(x).$$

linty transform

Problem

Musielak-Orlicz space

problem

Willity transio

Problem

Musielak–Orlicz space

problem

- 1. Existence of solution understood in renormalized sense (as $f \in L^1(\Omega)$).
- 2. Uniqueness of renormalized solution if *A* is in addition strictly monotone.
- 3. If f satisfies appropriate Orlicz type regularity assumption then renormalized solution $u \in L^{\infty}(\Omega)$ (and hence it is also a weak solution because we can drop $h \in C_c^1(\mathbb{R})$ from the definition of renormalized solution).
- [3.] and in part [2.] are obtained for those renormalized solutions which are limits of the approximation procedure used in the proof of existence.

- A. We assume nonstandard, Musielak–Orlicz type growth and coercivity conditions on A which leads to ∇u (or more, precisely gradients of truncations) in some Musielak–Orlicz space.
- B. To get optimal " L^p type" Musielak–Orlicz space to which f should belong (in order to work with the weak solution) one needs to know the dual of the "best L^p type" space in which the " $W^{1,p}$ -type" Musielak–Orlicz–Sobolev space embeds.
- C. To avoid answering this (difficult) question we choose $f \in L^1$ and we work with well established notion of renormalized solutions.
- D. It appears to us that there were no previous works on renormalized solutions for problems with multivalued leading term. So we define the correct notion of such solution.

- (N1) M is Carathéodory, that is, $M(\cdot,\xi)$ is measurable for every $\xi \in \mathbb{R}^d$ and $M(x,\cdot)$ is continuous for almost every $x \in \Omega$,
- (N2) $M(x,\xi) = M(x,-\xi)$ for every $\xi \in \mathbb{R}^d$ a.e. in Ω and $M(x,\xi) = 0$ is and only if $\xi = 0$ a.e. in Ω ,
- (N3) $M(x, \cdot)$ is convex for almost every $x \in \Omega$,
- (N4) Growth of M in ξ at zero and infinity, that is,

$$\lim_{|\xi|\to 0} \operatorname*{ess\,sup}_{x\in\Omega} \frac{M(x,\xi)}{|\xi|} = 0 \quad \text{and} \quad \lim_{|\xi|\to\infty} \operatorname*{ess\,inf}_{x\in\Omega} \frac{M(x,\xi)}{|\xi|} = \infty.$$

(N5) $\operatorname{ess\,inf}_{x\in\Omega}\inf_{|\xi|=s}M(x,\xi)>0$ for every $s\in(0,\infty)$ and $\operatorname{ess\,sup}_{x\in\Omega}M(x,\xi)<\infty$ for every $\xi\neq0$.

Assuming (N1)-(N4), (N5) is equivalent to existence of one dimensional *N*-functions m_1, m_2 such that $m_1(|\xi|) \leq M(x,\xi) \leq m_2(|\xi|)$.

Minty transform

Problem

Musielak-Orlicz space

problem

One extra assumption

One of the following two assumptions holds

Either

(C1) The Fenchel conjugate \widetilde{M} of M satisfies the Δ_2 condition. (which implies that $(L_{\widetilde{M}}(\Omega))^* = (E_{\widetilde{M}}(\Omega))^* = L_M(\Omega)$ and this allows us to "work with" weak-* convergence in L_M)

or

- (C2) "Balance condition" (on dependance of M on x) of [1,2] which guarantees modular density of $C_0^\infty(\Omega)$ functions in $L_M(\Omega)$ hold (and hence it is enough to have $(E_{\widetilde{M}}(\Omega))^* = L_M(\Omega)$ to deal with weak-* convergence in L_M), cf.
- [1] I. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein, Parabolic equation in time and space dependent anisotropic Musielak– Orlicz spaces in absence of Lavrentievs phenomenon, Annales de l'Institut Henri Poincaré, C, Analyse non linéaire 36 (2019), 1431–1465.
- [2] I. Chlebicka, P. Gwiazda, and A. Zatorska-Goldstein, Renormalized solutions to parabolic equations in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentievs phenomenon, J. Differ. Equations 267 (2019), 1129–1166.

Minty transform

roblem

Musielak-Orlicz space

problem

Kesults

Problem

Musielak-Orlicz space

problem

Results

- ▶ We nowhere assume that both M, \widetilde{M} satisfy Δ_2 . So we work in nonreflexive and nonseparable spaces.
- ▶ If \widehat{M} does not satisfy Δ_2 then our approach works if (C2) holds.

Condition (C2) covers:

- Any pure Orlicz setting.
- Variable exponent spaces with log-Hölder condition.
- Double phase spaces with optimal closeness condition.

Condition (C1) covers:

- ► Variable exponent spaces without log-Hölder condition.
- Double phase spaces without optimal closeness condition.

Musielak-Orlicz space

Pure isotropic Orlicz

$$M(x,\xi) = |\xi| \ln(1+|\xi|),$$

 $M(x,\xi) = |\xi| (\exp|\xi| - 1).$

► Anisotropic Orlicz

$$M(x,\xi) = |\xi| \ln(1 + |\xi|),$$

 $M(x,\xi) = |\xi| (\exp|\xi| - 1),$
 $M(x,\xi) = \sum_{i=1}^{d} B_i(\xi_i),$

Variable exponent without log-Hölder

$$M(x,\xi) = |\xi|^{p(x)}, 1 \ll p \ll \infty$$

▶ Doubling (with a touching zero) without optimal closeness

$$M(x,\xi) = |\xi|^p + a(x)|\xi|^q, \quad 1
$$M(x,\xi) = |\xi|^p + a(x)|\xi|^p \ln(e + |\xi|), \quad 1$$$$

Combination of the above.

- $A: \Omega \times \mathbb{R}^d \to 2^{\mathbb{R}^d}$ satisfies.
- (A1) A is measurable with respect to the σ -algebra $\mathcal{L}(\Omega)\otimes\mathcal{B}(\mathbb{R}^d)$ on its domain $\Omega\times\mathbb{R}^d$ and the σ -algebra $\mathcal{B}(\mathbb{R}^d)$ on its range. Here $\mathcal{B}(\mathbb{R}^d)$ is the Borel σ -algebra and $\mathcal{L}(\Omega)$ is the Lebesgue σ -algebra.
- (A2) the multivalued map $A(x, \cdot)$ is maximally monotone for a.e. $x \in \Omega$.
- [1] V. Chiado'Piat, G. Dal Maso, and A. Defrancheschi, G-convergence of monotone operators, Annales de l'H.P., section C 7 (1990), 123–160.

linty transform

Problem

Musielak-Orlicz space

We come back to the problem

(A3) there exists an N-function M and a nonnegative function $m \in L^1(\Omega)$ such that

$$\eta \cdot \xi \geqslant M(x,\xi) + \widetilde{M}(x,\eta) - m(x).$$

for almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^d$, $\eta \in A(x, \xi)$.

Encompasses growth and coercivity in one condition. Weaker then (in doubling case equivalent) to

$$c_A M(x,\xi) - m_A(x) \le \eta \cdot \xi,$$

 $\widetilde{M}(x,\eta) \le c_G M(x,\xi) + m_G(x),$

for almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^d$, $\eta \in A(x, \xi)$.

ninty transform

Problem

Musielak-Orlicz space

We come back to the problem

$$V_0^M = \{ v \in W_0^{1,1}(\Omega) : \nabla v \in L_M(\Omega) \},$$

$$T_k f(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq k, \\ k \frac{f(x)}{|f(x)|} & \text{otherwise.} \end{cases}$$

Definition

- 1. For every k > 0 there holds $T_k(u) \in V_0^M \cap L^\infty(\Omega)$.
- 2. There exists a measurable selection $\alpha:\Omega\to\mathbb{R}^d$ of $A(\cdot,\nabla u(\cdot))$ such that for any $h\in C^1_c(\mathbb{R})$ and for any test function $w\in W^{1,\infty}_0(\Omega)$ there holds

$$\int_{\Omega} \alpha \cdot \nabla (h(u)w) \, dx = \int_{\Omega} fh(u)w \, dx.$$

3. There holds

$$\lim_{k\to\infty}\int_{\{k<|u(x)|< k+1\}}\alpha\cdot\nabla u\,dx=0.$$

Minty transform

Problem

Musielak-Orlicz space

We come back to the problem

[1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vazquez, An L^1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22 (1995), 241–273.

- ▶ The generalized gradient of u such that $T_k u \in V_0^M$ is a measurable function $v: \Omega \to \mathbb{R}^d$ such that $v\chi_{\{|v| < k\}} = v\chi_{\{|v| \le k\}} = \nabla T_k(u)$ for almost every $x \in \Omega$ for each k > 0.
- ► The selection $\alpha: \Omega \to \mathbb{R}^d$ is a measurable function such that for every k > 0 there exists the selection $\alpha_k \in L_{\widetilde{M}}(\Omega)$ of the multifunction $A(\cdot, \nabla T_k u)$ such that $\alpha_k \chi_{\{|u| < k\}} = \alpha \chi_{\{|u| < k\}}$.

linty transform

Problem

Musielak-Orlicz space

We come back to the problem

Theorem 1 - existence

Existence result

Suppose that an *N*-function *M* satisfies either (C1) or (C2). If $f \in L^1(\Omega)$ and *A* satisfies (A1)–(A3) then a renormalized solution exists.

Proof. 1. Construct auxiliary problem governed by

$$-\operatorname{div} a^{\epsilon}(x, \nabla u_{\epsilon}) = T_{1/\epsilon} f \quad \text{in} \quad \Omega,$$

$$u_{\epsilon}(x) = 0 \quad \text{on} \quad \partial \Omega.$$

- 2. Compactness method and Minty trick similar as in [1].
- 3. In the course of the proof we must show equiintegrability of $a^{\epsilon}(x, \nabla T_k u_{\epsilon}) \cdot \nabla T_k u_{\epsilon}$ w.r. to ϵ . To get this we need compactness theorem on Young measures, which uses the fact that $L^{\infty}_w(\Omega; \mathcal{M}(\mathbb{R}^d))$ (mappings which are weak-* measurable and essentialy bounded in $\mathcal{M}(\mathbb{R}^d)$) is $(L^1(\Omega; C_0(\mathbb{R}^d)))^*$. Nonlinearity must be continuous. We achieve this by the Minty transform.
- [1] P. Gwiazda, I. Chlebicka, A. Zatorska-Goldstein, Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space, J. Differ. Equations 264 (1) (2018), 341-377.

linty transform

Musielak–Orlicz sp.

problem

Theorem 2 - uniqueness

Theorem

Assume, in addition, that A is strictly monotone, i.e. if $\xi \neq \eta$, then for every $g \in A(x,\xi), h \in A(x,\eta)$ and a.e. $x \in \Omega$ there holds $(g-h) \cdot (\xi - \eta) > 0$.

- ▶ If M satisfies (C1) (\dot{M} satisfies Δ_2) then the renormalized solution to the problem is unique in the class of solutions obtained as the limit as $\epsilon \to 0$ of solutions of the approximative problems.
- ▶ If an N-function M satisfies (C2) (modular density of smooth functions) then the renormalized solution is unique.

Proof. Test by $T_k(T_1u_1 - T_1u_2)$.

inty transform

Problen

Musielak-Orli

We come bac

Theorem 3 - boundedness

Theorem

Assume, (in addition to assumptions of Theorem 1)

(W1) There exists a constant $\lambda > 1$ such that

$$\int_0^{|\Omega|} s^{\frac{1}{d}-1} \Psi_{\blacklozenge}^{-1} \left(\frac{\lambda}{d\omega_d^{\frac{1}{d}}} s^{\frac{1}{d}} f^{**}(s) \right) ds < \infty,$$

where ω_d is the Lebesgue measure on one dimensional unit ball in \mathbb{R}^d , i.e., $\omega_d = \pi^{d/2}/\Gamma(1+\frac{d}{2})$.

(W2) The function m in corecivity/growth condition $\eta \cdot \xi \geqslant M(x,\xi) + \widetilde{M}(x,\eta) - m(x)$ belongs to $L^{\infty}(\Omega)$.

Then every renormalized solution u obtained as the limit of solutions to approximative problems belongs to $L^{\infty}(\Omega)$.

Comment. In such a case we can drop $h \in C_0^1(\mathbb{R})$ from the definition of renormalized solution and renormalized solutions are also weak.

Assumption (W1)

Assumption

$$\int_0^{|\Omega|} s^{\frac{1}{d}-1} \Psi_{\blacklozenge}^{-1} \left(\frac{\lambda}{d\omega_d^{\frac{1}{d}}} s^{\frac{1}{d}} f^{**}(s) \right) ds < \infty,$$

is the Orlicz type regularity requirement on f in spirit of

[1] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Partial Differential Equations 32 (2007), 693–717.

[2] A. Alberico, I. Chlebicka, A. Cianchi, and A. Zatorska-Goldstein, Fully anisotropic elliptic problems with minimally integrable data, Calc. Var. PDEs 58 (2019), 186.

It is sharp in (anisotropic) Orlicz setting. Proof follow by the the concept from [1] i.e. the symmetrization method. f^{**} is the maximal rearrangement of f, and

$$\begin{aligned} |\{\xi \in \mathbb{R}^d : L_{\circ}(|\xi|) \leqslant t\}| &= |\{\xi \in \mathbb{R}^d : L(\xi) \leqslant t\}|, \ L_{\bigstar}(\xi) = L_{\circ}(|\xi|). \\ m_1(|\xi|) \leqslant M_1(\xi) \leqslant M(x,\xi), \quad (M_1)_{\spadesuit}(|\xi|) &= \left(\widetilde{(M_1)_{\bigstar}}\right)(\xi) \\ \Psi_{\spadesuit}(s) &= \frac{(M_1)_{\spadesuit}(s)}{s}. \end{aligned}$$

Ainty transform

Problem

Musielak-Orlicz space

roblem

resuits

Minty transform

Problem

Musielak-Orlicz space

problem

Results

Thank you!!!