Unbounded supersolutions with generalized Orlicz growth

Petteri Harjulehto

University of Turku

Monday's Nonstandard Seminar 2.11.2020

We say that $\varphi: \Omega \times [0,\infty) \to [0,\infty]$ is a *weak* Φ -function, and write $\varphi \in \Phi_w(\Omega)$, if the following conditions hold:

- For every measurable function $f:\Omega\to\mathbb{R}$ the function $x\mapsto \varphi(x,f(x))$ is measurable and for every $x\in\Omega$ the function $t\mapsto \varphi(x,t)$ is non-decreasing.
- $\varphi(x,0) = \lim_{t\to 0^+} \varphi(x,t) = 0$ and $\lim_{t\to \infty} \varphi(x,t) = \infty$ for every $x\in \Omega$.
- The function $t\mapsto \frac{\varphi(x,t)}{t}$ is *L*-almost increasing on $(0,\infty)$ with *L* independent of *x*.

Some special cases of Φ -functions:

- $\varphi(x,t) = t^p$ the classical Lebesgue space
- $\varphi(x,t) = \varphi(t)$ the Orlicz space
- $\varphi(x,t)=t^{p(x)}a(x)$ the variable exponent Lebesgue space
- $\varphi(x,t) = t^p + a(x)t^q$ the double phase case

We assume that $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the following φ -growth conditions:

$$\nu\varphi(x,|\xi|) \leqslant f(x,\xi) \cdot \xi$$
 and $|f(x,\xi)| |\xi| \leqslant \Lambda\varphi(x,|\xi|)$

for all $x \in \Omega$ and $\xi \in \mathbb{R}^n$, and fixed but arbitrary constants $0 < \nu \leqslant \Lambda$. We are interested in local (weak) supersolutions:

Definition 1

A function $u \in W^{1,\varphi}_{\mathrm{loc}}(\Omega)$ is a supersolution if

$$\int_{\Omega} f(x, \nabla u) \cdot \nabla h \, dx \geqslant 0,$$

for all non-negative $h \in W^{1,\varphi}(\Omega)$ with compact support in Ω .

If φ is differentiable wrt second variable, then our assumptions covers also the equation

$$\int_{\Omega} \frac{\varphi'(x, |\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla h \geqslant 0,$$

for all non-negative $h \in W_0^{1,\varphi}(\Omega)$.

Instead of supersolutions, you can think local superminimizers: Every open set $D \subseteq \Omega$ and for every non-negative $v \in W^{1,\varphi}(\Omega)$ with a compact support in D, we have

$$\int_D F(x, |\nabla u|) dx \leqslant \int_D F(x, |\nabla (u+v)|) dx.$$

Here $F(x,t) \approx \varphi(x,t)$.

Special case: $\varphi(x,t)=t^p$.

The standard p-Laplace equation $-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=0$, $1< p<\infty$. The non-negative weak supersolutions satisfies the weak Harnack inequality

$$\left(\int_{2B} u^s dx\right)^{\frac{1}{s}} \lesssim \operatorname{ess\,inf} u,$$

where

- the constant is independent of u,
- $0 < s < \frac{n}{n-p}(p-1)$ when p < n, and $s \in (0,\infty)$ when $p \geqslant n$.

Trudinger (1967)

Special case: Orlicz $\varphi(x,t) = \varphi(t)$.

Theorem 2 (Arriagada–Huentutripay (2018))

Assume that $1 and <math>\varphi(t) = \int_0^t \psi(t) dt$. Let $u \ge 0$ be bounded supersolution. Then

$$\left(\int_B u^s dx\right)^{\frac{1}{s}} \lesssim \operatorname{ess\,inf} u + \operatorname{diam}(B).$$

• Bounded solutions, Lieberman (1987, 1991)

There have to be some results for corresponding minimizers.

Special case: variable exponent $arphi(x,t)=t^{ ho(x)}$.

Theorem 3 (Lukkari (2010))

Assume that p is log-Hölder continous and $1 < p^- \le p^+ < \infty$. Let t > 0, $0 < s < \frac{n}{n-1}(p^- - 1)$, and let $u \ge 0$ be supersolution. Then

$$\left(\int_{2B} u^s dx\right)^{\frac{1}{s}}$$
 essinf $u + \text{diam}(B)$,

where the constant depends on L\(^{\(4B\)}\)-norm of u.

- Bounded supersolutions, Alkhutov (1997).
- Bounded supersolutions and $0 < s < \frac{n}{n-1}(p_0 1)$, Alkhutov–Krasheninnikova (2004).
- Unbounded supersolutions, H–Kinnunen–Lukkari (2007)
- Bounded superminimizers, Fan–Zhao (1999, 2000)
- Unbounded superminimizers,
 H-Kuusi-Lukkari-Marola-Parviainen (2008)

Special case: variable exponent $\varphi(x,t)=t^{p(x)}$.

- "+ diam(B)" is not needed if $p \in C^1$, Julin (2015)
- It is not know is "+ diam(B)" necessary or not.
- In the Harnack's inequality the constant cannot be independent of u, example in H-Kinnunen-Lukkari (2007)

Special case: double phase $\varphi(x,t) = t^p + a(x)t^q$.

Theorem 4 (Baroni–Colombo–Mingione (2015))

Let $a \in C^{0,\alpha}$, $\alpha \geqslant \frac{n}{p}(q-p)$. Let $u \geqslant 0$ be bounded supersolution. Then there exists s > 0 such that

$$\left(\int_B u^s dx\right)^{\frac{1}{s}} \lesssim \operatorname{ess\,inf} u.$$

Here the constant depends on $||u||_{\infty}$.

Other related results:

- $\varphi(x,t) = t^{p(x)}$ and general structural conditions, Latvala-Toivanen (2017)
- $\varphi(x,t) = t^{p(x)}$ and p makes a jump at a hyperplane, Alkhutov–Surnachev (2019)
- $\varphi(x,t) = t^{p(x)}$ and p is piecewise constant, Alkhutov–Surnachev (2019, 2020)
- $\varphi(x, t) = t^{p(x)} \log(e + t)$, Ok (2018)
- generalized double phase functional, Byen-Oh (2020)

Let p,q,s>0 and let $\omega:\Omega\times[0,\infty)\to[0,\infty)$ be almost increasing. We say that $\varphi:\Omega\times[0,\infty)\to[0,\infty)$ satisfies

- (A0) if there exists $\beta \in (0,1]$ such that $\beta \leqslant \varphi^{-1}(x,1) \leqslant \frac{1}{\beta}$ for a.e. $x \in \Omega$,
- (A1- ω) if there exists $\beta \in (0,1]$ such that, for every ball B and a.e. $x,y \in B \cap \Omega$,

$$\varphi(\mathbf{x}, \beta t) \leqslant \varphi(\mathbf{y}, t) \text{ when } \omega_B^-(t) \in \left[1, \frac{1}{|B|}\right];$$

- (A1-s) if it satisfies (A1- ω) for $\omega(x,t) := t^s$;
 - (A1) if it satisfies (A1- φ);
- (alnc)_p if $t \mapsto \frac{\varphi(x,t)}{t^p}$ is L_p -almost increasing in $(0,\infty)$ for some $L_p \geqslant 1$ and a.e. $x \in \Omega$;
- (aDec)_q if $t\mapsto \frac{\varphi(x,t)}{t^q}$ is L_q -almost decreasing in $(0,\infty)$ for some $L_q\geqslant 1$ and a.e. $x\in\Omega$.

$\varphi(x,t) :=$	(A0)	(A1)	(A1-s)	(alnc)	(aDec)
$\varphi(t)$	true	true	true	$ abla_2$	Δ_2
$t^{p(x)}a(x)$	approx 1	$p \in C^{\log}$	$p \in C^{\log}$	$p^{-} > 1$	$p^+ < \infty$
$t^{p(x)}\log(e+t)$	true	$p \in C^{\log}$	$p \in C^{\log}$	$p^{-} > 1$	$p^+ < \infty$
$t^p + a(x)t^q$	$a\in L^{\infty}$	$a \in C^{0,\frac{n}{p}(q-p)}$	$a \in C^{0,\frac{n}{s}(q-p)}$	p > 1	$q<\infty$

Table: Assumptions in some special cases

Theorem 5 (Benyaiche-H-Hästö-Karppinen (accepted))

Suppose φ satisfies (A0), (alnc)_p and (aDec)_q, 1 . $Let <math>u \geqslant 0$ be a supersolution. Assume one of the following:

- ① φ satisfies (A1- s_*) and $\|u\|_{L^s(B_{2R})} \leqslant d$, where $s_* := \frac{ns}{n+s}$ and $s \in [q-p,\infty]$.
- ② φ satisfies (A1) and $||u||_{W^{1,\varphi}(B_{2R})} \leqslant d$.

Then there exist positive constants ℓ_0 and C such that

$$\left(\int_{B_{2R}} (u+R)^{\ell_0} dx\right)^{\frac{1}{\ell_0}} \leqslant C(\operatorname{ess\,inf} u+R).$$

If (1) holds with $s>\max\{\frac{n}{p},1\}(q-p)$ or if (2) holds with $p^*>q$, then the weak Harnack inequality holds for any $\ell_0<\ell(p)$, where $\ell(p)=\frac{n}{n-p}(p-1)$ if p< n, and $\ell(p)=\infty$ if $p\geqslant n$.

Other results on generalized Orlicz spaces:

- Bounded supersolutions, Benyaiche-Khlifi (2020).
- Bounded supersolutions, Shan–Skrypnik–Voitovych (preprint)
- Bounded superminimizers, H-Hästö-Toivanen (2017).
- Bounded superminimizers, H-Hästö-Lee (to appear).

Proposition 6 (Benyaiche-H-Hästö-Karppinen (accepted))

The (A1- s_*) assumption in the prevous theorem is sharp, since for any $s' < s_*$ if, instead of (1), φ satisfies (A1-s') and $\|u\|_{L^s(B_{2R})} \leqslant d$, then the weak Harnack inequality need not hold.

Let $\varphi \in \Phi_{\mathrm{w}}(\mathbb{R})$ be defined by $\varphi(x,0) := 0$ and

$$\varphi'(x,t) := \max\{t^{p-1}, a(x)t^{q-1}\},\$$

so that $\varphi(x,t) \approx \max\{t^p, a(x)t^q\} \approx t^p + a(x)t^q$. Let u be a solution of $(\varphi'(x,|u'|)\frac{u'}{|u'|})' = 0$ on the interval (a,b). We assume that $\lim_{x\to a^+} u(x) < \lim_{x\to b^-} u(x)$, so u is increasing and $\frac{u'}{|u'|} = 1$. Then the differential equation reduces to $\varphi'(x,u') \equiv c$, i.e.

$$u'(x) = \begin{cases} c^{\frac{1}{p-1}}, & \text{when } c^{-\frac{q-p}{p-1}} \geqslant a(x), \\ (c/a(x))^{\frac{1}{q-1}}, & \text{otherwise.} \end{cases}$$

We further assume that $a(x) := \max\{-x, 0\}^{\alpha}$. Since a is decreasing, we obtain that

$$u'(x) = \begin{cases} c^{\frac{1}{p-1}}, & \text{when } x \geqslant -x_0, \\ (c|x|^{-\alpha})^{\frac{1}{q-1}}, & \text{when } x < -x_0, \end{cases} \text{ for } x_0 := c^{-\frac{1}{\alpha}\frac{q-p}{p-1}}.$$

Turun yliopisto University of Turku

Figure: Solution for c=1.01,1.1,1.2,1.3,1.4 in [-1,1]. The parameters are $p=1.1,\ q=2$ and $\alpha=0.5$. The right boundary values have been partly cut away but they are in the range [2,32]. The point indicates x_0 .

