Unbounded supersolutions with generalized Orlicz growth

Petteri Harjulehto

University of Turku

Monday's Nonstandard Seminar 2.11.2020

We say that $\varphi: \Omega \times[0, \infty) \rightarrow[0, \infty]$ is a weak Φ-function, and write $\varphi \in \Phi_{\mathrm{w}}(\Omega)$, if the following conditions hold:

- For every measurable function $f: \Omega \rightarrow \mathbb{R}$ the function $x \mapsto \varphi(x, f(x))$ is measurable and for every $x \in \Omega$ the function $t \mapsto \varphi(x, t)$ is non-decreasing.
- $\varphi(x, 0)=\lim _{t \rightarrow 0^{+}} \varphi(x, t)=0$ and $\lim _{t \rightarrow \infty} \varphi(x, t)=\infty$ for every $x \in \Omega$.
- The function $t \mapsto \frac{\varphi(x, t)}{t}$ is L-almost increasing on $(0, \infty)$ with L independent of x.

Some special cases of Φ-functions:

- $\varphi(x, t)=t^{p}$ the classical Lebesgue space
- $\varphi(x, t)=\varphi(t)$ the Orlicz space
- $\varphi(x, t)=t^{p(x)} a(x)$ the variable exponent Lebesgue space
- $\varphi(x, t)=t^{p(x)} \log (e+t)$
- $\varphi(x, t)=t^{p}+a(x) t^{q}$ the double phase case

We assume that $f: \Omega \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfies the following φ-growth conditions:

$$
\nu \varphi(x,|\xi|) \leqslant f(x, \xi) \cdot \xi \quad \text { and } \quad|f(x, \xi)||\xi| \leqslant \Lambda \varphi(x,|\xi|)
$$

for all $x \in \Omega$ and $\xi \in \mathbb{R}^{n}$, and fixed but arbitrary constants $0<\nu \leqslant \Lambda$. We are interested in local (weak) supersolutions:

Definition 1

A function $u \in W_{\text {loc }}^{1, \varphi}(\Omega)$ is a supersolution if

$$
\int_{\Omega} f(x, \nabla u) \cdot \nabla h d x \geqslant 0
$$

for all non-negative $h \in W^{1, \varphi}(\Omega)$ with compact support in Ω.

If φ is differentiable wrt second variable, then our assumptions covers also the equation

$$
\int_{\Omega} \frac{\varphi^{\prime}(x,|\nabla u|)}{|\nabla u|} \nabla u \cdot \nabla h \geqslant 0
$$

for all non-negative $h \in W_{0}^{1, \varphi}(\Omega)$.

Instead of supersolutions, you can think local superminimizers:
Every open set $D \Subset \Omega$ and for every non-negative $v \in W^{1, \varphi}(\Omega)$ with a compact support in D, we have

$$
\int_{D} F(x,|\nabla u|) d x \leqslant \int_{D} F(x,|\nabla(u+v)|) d x
$$

Here $F(x, t) \approx \varphi(x, t)$.

Special case: $\varphi(x, t)=t^{p}$.

The standard p-Laplace equation $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0$, $1<p<\infty$. The non-negative weak supersolutions satisfies the weak Harnack inequality

$$
\left(f_{2 B} u^{s} d x\right)^{\frac{1}{s}} \lesssim \underset{B}{\operatorname{essinf}} u
$$

where

- the constant is independent of u,
- $0<s<\frac{n}{n-p}(p-1)$ when $p<n$, and $s \in(0, \infty)$ when $p \geqslant n$.

Trudinger (1967)

Special case: Orlicz $\varphi(x, t)=\varphi(t)$.

Theorem 2 (Arriagada-Huentutripay (2018))

Assume that $1<p \leqslant \frac{t \psi(t)}{\varphi(t)} \leqslant q<\infty$ and $\varphi(t)=\int_{0}^{t} \psi(t) d t$. Let $u \geqslant 0$ be bounded supersolution. Then

$$
\left(f_{B} u^{s} d x\right)^{\frac{1}{s}} \lesssim \underset{B}{\operatorname{essinf} u+\operatorname{diam}(B) .}
$$

- Bounded solutions, Lieberman $(1987,1991)$

There have to be some results for corresponding minimizers.

Special case: variable exponent $\varphi(x, t)=t^{p(x)}$.

Theorem 3 (Lukkari (2010))

Assume that p is log-Hölder continous and $1<p^{-} \leqslant p^{+}<\infty$. Let $t>0,0<s<\frac{n}{n-1}\left(p^{-}-1\right)$, and let $u \geqslant 0$ be supersolution. Then

$$
\left(f_{2 B} u^{s} d x\right)^{\frac{1}{s}} \lesssim \underset{B}{\operatorname{essinf}} u+\operatorname{diam}(B)
$$

where the constant depends on $L^{t}(4 B)$-norm of u.

- Bounded supersolutions, Alkhutov (1997).
- Bounded supersolutions and $0<s<\frac{n}{n-1}\left(p_{0}-1\right)$, Alkhutov-Krasheninnikova (2004).
- Unbounded supersolutions, H-Kinnunen-Lukkari (2007)
- Bounded superminimizers, Fan-Zhao $(1999,2000)$
- Unbounded superminimizers, H-Kuusi-Lukkari-Marola-Parviainen (2008)

Special case: variable exponent $\varphi(x, t)=t^{p(x)}$.

- " $+\operatorname{diam}(B)$ " is not needed if $p \in C^{1}$, Julin (2015)
- It is not know is " $+\operatorname{diam}(B)$ " necessary or not.
- In the Harnack's inequality the constant cannot be independent of u, example in H-Kinnunen-Lukkari (2007)

Special case: double phase $\varphi(x, t)=t^{p}+a(x) t^{q}$.

Theorem 4 (Baroni-Colombo-Mingione (2015))

Let $a \in C^{0, \alpha}, \alpha \geqslant \frac{n}{p}(q-p)$. Let $u \geqslant 0$ be bounded supersolution.
Then there exists $s>0$ such that

$$
\left(f_{B} u^{s} d x\right)^{\frac{1}{s}} \lesssim \underset{B}{\operatorname{essinf}} u
$$

Here the constant depends on $\|u\|_{\infty}$.

Other related results:

- $\varphi(x, t)=t^{p(x)}$ and general structural conditions, Latvala-Toivanen (2017)
- $\varphi(x, t)=t^{p(x)}$ and p makes a jump at a hyperplane, Alkhutov-Surnachev (2019)
- $\varphi(x, t)=t^{p(x)}$ and p is piecewise constant, Alkhutov-Surnachev $(2019,2020)$
- $\varphi(x, t)=t^{p(x)} \log (e+t)$, Ok (2018)
- generalized double phase functional, Byen-Oh (2020)

Let $p, q, s>0$ and let $\omega: \Omega \times[0, \infty) \rightarrow[0, \infty)$ be almost increasing. We say that $\varphi: \Omega \times[0, \infty) \rightarrow[0, \infty)$ satisfies
(A0) if there exists $\beta \in(0,1]$ such that $\beta \leqslant \varphi^{-1}(x, 1) \leqslant \frac{1}{\beta}$ for a.e. $x \in \Omega$,
(A1- ω) if there exists $\beta \in(0,1]$ such that, for every ball B and a.e. $x, y \in B \cap \Omega$,

$$
\varphi(x, \beta t) \leqslant \varphi(y, t) \quad \text { when } \quad \omega_{B}^{-}(t) \in\left[1, \frac{1}{|B|}\right]
$$

(A1-s) if it satisfies (A1- ω) for $\omega(x, t):=t^{s}$;
(A1) if it satisfies (A1- φ);
(alnc) $)_{p}$ if $t \mapsto \frac{\varphi(x, t)}{t^{p}}$ is L_{p}-almost increasing in $(0, \infty)$ for some $L_{p} \geqslant 1$ and a.e. $x \in \Omega$;
$(\mathrm{aDec})_{q}$ if $t \mapsto \frac{\varphi(x, t)}{t^{q}}$ is L_{q}-almost decreasing in $(0, \infty)$ for some $L_{q} \geqslant 1$ and a.e. $x \in \Omega$.

$\varphi(x, t):=$	$(\mathrm{A} 0)$	$(\mathrm{A} 1)$	$(\mathrm{A} 1-s)$	(alnc)	(aDec)
$\varphi(t)$	true	true	true	∇_{2}	Δ_{2}
$t^{p(x)} a(x)$	$a \approx 1$	$p \in C^{\log }$	$p \in C^{\log }$	$p^{-}>1$	$p^{+}<\infty$
$t^{p(x)} \log (e+t)$	true	$p \in C^{\log }$	$p \in C^{\log }$	$p^{-}>1$	$p^{+}<\infty$
$t^{p}+a(x) t^{q}$	$a \in L^{\infty}$	$a \in C^{0, \frac{n}{p}(q-p)}$	$a \in C^{0, \frac{n}{s}(q-p)}$	$p>1$	$q<\infty$

Table: Assumptions in some special cases

Theorem 5 (Benyaiche-H-Hästö-Karppinen (accepted))

Suppose φ satisfies (A0), (alnc) $)_{p}$ and $(\mathrm{aDec})_{q}, 1<p \leqslant q<\infty$. Let $u \geqslant 0$ be a supersolution. Assume one of the following:
(1) φ satisfies $\left(\mathrm{A} 1-s_{*}\right)$ and $\|u\|_{L^{s}\left(B_{2 R}\right)} \leqslant d$, where $s_{*}:=\frac{n s}{n+s}$ and

$$
s \in[q-p, \infty]
$$

(2) φ satisfies (A1) and $\|u\|_{W^{1, \varphi}\left(B_{2 R}\right)} \leqslant d$.

Then there exist positive constants ℓ_{0} and C such that

$$
\left(f_{B_{2 R}}(u+R)^{\ell_{0}} d x\right)^{\frac{1}{\ell_{0}}} \leqslant C\left(\underset{B_{R}}{\operatorname{essinf}} u+R\right)
$$

If (1) holds with $s>\max \left\{\frac{n}{p}, 1\right\}(q-p)$ or if (2) holds with $p^{*}>q$, then the weak Harnack inequality holds for any $\ell_{0}<\ell(p)$, where $\ell(p)=\frac{n}{n-p}(p-1)$ if $p<n$, and $\ell(p)=\infty$ if $p \geqslant n$.

Other results on generalized Orlicz spaces:

- Bounded supersolutions, Benyaiche-Khlifi (2020).
- Bounded supersolutions, Shan-Skrypnik-Voitovych (preprint)
- Bounded superminimizers, H-Hästö-Toivanen (2017).
- Bounded superminimizers, H-Hästö-Lee (to appear).

Proposition 6 (Benyaiche-H-Hästö-Karppinen (accepted))

The (A1-s*) assumption in the prevous theorem is sharp, since for any $s^{\prime}<s_{*}$ if, instead of (1), φ satisfies (A1-s') and $\|u\|_{L^{s}\left(B_{2 R}\right)} \leqslant d$, then the weak Harnack inequality need not hold.

Let $\varphi \in \Phi_{\mathrm{w}}(\mathbb{R})$ be defined by $\varphi(x, 0):=0$ and

$$
\varphi^{\prime}(x, t):=\max \left\{t^{p-1}, a(x) t^{q-1}\right\}
$$

so that $\varphi(x, t) \approx \max \left\{t^{p}, a(x) t^{q}\right\} \approx t^{p}+a(x) t^{q}$.
Let u be a solution of $\left(\varphi^{\prime}\left(x,\left|u^{\prime}\right|\right) \frac{u^{\prime}}{\left|u^{\prime}\right|}\right)^{\prime}=0$ on the interval (a, b).
We assume that $\lim _{x \rightarrow a^{+}} u(x)<\lim _{x \rightarrow b^{-}} u(x)$, so u is increasing and $\frac{u^{\prime}}{\left|u^{\prime}\right|}=1$. Then the differential equation reduces to $\varphi^{\prime}\left(x, u^{\prime}\right) \equiv c$, i.e.

$$
u^{\prime}(x)= \begin{cases}c^{\frac{1}{p-1}}, & \text { when } c^{-\frac{q-p}{p-1}} \geqslant a(x) \\ (c / a(x))^{\frac{1}{q-1}}, & \text { otherwise. }\end{cases}
$$

We further assume that $a(x):=\max \{-x, 0\}^{\alpha}$. Since a is decreasing, we obtain that

$$
u^{\prime}(x)=\left\{\begin{array}{ll}
c^{\frac{1}{p-1}}, & \text { when } x \geqslant-x_{0}, \\
\left(c|x|^{-\alpha}\right)^{\frac{1}{q-1}}, & \text { when } x<-x_{0},
\end{array} \text { for } x_{0}:=c^{-\frac{1}{\alpha} \frac{q-p}{p-1}}\right.
$$

Figure: Solution for $c=1.01,1.1,1.2,1.3,1.4$ in $[-1,1]$. The parameters are $p=1.1, q=2$ and $\alpha=0.5$. The right boundary values have been partly cut away but they are in the range $[2,32]$. The point indicates x_{0}.

