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We say that ϕ : Ω× [0,∞)→ [0,∞] is a weak Φ-function, and
write ϕ ∈ Φw(Ω), if the following conditions hold:

For every measurable function f : Ω→ R the function
x 7→ ϕ(x , f (x)) is measurable and for every x ∈ Ω the function
t 7→ ϕ(x , t) is non-decreasing.
ϕ(x , 0) = lim

t→0+
ϕ(x , t) = 0 and lim

t→∞
ϕ(x , t) =∞ for every

x ∈ Ω.
The function t 7→ ϕ(x ,t)

t is L-almost increasing on (0,∞) with
L independent of x .
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Some special cases of Φ-functions:
ϕ(x , t) = tp the classical Lebesgue space
ϕ(x , t) = ϕ(t) the Orlicz space
ϕ(x , t) = tp(x)a(x) the variable exponent Lebesgue space
ϕ(x , t) = tp(x) log(e + t)

ϕ(x , t) = tp + a(x)tq the double phase case
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We assume that f : Ω× Rn → Rn satisfies the following ϕ-growth
conditions:

νϕ(x , |ξ|) 6 f (x , ξ) · ξ and |f (x , ξ)| |ξ| 6 Λϕ(x , |ξ|)

for all x ∈ Ω and ξ ∈ Rn, and fixed but arbitrary constants
0 < ν 6 Λ. We are interested in local (weak) supersolutions:

Definition 1

A function u ∈W 1,ϕ
loc (Ω) is a supersolution if

ˆ
Ω
f (x ,∇u) · ∇h dx > 0,

for all non-negative h ∈W 1,ϕ(Ω) with compact support in Ω.
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If ϕ is differentiable wrt second variable, then our assumptions
covers also the equation

ˆ
Ω

ϕ′(x , |∇u|)
|∇u|

∇u · ∇h > 0,

for all non-negative h ∈W 1,ϕ
0 (Ω).

Instead of supersolutions, you can think local superminimizers:
Every open set D b Ω and for every non-negative v ∈W 1,ϕ(Ω)
with a compact support in D, we have

ˆ
D
F (x , |∇u|) dx 6

ˆ
D
F (x , |∇(u + v)|) dx .

Here F (x , t) ≈ ϕ(x , t).
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Special case: ϕ(x , t) = tp.

The standard p-Laplace equation − div(|∇u|p−2∇u) = 0,
1 < p <∞. The non-negative weak supersolutions satisfies the
weak Harnack inequality( 

2B
us dx

) 1
s
. ess inf

B
u,

where
the constant is independent of u,
0 < s < n

n−p (p − 1) when p < n, and s ∈ (0,∞) when p > n.
Trudinger (1967)
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Special case: Orlicz ϕ(x , t) = ϕ(t).

Theorem 2 (Arriagada–Huentutripay (2018))

Assume that 1 < p 6 tψ(t)
ϕ(t) 6 q <∞ and ϕ(t) =

´ t
0 ψ(t) dt. Let

u > 0 be bounded supersolution. Then( 
B
us dx

) 1
s
. ess inf

B
u + diam(B).

Bounded solutions, Lieberman (1987, 1991)
There have to be some results for corresponding minimizers.
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Special case: variable exponent ϕ(x , t) = tp(x).

Theorem 3 (Lukkari (2010))

Assume that p is log-Hölder continous and 1 < p− 6 p+ <∞. Let
t > 0, 0 < s < n

n−1(p− − 1), and let u > 0 be supersolution. Then

( 
2B

us dx
) 1

s
. ess inf

B
u + diam(B),

where the constant depends on Lt(4B)-norm of u.

Bounded supersolutions, Alkhutov (1997).
Bounded supersolutions and 0 < s < n

n−1(p0 − 1),
Alkhutov–Krasheninnikova (2004).
Unbounded supersolutions, H–Kinnunen–Lukkari (2007)
Bounded superminimizers, Fan–Zhao (1999, 2000)
Unbounded superminimizers,
H–Kuusi–Lukkari–Marola–Parviainen (2008)
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Special case: variable exponent ϕ(x , t) = tp(x).

”+ diam(B)” is not needed if p ∈ C 1, Julin (2015)
It is not know is ”+ diam(B)” necessary or not.
In the Harnack’s inequality the constant cannot be
independent of u, example in H–Kinnunen–Lukkari (2007)
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Special case: double phase ϕ(x , t) = tp + a(x)tq.

Theorem 4 (Baroni–Colombo–Mingione (2015))

Let a ∈ C 0,α, α > n
p (q − p). Let u > 0 be bounded supersolution.

Then there exists s > 0 such that( 
B
us dx

) 1
s
. ess inf

B
u.

Here the constant depends on ‖u‖∞.
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Other related results:
ϕ(x , t) = tp(x) and general structural conditions,
Latvala–Toivanen (2017)
ϕ(x , t) = tp(x) and p makes a jump at a hyperplane,
Alkhutov–Surnachev (2019)
ϕ(x , t) = tp(x) and p is piecewise constant,
Alkhutov–Surnachev (2019, 2020)
ϕ(x , t) = tp(x) log(e + t), Ok (2018)
generalized double phase functional, Byen–Oh (2020)
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Let p, q, s > 0 and let ω : Ω× [0,∞)→ [0,∞) be almost
increasing. We say that ϕ : Ω× [0,∞)→ [0,∞) satisfies

(A0) if there exists β ∈ (0, 1] such that β 6 ϕ−1(x , 1) 6 1
β for a.e.

x ∈ Ω,

(A1-ω) if there exists β ∈ (0, 1] such that, for every ball B and a.e.
x , y ∈ B ∩ Ω,

ϕ(x , βt) 6 ϕ(y , t) when ω−B (t) ∈
[
1,

1
|B|

]
;

(A1-s) if it satisfies (A1-ω) for ω(x , t) := ts ;

(A1) if it satisfies (A1-ϕ);

(aInc)p if t 7→ ϕ(x ,t)
tp is Lp-almost increasing in (0,∞) for some Lp > 1

and a.e. x ∈ Ω;

(aDec)q if t 7→ ϕ(x ,t)
tq is Lq-almost decreasing in (0,∞) for some

Lq > 1 and a.e. x ∈ Ω.
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ϕ(x , t) := (A0) (A1) (A1-s) (aInc) (aDec)
ϕ(t) true true true ∇2 ∆2
tp(x)a(x) a ≈ 1 p ∈ C log p ∈ C log p− > 1 p+ <∞
tp(x) log(e + t) true p ∈ C log p ∈ C log p− > 1 p+ <∞
tp + a(x)tq a ∈ L∞ a ∈ C

0, n
p

(q−p)
a ∈ C0, n

s
(q−p) p > 1 q <∞

Table: Assumptions in some special cases
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Theorem 5 (Benyaiche-H-Hästö-Karppinen (accepted))

Suppose ϕ satisfies (A0), (aInc)p and (aDec)q, 1 < p 6 q <∞.
Let u > 0 be a supersolution. Assume one of the following:

1 ϕ satisfies (A1-s∗) and ‖u‖Ls(B2R) 6 d , where s∗ := ns
n+s and

s ∈ [q − p,∞].
2 ϕ satisfies (A1) and ‖u‖W 1,ϕ(B2R) 6 d .

Then there exist positive constants `0 and C such that(  
B2R

(u + R)`0 dx

) 1
`0

6 C (ess inf
BR

u + R).

If (1) holds with s > max{np , 1}(q − p) or if (2) holds with p∗ > q,
then the weak Harnack inequality holds for any `0 < `(p), where
`(p) = n

n−p (p − 1) if p < n, and `(p) =∞ if p > n.
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Other results on generalized Orlicz spaces:
Bounded supersolutions, Benyaiche–Khlifi (2020).
Bounded supersolutions, Shan–Skrypnik–Voitovych (preprint)
Bounded superminimizers, H–Hästö–Toivanen (2017).
Bounded superminimizers, H–Hästö–Lee (to appear).
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Proposition 6 (Benyaiche–H–Hästö–Karppinen (accepted))

The (A1-s∗) assumption in the prevous theorem is sharp, since for
any s ′ < s∗ if, instead of (1), ϕ satisfies (A1-s ′) and
‖u‖Ls(B2R) 6 d , then the weak Harnack inequality need not hold.
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Let ϕ ∈ Φw(R) be defined by ϕ(x , 0) := 0 and

ϕ′(x , t) := max{tp−1, a(x)tq−1},

so that ϕ(x , t) ≈ max{tp, a(x)tq} ≈ tp + a(x)tq.
Let u be a solution of

(
ϕ′(x , |u′|) u′

|u′|
)′

= 0 on the interval (a, b).
We assume that limx→a+ u(x) < limx→b− u(x), so u is increasing
and u′

|u′| = 1. Then the differential equation reduces to
ϕ′(x , u′) ≡ c , i.e.

u′(x) =

{
c

1
p−1 , when c−

q−p
p−1 > a(x),

(c/a(x))
1

q−1 , otherwise.

We further assume that a(x) := max{−x , 0}α. Since a is
decreasing, we obtain that

u′(x) =

{
c

1
p−1 , when x > −x0,

(c |x |−α)
1

q−1 , when x < −x0,
for x0 := c−

1
α

q−p
p−1 .
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Figure: Solution for c = 1.01, 1.1, 1.2, 1.3, 1.4 in [−1, 1]. The parameters
are p = 1.1, q = 2 and α = 0.5. The right boundary values have been
partly cut away but they are in the range [2, 32]. The point indicates x0.
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