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Abstract

Generalized Orlicz spaces include as special cases a wide range of
function spaces, such as Lebesgue space, Orlicz spaces, variable
exponent spaces, double phase spaces and logarithmic
perturbations of the aforementioned. Working in generalized Orlicz
spaces involves some operations such as splicing the Orlicz
functions that are not commonplace in the traditional Orlicz
setting. In this talk, I explain some extensions to the Orlicz space
theory which enable these operations and show that they may be
useful even when there in the non-generalized Orlicz case,
sometimes even yielding new results for classical Lebesgue spaces.
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Objective of this talk

In this talk I
1. Motivate the study of

generalized Orlicz spaces.
2. Explain and motivate

assumptions from our recent
book.

3. Illustrate how the techniques can
be applied to the study of PDE.

LNM 2236 (2019)

Download book for free from
https://sites.google.com/site/varexpspa/

http://cc.oulu.fi/~phasto/
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http://cc.oulu.fi/~phasto/


Motivation/Background



Generalized Orlicz spaces cover almost everything

Lebesgue spaces Lp tp

Zygmund spaces Lp log Lq tp log(e + t)q

Exponential spaces exp L et − t − 1
Orlicz spaces Lϕ ϕ(t)
Weighted Lebesgue spaces Lpw tpw(x)

Variable exponent spaces Lp(·) tp(x)

Double phase spaces (DPS) LH tp + a(x)tq

Generalized Orlicz spaces Lϕ ϕ(x , t)

Generalized Orlicz spaces were studied in since the 60s e.g. by H. Hudzik, A.
Kamińska and J. Musielak

Harmonic analysis was studied by L. Diening (2005) and F.-Y. Maeda, Y.
Mizuta, T. Ohno and T. Shimomura from 2013



Relationship to calculus of variations

M. Giaquinta and E. Giusti (1983, 1984) studied regularity of
minimizers

min
u∈W 1,p

ˆ
Ω
F (x ,∇u) dx

when F : Ω× Rn → [0,∞) has p-type growth:
z 7→ F (x , z) is C 2,

ν|z |p 6 F (x , z) 6 L(1 + |z |p),

ν(µ2 + |z |)
p−2
2 |λ|2 6 Fzz(x , z)λ · λ 6 L(µ2 + |z |2)

p−2
2 |λ|2,

|F (x , z)− F (y , z)| 6 ω(|x − y |)(1 + |z |p).

P. Marcellini (1989, 1991) introduced non-standard growth
assumptions with different exponents p < q on the left- and
right-hand sides.

(p, q)-growth is still an active field, cf. Bella–Hirsch–Schäffner (2020)
De Filippis–Mingione (2020), Eleuteri–Mascolo–Marcellini (2020)
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Famous non-standard growth papers

V. Zhikov (1986, 1992) introduced three elasticity-related energies
of the form

inf
ˆ

Ω
ϕ(x , |∇u|) dx .

I. Perturbed Orlicz: a(x)ϕ0(t), where 0 < ν 6 a 6 L.
II. Variable exponent: tp(x), where 1 < p− 6 p 6 p+.
III. Double phase: tp + a(x)tq, where 1 < p 6 q and a > 0.

They have been very influential. G. Mingione (2006) stated:

[R]egularity results should be chased [in more general
cases] by looking at special classes of functionals and
thinking of relevant model examples, thereby limiting the
degree of generality one wants to achieve.



Non-standard growth special cases

Variable exponent spaces
tp(x)

1000s of papers. . .

Perturbed variable exponent
spaces tp(x) log(e + t)q(x)

Giannetti, Passarelli di Napoli, Liang, Cai,
Zheng, Ok

Orlicz variable exponent
ψ(t)p(x) or ψ(tp(x))

Capone, Cruz-Uribe, Fiorenza, Giannetti,
Passarelli di Napoli, Ragusa, Tachikawa

Double variable exponent
tp(x) + tq(x)

Cencelj, Rădulescu, Repovš, Shi, Zhang

Double phase spaces (DPS)
tp + a(x)tq

Zhikov, Baroni, Colombo, Mingione, . . .

Degenerate DPS
tp + a(x)tp log(e + t)

Baroni, Colombo, Mingione, Byun, Oh,
Coscia, Balci, Surnachev

Variable exponent DPS
tp(x) + a(x)tq(x)

Maeda, Mizuta, Ohno, Shimomura, Ra-
gusa, Tachikawa

Orlicz DPS ψ(t) + a(x)ξ(t) Baasandorj, Byun, Oh, Lee
Triple phase spaces
tp + a(x)tq + b(x)tr

De Filippis, Oh, Fang, Zhang, Zhang



Generalized Orlicz growth

The “special cases”-doctrine has recently been complemented by
studies of the generalized Orlicz case.

Harmonic anal-
ysis

Maeda, Mizuta, Ohno, Shimomura, S. Yang, D. Yang,
W. Yuan, Ahmida, Fiorenza, Youssfi, Karaman,
Baruah, Cruz-Uribe, Ferreira, Ribeiro

Existence Chlebica, Gwiazda, Skrzypczak, Zatorska-Goldstein,
Bulíčeck, Kalousek, Y. Wang, Khaled, Rhoudaf,
Sabiki, Bourahma, Benkirane, Bennoura, El Moumi

Regularity Shah, Skrypnik, Voitovych, Benyaiche, Khlifi,
Ahn Bui, B. Wang, D. Liu, P. Zhao,
Harjulehto, Juusti, Karppinen, Klén, M. Lee, J. Ok

It has become apparent that there are some new difficulties in the
more general setting.



Difficulty 1: Key estimate a.k.a. Diening’s trick

(  
B
|f | dx

)p(z)

6

( 
B
|f |p

−
B dx

) p(z)

p−
B

6

( 
B
|f |p(x) + 1 dx︸ ︷︷ ︸

6c/|B|

) p(z)

p−
B

=
(

c
|B|
) p(z)−p−

B

p−
B

( 
B
|f |p(x) dx + 1

)
6 c

(  
B
|f |p(x) dx + 1

)
.

ϕ

(
z ,

 
B
|f | dx

)
6 ϕ

(
z , (ϕ−B )−1

( 
B
ϕ−B (|f |) dx

))
6 ϕ

(
z , (ϕ−B )−1

( 
B
ϕ(x , |f |) dx︸ ︷︷ ︸
6c/|B|

))

= F
(

c
|B|
)( 

B
ϕ(x , |f |) dx

)
6 c

 
B
ϕ(x , |f |) dx .

Here F (t) :=
ϕ(z,(ϕ−

B )−1(t))
t .

But ϕ−B is not convex!
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Difficulty 2: splicing

In the approximation method for PDE, we approximate the solution
of

div(ϕ′(x , |∇u|) ∇u|∇u|) = 0 in Ω

in a ball Br ⊂ Ω by the solution of an autonomous PDE

div(ϕ′B(|∇v |) ∇v|∇v |) = 0 in Br , v − u ∈W 1,ϕB
0 (Br )

The choices ϕB = ϕ−Br
and ϕB = ϕ(x0, ·) do not work! We used

ϕB(t) :=

ˆ t

0
ψB(s) ds, ψB(t) :=


ϕ′(x0, t1) ( t

t1
)p−1 t < t1,

ϕ′(x0, t) t ∈ [t1, t2],

ϕ′(x0, t2) ( t
t2

)p−1 t > t2,

This approach requires robust properties of Φ-functions!

cf. Hästö & Ok: Maximal regularity for local minimizers of non-autonomous
functionals, J. Eur. Math. Soc., to appear, & Jihoon Ok’s talk.
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Novelties for Orlicz spaces (long)



Orlicz spaces

We want to replace the function tp in the space Lp with something
more general. Classically, one assumes e.g. the following:

I ϕ : [0,∞)→ [0,∞).
I ϕ(t) = 0 if and only if t = 0.
I ϕ is increasing and convex.

For instance, we may take ϕ(t) = tp log(1 + t) or ϕ(t) = et − 1.

We define a modular and a norm by

%ϕ(f ) :=

ˆ
Ω
ϕ(f ) dx and ‖f ‖ϕ := inf{λ > 0 : %ϕ(f /λ) 6 1}.



Orlicz spaces 2

The previous assumptions do not cover L∞. The assumptions may
be relaxed to the semimodular case (class Φc):

I ϕ : [0,∞)→ [0,∞].
I ϕ(0) = 0, limt→0 ϕ(t) = 0 and limt→∞ ϕ(t) =∞.
I ϕ is increasing and convex (on [0,∞]).
I ϕ is left-continuous.

For instance, we may take ϕ(t) =∞χ(1,∞)(t).

This approach covers all “normal” spaces, but it is not robust: the
perturbation of a Φ-function need not be a Φ-function.

cf. Diening, Harjulehto, Hästö, Růžička: Lebesgue and Sobolev spaces with
variable exponents, 2011.



Lack of robustness

0 1 2

1

2

The function t 7→ min{t1.1, t3} is not convex.



Orlicz spaces 3

Robustness can be obtained by the following variant (class Φw ):

I ϕ : [0,∞)→ [0,∞].
I ϕ(0) = 0, limt→0 ϕ(t) = 0 and limt→∞ ϕ(t) =∞.
I ϕ is increasing.
I t 7→ ϕ(t)

t is almost increasing.

(Almost increasing means that f (s) 6 af (t) when t > s.)

Φ-functions are equivalent, ϕ ' ψ, if ϕ(t/L) 6 ψ(t) 6 ϕ(Lt).

cf. Harjulehto, Hästö: Orlicz spaces and generalized Orlicz spaces, 2019.



Examples

Define, for t > 0,

ϕp(t) := 1
p t

p, p ∈ (0,∞)

ϕmax(t) := max{0, (t − 1)}2,
ϕsin(t) := t + sin(t),

ϕexp(t) := et − 1,
ϕ∞(t) :=∞χ(1,∞)(t)

See figure. We observe that ϕp ∈ Φc if and only if p > 1.
Furthermore, ϕmax, ϕexp ∈ Φc and ϕsin ∈ Φw \ Φc .



Examples 2

0 1 2 3 4 5

1

2

3

4

5

Functions ϕ3 (solid black), ϕmax (dashed blue) and ϕsin (dotted
green) from the previous slide



Observations

I We observe that ϕ1 ' ϕsin. Therefore, Φc is not invariant
under equivalence of Φ-prefunctions.

I Second, we observe that tp → ϕ∞ + χ{1}. Therefore, Φc is
not invariant under point-wise limits of Φ-prefunctions.

I Third, we note that min{ϕ1, ϕ2} 6∈ Φc , so Φc is not preserved
under point-wise minimum.



More realistic examples: improved convexity

The function ψ(t) := 1
2 max{ϕ2(t), 2t − 3

2} is convex, but ψ
1
p is

not. The improved convexity is lost by an inconsequential change.

0 1 2 3

1

2

3

Functions ψ (dashed black) and ψ
1
p (blue) with p = 1.5



Problems of convexity

The infimum ϕ−B of convex functions is not convex. (E.g.
min{t, t2}.)

The function ϕ(t)
1
p is not convex even when ϕ satisfies the ∇2

condition. (E.g. piece-wise linear.)

Trick by Maeda–Mizuta–Ohno–Shimomura et al.: instead of
convexity or p-convexity assume that

t 7→ ϕ(t)

t
or t 7→ ϕ(t)

tp

is (almost) increasing.

This condition is invariant under equivalence of Φ-functions. It
allows us to easily regain convexity when necessary.



Robust convexity

In our approach, improved convexity is measured by the (aInc)p
condition:

t 7→ ϕ(t)

tp
is almost increasing.

Similarly, we quantify the doubling behavior by the (aDec)q
condition:

t 7→ ϕ(t)

tq
is almost decreasing.

These conditions are invariant under equivalence of Φ-functions.
NB! Matuszewska–Orlicz indices and

p 6
tϕ′(t)

ϕ(t)
6 q.



Jensen’s inequality

If ϕ ∈ Φw satisfies (aInc)p, then there exists ψ ∈ Φc such that

ψ ' ϕ and ψ
1
p is convex.

When p = 1, we get Jensen’s inequality

ϕ

(
β

 
|f | dx

)
6
 
ϕ(|f |) dx .

If ϕ ∈ Φw satisfies (aDec)q, we similarly obtain

ϕ−1
( 

ϕ(|f |) dx
)

.

(  
|f |q dx

) 1
q

,

etc.



Harmonic analysis in generalized Orlicz spaces



Our assumptions

(A0) ϕ−1(x , 1) ≈ 1 (un-weighted)
(A2) ϕ−1(x , t) . ϕ−1(y , t) for t ∈ [h(x) + h(y), 1], where

h ∈ L1 ∩ L∞ (decay at infinity)

(A1) ϕ−1(x , t) . ϕ−1(y , t) for t ∈ [1, |x − y |−n] (local continuity)
(A1) ϕ(x , t) . ϕ(y , t) for ϕ(y , t) ∈ [1, |x − y |−n]

(A1-s) ϕ(x , t) . ϕ(y , t) for ts ∈ [1, |x − y |−n]

To justify these assumptions we consider the following theorem and
special cases (next slide).

Theorem

Let ϕ ∈ Φw ((0, 1)) satisfy (A0) and (aInc) and be monotone in x .
Then the Hardy–Littlewood maximal operator is bounded in
Lϕ((0, 1)) if and only if ϕ satisfies (A1).



Special cases

(A0) ϕ−1(x , 1) ≈ 1 (un-weighted)
(A1) ϕ−1(x , t) . ϕ−1(y , t) for t ∈ [1, |x − y |−n] (local continuity)
(A2) ϕ−1(x , t) . ϕ−1(y , t) for t ∈ [h(x) + h(y), 1], where

h ∈ L1 ∩ L∞ (decay at infinity)

ϕ(x , t) (A0) (A1) (A2) (aInc)p
tp(x)a(x) a ≈ 1 1

p ∈ C log Nekv p− > 1
tp(x) log(e + t) — 1

p ∈ C log Nekv p− > 1

tp + a(x)tq a ∈ L∞ a ∈ C
n
p

(q−p) a ∈ L∞ p > 1
tp + a(x)tp log(e + t) a ∈ L∞ a ∈ C log a ∈ L∞ p > 1

NB! Sharpness of assumptions



Test case: double phase functional

Take H(x , t) := tp + a(x)tq, p < q. Then

H(x , t)

H(y , t)
= 1 +

a(x)− a(y)

tp + a(y)tq
tq 6 1 + |a(x)− a(y)|tq−p.

If a ∈ Cα and ts . |x − y |−n, then the RHS is bounded when

|x − y |α|x − y |−
n
s

(q−p) 6 M ⇔ α− n
s (q − p) > 0.

Thus H satisfies (A1-s) when q − p 6 s
nα, in particular (A1) when

q − p 6 p
nα and (A1-n) when q − p 6 α, the conditions of BCM.

If we use the wrong exponent in the range condition, then the
results will not be sharp!

cf. Benyaiche, Harjulehto, Hästö, Karppinen: The weak Harnack inequality for
unbounded supersolutions of equations with generalized Orlicz growth, &
Petteri Harjulehto’s talk Nov 2nd.
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