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The problem

I will comment on regularity results for nonnegative local minimizers of
functionals

J(v) =

∫
Ω

F (x , v(x),∇v(x)) + λ(x)χ{v>0} dx .

As the results are of a local nature, I will assume without loss of
generality that Ω ∈ RN is smooth.
Here 0 ≤ λ(x) ∈ L∞ and F is of p(x) growth in the gradient variable.
The idea we had in mind was to see how far could we generalize the
case

F (x , s, η) =
|η|p(x)

p(x)
+ b(x)s

b ∈ L∞ that we had studied previously.
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Previous results

In that simpler case, if 0 < λ1 ≤ λ(x), 1 < pmin ≤ p(x) ≤ pmax <∞
and p Hölder continuous we proved,

Any nonegative local minimizer u is locally Lipschtiz continous.

∆p(x)u := div
(
|∇u|p(x)−2∇u

)
= b in {u > 0}.

If moreover p is Lipschtiz continuous, ∂{u > 0} is a C1,α surface
but for a set of null N − 1−dimensional Hausdorff measure.

|∇u(x)| =
(

p(x)
p(x)−1λ(x)

) 1
p(x) on the regular part of ∂{u > 0}.

This last result shows that Lipschitz continuity is the optimal
regularity one can expect.
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First assumptions

In order to get existence of minimizers with given boundary data
ϕ ∈W 1,p(x)(Ω) we assume that F ∈ Cs ∩ C1

η and

−c−1
1 (1 + |s|q) + λ0|η|p(x) ≤ F (x , s, η) ≤ c1(1 + |s|τ(x)) + Λ0|η|p(x)

with 1 < q < minΩ τ(x) and positive constants c1, λ0 and Λ0. Here

τ(x) = p∗(x) =
Np(x)

N − p(x)
if pmax < N,

τ(x) ∈ L∞, τ(x) ≥ p(x) if pmin > N,

τ(x) = p(x) if pmin ≤ N ≤ pmax .

Existence is proved for any 0 ≤ λ(x) ∈ L∞.
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First assumptions

We also get existence of minimizers under a small oscillation
hypothesis on p(x). This result allows to get existence for the
functional set in small subdomains Ω′ ⊂ Ω.

In fact, we assume that

−c−1
1 (1 + |s|r(x)) + λ0|η|p(x) ≤ F (x , s, η) ≤ c1(1 + |s|τ(x)) + Λ0|η|p(x)

with 1 < r(x) ≤ τ(x)− 2δ in Ω′ ⊂ Ω with δ > 0 such that
maxΩ′ τ −minΩ′ τ < δ, and positive constants c1, λ0 and Λ0.
Observe that this hypothesis always holds if r(x) < τ(x) in Ω, r(x) and
τ(x) are continuous and the diameter of Ω′ is small enough.
Given u ∈W 1,p(x)(Ω), these assumptions allow to get uniform
u + W 1,p(x)

0 (Ω′) estimates for any minimizing sequence.
And we prove that there exists a minimizer v ∈ u + W 1,p(x)

0 (Ω′) for any
0 ≤ λ(x) ∈ L∞.
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First assumptions

Throughout this talk p is assumed to be Hölder contiuous.

As usual, under some regularity assumptions of F , if λ(x) ≡ 0, any
minimizer is a solution to

div A
(
x , v(x),∇v(x)

)
= B

(
x , v(x),∇v(x)

)
in Ω′,

v = u on ∂Ω′,

where A(x , s, η) = ∇ηF (x , s, η), B(x , s, η) = Fs(x , s, η).

Our next assumptions are those set by Fan (JDE, 2007) for the local
C1,α regularity of bounded weak solutions.
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A(x , s,0) = 0,∑
i,j

∂Ai

∂ηj
(x , s, η)ξiξj ≥ λ0|η|p(x)−2|ξ|2,

∑
i,j

∣∣∣∂Ai

∂ηj
(x , s, η)

∣∣∣ ≤ Λ0|η|p(x)−2,

∣∣A(x1, s, η)−A(x2, s, η)
∣∣ ≤ Λ0|x1−x2|β

(
|η|p(x1)−1+|η|p(x2)−1)(1+

∣∣ log |η|
∣∣),∣∣A(x , s1, η)− A(x , s2, η)

∣∣ ≤ Λ0|s1 − s2||η|p(x)−1.∣∣B(x , s, η)
∣∣ ≤ Λ0

(
1 + |η|p(x) + |s|τ(x)

)
,

From the assumptions on A it is easy to see that

|A(x , s, η)| ≤ ᾱ(pmin)NΛ0|η|p(x)−1.

A(x , s, η) · η ≥ α(pmax)λ0|η|p(x).
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Under the assumptions above, Fan (JDE 2007) proved that bounded
solutions to the equation are locally C1,α.

Moreover, if the growth of B is∣∣B(x , s, η)
∣∣ ≤ Λ0(1 + |η|p(x)−1 + |s|p(x)−1)

there holds that weak solutions to the equation are locally bounded
and, if the domain Ω′ is smooth and the boundary datum u ∈ L∞(Ω′)
Fan and Zhao (Nonlinear Anal. 1999) proved that the weak solution
v ∈ L∞(Ω′) with norm bounded in terms of the universal constants,
‖v‖W 1,p(x)(Ω′) and ‖u‖L∞(Ω′).
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Observe that, F (x , s, η) = a(x , s) |η|
p(x)

p(x) + f (x , s) implies that

A(x , s, η) = a(x , s)|η|p(x)−2η

and

B(x , s, η) = as(x , s)
|η|p(x)

p(x)
+ fs(x , s).

In this case, the growth assumption of Fan-Zhao is not verified.

And, if F (x , s, η) = G(x , η) + f (x , s),

A(x , s, η) = ∇ηG(x , η)

and
B(x , s, η) = fs(x , s).
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A very important inequality for minimization problems in W 1,p with p
constant is the following. Let u ∈W 1,p(Ω′) and v ∈ u + W 1,p

0 (Ω′) the
solution to ∆pv = 0 in Ω′. Then,∫

Ω′
|∇u|p−|∇v |p dx ≥ c0

{∫
Ω′ |∇u −∇v |p dx if p ≥ 2,∫
Ω′ |∇u −∇v |2(|∇u|+ |∇v |)p−2 dx if p < 2.

These inequalities can be used to prove that convergente sequences
{vn} of solutions with boundary data {un} that are minimizers with
λn → 0, are such that their limits coincide.
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These inequalities have been generalized to the case
F (x , s, η) = a(x) |η|

p(x)

p(x) + b(x)s in our previous paper. There holds,∫
Ω′

a(x)
( |∇u|p(x)

p(x)
− |∇v |p(x)

p(x)

)
+ b(x)

(
u(x)− v(x)

)
dx

≥ c0

[ ∫
{p(x)≥2}

|∇u −∇v |p(x) dx

+

∫
{p(x)<2}

|∇u −∇v |2(|∇u|+ |∇v |)p(x)−2 dx
]
.

The corresponding inequality does not hold for a general F without
further assumptions.
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Our assumption is

2|As(x , s, η) · ξw | ≤ 1
2

∑
i,j

∂Ai

∂ηj
(x , s, η)ξiξj + Bs(x , s, η)w2, (H)

for every η, ξ ∈ RN , s,w ∈ R, x ∈ Ω.

Under assumption (H), for every u ∈W 1,p(·)(Ω) and v ∈W 1,p(·)(Ω′)
such that {

div A(x , v ,∇v) = B(x , v ,∇v) in Ω′,

v = u on ∂Ω′,

there holds that,∫
Ω′

(
F (x ,u,∇u)− F (x , v ,∇v)

)
dx ≥

1
2
αλ0

(∫
Ω′∩{p(x)≥2}

|∇u −∇v |p(x) dx

+

∫
Ω′∩{p(x)<2}

(
|∇u|+ |∇v |

)p(x)−2
|∇u −∇v |2 dx

)
,
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Observe that assumption (H) always holds if A = A(x , η) and
Bs ≥ 0.

Also, if (H) holds, necessarily Bs ≥ 0.

If moreover, B(x ,0,0) ≡ 0, v(x) ≡ M is a supersolution to the
equation if M > 0 and a subsolution if M < 0.

With ideas similar to those leading to the main inequality we can
prove a comparison principle between sub and supersolutions.

Hence, if B(x ,0,0) ≡ 0 and the boundary datum u is bounded,
there holds that the solution v satisfies that ‖v‖L∞(Ω′) ≤ ‖u‖L∞(Ω′).

With the growth assumption of Fan and Zhao, the solution w with
boundary datum M = ‖u‖L∞(Ω′) is a bounded in terms of M and
‖w‖W 1,p(x)(Ω′). But, with constant boundary data we can see from
the proof of the minimization argument that this last norm can be
bounded in terms of M and universal constants. So that, there
holds that ‖v‖L∞(Ω′) ≤ ‖w‖L∞(Ω′) ≤ C

(
‖u‖L∞(Ω′)

)
.
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The problem with 0≤λ(x) ∈ L∞, 0 6≡λ(x)

Recall that, under some growth assumptions on F , there exists a
minimizer u of J(v) with boundary datum ϕ ∈W 1,p(x)(Ω).

If moreover, −M2 ≤ ϕ ≤ M1 with M1 > 0, M2 ≥ 0 and for instance,

F (x , s, η) = G(x , s, η) + f (x , s) with G, f measurable functions

G ≥ 0 in Ω× R× RN , G(x , s, η) = 0 ⇐⇒ η = 0,

f (x , ·) nonincreasing in (−∞,0] and nondecreasing in [0,+∞),

there holds that −M2 ≤ u ≤ M1 in Ω.
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The problem with 0≤λ(x) ∈ L∞, 0 6≡λ(x)
In fact, both w1 = u − (u −M1)+ and w2 = u + (u + M2)− are
admissible functions. Moreover,

{w1 = u − (u −M1)+ > 0} = {u > 0} and
{w2 = u + (u + M2)− > 0} = {u > 0}.

So that on the one hand,

0 ≤
∫

Ω
F (x ,w1,∇w1)− F (x ,u,∇u) =

∫
u>M1

F (x ,M1,0)− F (x ,u,∇u)

=

∫
u>M1

f (x ,M1)− f (x ,u)−
∫

u>M1

G(x ,u,∇u)

≤ −
∫

u>M1

G(x ,u,∇u) ≤ 0.

Hence, G(x ,u,∇u) = 0 in {u > M1}. So that, ∇(u−M1)+ = 0 in Ω. As
(u −M1)+ = 0 on ∂Ω, we deduce that u ≤ M1 in Ω.
And, proceeding in a similar way we find that u ≥ −M2.
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Regularity of nonnegative, bounded minimizers

One first observation is that a local minimizer is a subsolution to the
equation

div A(x ,u(x),∇u(x)) ≥ B(x ,u(x)∇u(x)) in Ω.

The reason is that for every 0 ≤ φ ∈ C∞0 (Ω), {u − εφ > 0} ⊂ {u > 0}.

Hence,

0 ≥
∫

Ω
F (x ,u(x),∇u(x))− F (x ,u(x)− εφ(x),∇u(x)− ε∇φ(x)) dx .

Proceeding as usual we get that for every 0 ≤ φ ∈ C∞0 (Ω),

0 ≥
∫

Ω
A(x ,u(x),∇u(x))∇φ(x) + B(x ,u(x),∇u(x))φ(x) dx .
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Regularity of nonnegative, bounded minimizers

Our first regularity result is the Hölder continuity of nonnegative
bounded local minimizers.

A first conclusion is that such a minimizer is a solution to the
equation in its positivity set.

I will give some idea of the proof. In particular, in order to show
one use of the main inequality.
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Regularity of nonnegative, bounded minimizers

The idea is to prove that, given Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω such that the diameter
of Ω′′ is small enough, there exists ρ0 > 0 such that, if ρ ≤ ρ0, x0 ∈ Ω′,( 1

ρN

∫
Bρ(x0)

|∇u|p− dx
)1/p−

≤ Cρα−1

for some 0 < α < 1 and some positive constant C.Then, u ∈ Cα(Ω′).
Here p− = minΩ′′ p.

In order to get this inequality we use as comparison function the
solution v ∈ u + W 1,p(x)

0 (Br (x0)) to the equation A− B.
We take r ≤ r0 with r0 small enough so that Br0(x0) ⊂ Ω′′ and the
diameter of Ω′′ small so that r0 is small so that this solution exists.
Here we are assuming that

−c−1
1 (1 + |s|r(x)) + λ0|η|p(x) ≤ F (x , s, η) ≤ c1(1 + |s|τ(x)) + Λ0|η|p(x)

with 1 < r(x) < τ(x) in Ω and r ∈ C(Ω).
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Here we are assuming that

−c−1
1 (1 + |s|r(x)) + λ0|η|p(x) ≤ F (x , s, η) ≤ c1(1 + |s|τ(x)) + Λ0|η|p(x)

with 1 < r(x) < τ(x) in Ω and r ∈ C(Ω).
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From the main inequality and the fact that u is a minimizer of J we get∫
Br (x0)∩{p≥2}

|∇u −∇v |p(x) dx ≤ CrN ,∫
Br (x0)∩{p<2}

|∇u −∇v |2(|∇u|+ |∇v |)p(x)−2 dx ≤ CrN .

Then, we take ε > 0 to be chosen and r0 small such that r ε0 ≤ 1/2 and
let ρ = r1+ε. Then, applying Young’s inequality to the integrand we get∫
{p<2}∩Bρ(x0)

|∇u −∇v |p(x) dx ≤ CθrN + Cθ
∫

Bρ(x0)∩{p<2}
(|∇u|+ |∇v |)p(x) dx .

So that,∫
Bρ(x0)

|∇u −∇v |p(x) dx ≤ CθrN + Cθ
∫

Bρ(x0)∩{p<2}
(|∇u|+ |∇v |)p(x) dx ,

and by choosing θ small enough we conclude that,∫
Bρ(x0)

|∇u|p(x) dx ≤ CrN + C
∫

Bρ(x0)
|∇v |p(x) dx ,

Now, the idea is to get a good estimate of the right hand side in terms
of ρ.
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The aim is to prove that

sup
Br/2(x0)

|∇v | ≤ CM
r
,

where M = ‖v‖L∞(Br (x0)) ≤ C
(
‖u‖L∞(Br (x0))

)
.

If this inequality holds, we get∫
Bρ(x0)

|∇u|p(x) dx ≤ CrN + CρN r−p+ .

Here p+ = maxΩ′′ p.
Hence, if we take ε ≤ pmin

N , we have that

1
ρN

∫
Bρ(x0)

|∇u|p− dx ≤ CN +
1
ρN

∫
Bρ(x0)

|∇u|p(x) dx

≤ CN + C
( r
ρ

)N
+ Cr−p+ ≤ CN + Cr−εN + Cr−p+ ≤ Cr−p+ = Cρ−

p+
(1+ε) .
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Regularity of nonnegative, bounded minimizers

We conclude that,( 1
ρN

∫
Bρ(x0)

|∇u|p− dx
)1/p−

≤ Cρ
− p+

p−
1

1+ε .

Finally, if the diameter of Ω′′ is small enough there holds that

p+

p−
≤ 1 +

ε

2
,

so that, ( 1
ρN

∫
Bρ(x0)

|∇u|p− dx
)1/p−

≤ Cρ−
(1+ ε2 )

(1+ε) = Cρ−(1−α).
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Regularity of nonnegative, bounded minimizers

In order to finish the proof we need to prove that

sup
Br/2(x0)

|∇v | ≤ CM
r
.

For that purpose we consider the rescaled function w(x) = v(x0+rx)
M

and prove that |∇w | ≤ C in B1/2. So that,
r
M
|∇v | ≤ C in Br/2(x0).

There holds that w is the solution of a rescaled equation

divĀ(x ,w ,∇w) = B̄(x ,w ,∇w) in B1

where

Ā(x , s, η) = A(x0 + rx ,Ms, M
r η), B̄(x , s, η) = rB(x0 + rx ,Ms, M

r η).
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Regularity of nonnegative, bounded minimizers

The problem is that Ā and B̄ do not satisfy ellipticity and regularity
hypotheses uniform in r and M.

So, we let

Ã(x , s, η) =
( r

M

)p−−1
Ā(x , s, η), B̃(x , s, η) =

( r
M

)p−−1
B̄(x , s, η),

and observe that w ∈W 1,p̄(·)(B1) ∩ L∞(B1) satisfies

divÃ(x ,w ,∇w) = B̃(x ,w ,∇w) in B1,

where p̄(x) = p(x0 + rx), and this equation is under the hypotheses of
the paper by Fan on the C1,α regularity. And, we are done.
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Regularity of nonnegative, bounded minimizers

The proof of the Lipschitz continuity is much more involved. It is
performed through a contradiction argument. So we have to deal with
sequences of solutions. Moreover, within the proof we have to perform
2 rescalings.

I will not talk about this proof. If someone is interested, the paper has
been published in Mathematics in Engineering (October, 2020)
(volume in honor of Sandro Salsa).
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Thank you for your attention
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Examples

Some examples of application of our results are:

F (x , s, η) = G(x , s, η) + f (x , s)

with
1 f ∈ L∞ and f ∈ C2

s .

2 −c1(1 + |s|r(x)) ≤ f (x , s) ≤ c1(1 + |s|τ(x)) with r(x) < τ(x).
3 f (x , ·) nonincreasing in (−∞,0] and nondecreasing in [0,+∞).
4 fss ≥ 0.
5 |fs(x , s)| ≤ Λ0(1 + |s|τ(x)) in Ω× R.

For example,
f (x , s) = b(x)(1 + s2)

τ(x)
2

with 0 ≤ b ∈ L∞(Ω)
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Examples

G(x , s, η) = a(x , s) |η|
p(x)

p(x) with

1 a ∈ Cα(Ω× R) ∩ C2
s .

2 0 < a0 ≤ a(x , s) ≤ a1 <∞.
3 |as(x , s)| ≤ a2 <∞ in Ω× R.
4
(
a(x , s)1−γ(x)

)
ss ≤ 0 with γ(x) = 2p(x)

min{1,p(x)−1} > 1.

If the minimizer u lies between 0 and M, condition (4) only needs
to hold for s ∈ [0,M].
For instance, if the boundary datum ϕ ∈ [0,M] and condition (4)
above holds for s ∈ [0,M] and the others hold for s in a
neighborhood of [0,M], there holds that the minimizer u moves in
that range and it is locally Lipschitz continuous in Ω.
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Examples

A possible example would be

a(x , s) =


(1 + s)−q(x) if − 1/2 ≤ s ≤ M + 1,
2q(x) if s ≤ −1/2,
(2 + M)−q(x) if s ≥ M + 1,

with q ∈ L∞(Ω) a Hölder continuous function such that
0 < q(x) < 1

γ(x)−1 .

With this choice, a minimizer always exists, it lies between 0 and M
and it is locally Lipschitz continuous.
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and it is locally Lipschitz continuous.
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Examples

G(x , s, η) = a(x)G̃(|η|p(x)) with G̃ ∈ C2([0,∞)
)
,

c0 ≤G̃′(t) ≤ C0,

0 ≤G̃′′(t) ≤ C0

1 + t
c0,C0 positive constants.

and 0 < a0 ≤ a(x) ≤ a1 <∞ and Hölder continuous.

Also

G(x , s, η) =
(
A(x)η · η

)
|η|p(x)−2 with A uniformly positive definite

and bounded matrix.
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