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I will comment on regularity results for nonnegative local minimizers of
functionals

J(v) :/QF(X, v(x), Vv(x)) + A(X)x{v>0y OX.

As the results are of a local nature, | will assume without loss of
generality that Q € RV is smooth.

Here 0 < A\(x) € L* and F is of p(x) growth in the gradient variable.
The idea we had in mind was to see how far could we generalize the

case
‘mp(X)
F(x,s,n) = + b(x)s

p(x)

b € L* that we had studied previously.
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Previous results

In that simpler case, if 0 < Ay < A(X), 1 < Pmin < P(X) < Pmax < o0
and p Holder continuous we proved,

@ Any nonegative local minimizer u is locally Lipschtiz continous.
® Apt = div(|VulPM=2vu) = bin {u > 0}.

@ If moreover p is Lipschtiz continuous, 9{u > 0} is a C"* surface
but for a set of null N — 1—dimensional Hausdorff measure.

e
° |Vu(x)| = <pgf)xz1 A(x)) ™ on the regular part of 9{u > 0}.

This last result shows that Lipschitz continuity is the optimal
regularity one can expect.



First assumptions

In order to get existence of minimizers with given boundary data
p € W'PX)(Q) we assume that F € Csn C)) and

—c; (14 18] + Xoln[PX) < F(x,5.n7) < ¢1(1 +[8]7%)) + Ag|n|P)
with 1 < g < ming 7(x) and positive constants ¢y, A\g and Ag. Here

T(x) = p*(x) = /\/N—p(p)g() if Pmax <N,

7(x) € L, 7(x) > p(x) it Pmin > N,

7(x) = p(x) it Pmin < N < Pmax.

Existence is proved for any 0 < A(x) € L*.



First assumptions

We also get existence of minimizers under a small oscillation

hypothesis on p(x). This result allows to get existence for the
functional set in small subdomains Q' C Q.



-
First assumptions

We also get existence of minimizers under a small oscillation

hypothesis on p(x). This result allows to get existence for the
functional set in small subdomains Q' C Q.

In fact, we assume that
—cr (1 + [8"™)) + Xon[PX) < F(x,8,m) < c1(1 + |s]7X)) + Ao |n|PX)

with 1 < r(x) < 7(x) — 26 in Q" C Q with 6 > 0 such that
maxq T — ming: 7 < §, and positive constants ¢, \g and Ay.



-
First assumptions

We also get existence of minimizers under a small oscillation
hypothesis on p(x). This result allows to get existence for the
functional set in small subdomains Q' C Q.

In fact, we assume that
—cr (1 + [8"™)) + Xon[PX) < F(x,8,m) < c1(1 + |s]7X)) + Ao |n|PX)

with 1 < r(x) < 7(x) — 26 in Q" C Q with 6 > 0 such that
maxq T — ming: 7 < §, and positive constants ¢, \g and Ay.

Observe that this hypothesis always holds if r(x) < 7(x) in Q, r(x) and
7(x) are continuous and the diameter of Q" is small enough.



-
First assumptions

We also get existence of minimizers under a small oscillation
hypothesis on p(x). This result allows to get existence for the
functional set in small subdomains Q' C Q.

In fact, we assume that
—cr (1 + [8"™)) + Xon[PX) < F(x,8,m) < c1(1 + |s]7X)) + Ao |n|PX)

with 1 < r(x) < 7(x) — 26 in Q" C Q with 6 > 0 such that
maxq T — ming: 7 < §, and positive constants ¢, \g and Ay.

Observe that this hypothesis always holds if r(x) < 7(x) in Q, r(x) and
7(x) are continuous and the diameter of Q" is small enough.

Given u € W'P(X)(Q), these assumptions allow to get uniform

u+ W) PX)(Q') estimates for any minimizing sequence.

And we prove that there exists a minimizer v € u+ W, **) (@) for any
0 < A(x) € L*=.
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First assumptions

Throughout this talk p is assumed to be Holder contiuous.

As usual, under some regularity assumptions of F, if A(x) = 0, any
minimizer is a solution to

divA(x, v(x), Vv(x)) = B(x, v(x),Vv(x)) in €,
v=u on 0%,

where A(x, s,n) = V,F(x,s,n), B(x,s,n) = Fs(x,s,n).

Our next assumptions are those set by Fan (JDE, 2007) for the local
C'. regularity of bounded weak solutions.



-
A(x,s,0) =0,

Z a (x,s, 77)5/5] > AO’”"D 2’€|2

i.j

Z‘ (x,8,7 ‘ )| < Aoln|PX)2

|A(x1,8,m)—A(x2, 8,m)| < Nolx1—xz|” (|n[POD =145 |PC&=1) (14 log

|A(x, s1,m) — A(X, S2,m)| < No|si — sp|[n|P)

);

B(x,s,m)| < Ao (1 + [n[PX) + [s[7)),
From the assumptions on A it is easy to see that

A(X, 8,m)| < &(Prmin) NAg|n [P~

A(X, S, 77) N2> a(pmax)/\om‘p()()
e



Under the assumptions above, Fan (JDE 2007) proved that bounded
solutions to the equation are locally C'-~.



Under the assumptions above, Fan (JDE 2007) proved that bounded
solutions to the equation are locally C'-~.

Moreover, if the growth of B is
|B(x,5,m)| < Ao(1 + [n[PPI~1 + |sPI~T)

there holds that weak solutions to the equation are locally bounded
and, if the domain Q' is smooth and the boundary datum u € L>*(Q)
Fan and Zhao (Nonlinear Anal. 1999) proved that the weak solution
v € L*°(Q) with norm bounded in terms of the universal constants,

[VIIwt.p00 () @nd [[ul| L (qr)-
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Observe that, F(x,s,n) = a(x, 3)'}1'(’1;) + f(x, s) implies that

A(x,s.n) = a(x, s)|n|PX¥) =2y

and
‘mp(X)

p(x)
In this case, the growth assumption of Fan-Zhao is not verified.
And, if F(x,s,n) = G(x,n) + f(x,s),

B(X7 S, 77) = aS(X7 S)

+ fs(x, 8).

A(Xa Sa 7]) = VHG(Xv 77)

and
B(x,s,n) = fs(x, s).



A very important inequality for minimization problems in W' with p
constant is the following. Let u €¢ W'P(Q')and v € u + Wg P(Q) the
solution to Apv = 0in Q'. Then,

/ |VulP—|VVIPdx > ¢ Jo [Vu =P ax tp=2,
Q B Jor VU= VVE(|Vul + [VV|)P~2dx  ifp<2

These inequalities can be used to prove that convergente sequences
{vn} of solutions with boundary data {u,} that are minimizers with
An — 0, are such that their limits coincide.



These inequalities have been generalized to the case

F(x,s,n) = a(x)'Z'Zg) + b(x)s in our previous paper. There holds,

(x) (x)
/, a(x)(‘vplz‘;:) - NP\E’:) ) + b(x)(u(x) — v(x)) dx

> Co[/ IVu — Vv[PX) dx
{p(x)=2}

+/ IVu—Vv2(|Vu| + |Vv|)PX) =2 dx|.
{p(x)<2}

The corresponding inequality does not hold for a general F without
further assumptions.
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Our assumption is
0A;
2’AS(X75777) fW‘ — 2

8 (X S, 77)&5/ + Bs(x; s, 77) (H)

forevery n, ¢ e RN, s, w e R, x € Q.
Under assumption (H), for every u ¢ W'P()(Q) and v € W'P0)(Q)
such that

divA(x,v,Vv)=B(x,v,Vv) inQ/,

v=u ono,
there holds that,
/ (F(x,u,Vu) — F(x,v,Vv)) dx >

1a)\o(/ IVu — Vv[PX) dx
2 QN {p(x)>2}

p(x)—2
+/ (Ivul+ vv])
Q' N{p(x)<2}

Vu—Vv[? dx),
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@ Observe that assumption (H) always holds if A= A(x,n) and
Bs > 0.

@ Also, if (H) holds, necessarily Bs > 0.

@ If moreover, B(x,0,0) =0, v(x) = M is a supersolution to the
equation if M > 0 and a subsolution if M < 0.

@ With ideas similar to those leading to the main inequality we can
prove a comparison principle between sub and supersolutions.

@ Hence, if B(x,0,0) = 0 and the boundary datum u is bounded,
there holds that the solution v satisfies that ||v|| = (q/) < [|u| (-

@ With the growth assumption of Fan and Zhao, the solution w with
boundary datum M = |[u|| .~ (q/) is @ bounded in terms of M and
[lw]] W1.p00 () But, with constant boundary data we can see from
the proof of the minimization argument that this last norm can be
bounded in terms of M and universal constants. So that, there
holds that [|v|| (o) < |W]lL(@) < C([lulli=(ar))-
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The problem with 0<A(x) € L*>, 0£\(x)

Recall that, under some growth assumptions on F, there exists a
minimizer u of J(v) with boundary datum ¢ € W'P(X)(Q).
If moreover, —M, < ¢ < My with M; > 0, M, > 0 and for instance,

F(x,s,n) = G(x,s,n) + f(x,s) with G, f measurable functions
G>0inQxRxRN, G(x,5,7)=0 < =0,

f(x,-) nonincreasing in (—oo, 0] and nondecreasing in [0, +o0),

there holds that —M», < u < My in Q.



e
The problem with 0<A(x) € L*>, 0£\(x)
In fact, both wy = u— (u— My)* and wo = u+ (U+ M)~ are
admissible functions. Moreover,
{wy=u—(u-M)*>0}={u>0} and
{wo =u+ (u+ M)~ >0} ={u>0}.
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The problem with 0<A(x) € L*>, 0#\(x)
In fact, both wy = u— (u—M;)" and wo = u+ (u+ Mo)™ are
admissible functions. Moreover,
{wy=u—(u—M)">0}={u>0} and
{wo =u+(u+ M)~ >0} ={u>0}.
So that on the one hand,

Og/F(x,w1,VW1)—F(x,u,Vu):/ F(x,M;,0) — F(x,u,Vu)
Q u>M,

:/ f(X,M1)—f(X,U)_/ G(x, u, Vu)
u>My

u>My
< —/ G(x,u,Vu) <0.
u>My

Hence, G(x, u, Vu) = 0in {u > M;}. So that, V(u— M;)" =0in Q. As
(u— M;)*™ =0 on 0Q, we deduce that u < M; in Q.
And, proceeding in a similar way we find that u > — M.
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One first observation is that a local minimizer is a subsolution to the
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div A(x, u(x), Vu(x)) > B(x,u(x)Vu(x)) in Q.
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Hence,
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Proceeding as usual we get that for every 0 < ¢ € C5°(9),
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Regularity of nonnegative, bounded minimizers

@ Ouir first regularity result is the Hélder continuity of nonnegative
bounded local minimizers.

@ A first conclusion is that such a minimizer is a solution to the
equation in its positivity set.

@ | will give some idea of the proof. In particular, in order to show
one use of the main inequality.
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Regularity of nonnegative, bounded minimizers

The idea is to prove that, given Q' cc Q” cc Q such that the diameter
of Q" is small enough, there exists pg > 0 such that, if p < pg, Xp € &,

1/p—
(1,\,/ IV u|P- dx) < Cp!
P B, (x0)

for some 0 < a < 1 and some positive constant C.Then, u € C*(?').
Here p_ = ming~ p.
In order to get this inequality we use as comparison function the
solution v € u + W, P (B,(x)) to the equation A — B.
We take r < rp with rp small enough so that B, (xo) € Q” and the
diameter of 2” small so that ry is small so that this solution exists.
Here we are assuming that

—c; (14 (8" 4+ Xo[n [P < F(x, 8,m) < e (1 +[8[7X)) + Ao|y[P¥)

with 1 < r(x) < 7(x)inQand r € C(Q).
e
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/ IVu—Vv|PX¥ dx < CrV,
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From the main inequality and the fact that v is a minimizer of J we get

/ IVu—Vv|PX¥ dx < CrV,
Br(xo){p=2}

/ IVu— Vv(|Vul + |Vv])P¥)2dx < CrV.
Br(xo){p<2}

Then, we take € > 0 to be chosen and ry small such that r; < 1/2 and
let p = r'*=. Then, applying Young’s inequality to the integrand we get

/ IVu— Vv[PX) dx < CyrMN + CG/ (IVu| + [Vv])Px)

{p<2}nB,(xo) By (xo)N{p<2}

So that,

/ IVu—Vv[PM dx < Cor + ce/ (IVu| + |V v|)PX) dx,
By(xo) B, (x0)N{p<2}

and by choosing # small enough we conclude that,
/ |VulPX¥) dx < CrN + c/ |V v|PX) dx,
By(x0) By(x0)
e
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The aim is to prove that

sp [vv <M
By j2(X0) r
where M = [|V|| 1o (8,(x,)) < C(llUll (B, (x))) -
If this inequality holds, we get
/ IVulPX) dx < CrN 4+ CpNrP-.
By (x0)

Here P+ = maxq p.
Hence, if we take £ < Prin, we have that

1
1N/ [VulP- dx < cN+N/ |V ul[PX) dx
P JBo0) P JBy0)
P+

N
< Cn+ C(l) +CrP-<Cy+CreNqcrP<cCrP=¢Cp T
P



Regularity of nonnegative, bounded minimizers

We conclude that,

P+

1/p— P+ A
(1/\// |VulP- dx) g < Cp P-T,
P By (xo)

Finally, if the diameter of Q" is small enough there holds that

P+ €
L _
p__1+2,

so that,
(+3)

1/p_
P JBu(x)
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Regularity of nonnegative, bounded minimizers

In order to finish the proof we need to prove that

sup |Vv| < %
B, /2(x0) r
For that purpose we consider the rescaled function w(x) = W
and prove that [Vw| < C in By ». So that,

r ,
Vvl C in By(x).
There holds that w is the solution of a rescaled equation
divA(x, w,Vw) = B(x,w,Vw) in B,

where
A(x,s,m) = Alxo + rx,Ms, Mp),  B(x,s,n) = rB(xo + rx, Ms, ¥n).
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The problem is that A and B do not satisfy ellipticity and regularity
hypotheses uniform in r and M.
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The problem is that A and B do not satisfy ellipticity and regularity
hypotheses uniform in r and M.
So, we let

~ r\pP-——1- ~ r\pP-——1_
Axosm) = (1) Axsa),  Bisn=(3)  Blxsu),
and observe that w ¢ W'-P()(B;) N L>(By) satisfies

din\(x7 W,VW):E(X, w,Vw) in By,

where p(x) = p(xo + rx), and this equation is under the hypotheses of
the paper by Fan on the C' regularity. And, we are done.
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Regularity of nonnegative, bounded minimizers

The proof of the Lipschitz continuity is much more involved. It is
performed through a contradiction argument. So we have to deal with
sequences of solutions. Moreover, within the proof we have to perform
2 rescalings.

| will not talk about this proof. If someone is interested, the paper has
been published in Mathematics in Engineering (October, 2020)
(volume in honor of Sandro Salsa).



Thank you for your attention
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Examples

Some examples of application of our results are:
F(x,s,n) = G(x,s,n)+ f(x,s)

with
@ fcl>®andfe C2
Q@ —ci(1+s]™)) < f(x,8) < cy(1 +|s"™) with r(x) < 7(x).
© f(x,-) nonincreasing in (—oc, 0] and nondecreasing in [0, +00).
() fss > 0.
Q [fs(x,8)| < Ao(1+ |s]"™))in Q x R,
For example, "

f(x,s) = b(x)(1 + s?) 2
with 0 < b € L=(Q)
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LS
p(x)
Q@ acC¥(QxR)nC2
Q 0<a <ax,s) <ay <oo.

Q |as(x,s)| < a <ooinQ xR.

Q (a(x,8)' 7)) <0 with y(x) = oy > 1.

If the minimizer u lies between 0 and M, condition (4) only needs
to hold for s € [0, M].

For instance, if the boundary datum ¢ € [0, M] and condition (4)
above holds for s € [0, M] and the others hold for s in a
neighborhood of [0, M], there holds that the minimizer u moves in
that range and it is locally Lipschitz continuous in Q.

with

e G(x,s,n) = a(x,s)
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A possible example would be

(14 s)~9™) if —1/2<s<M+1,
a(x,s) = ¢ 29 ifs<—1/2,
24+ M)"9%)  ifs>M+1,

with g € L*°(Q) a Holder continuous function such that
0 < q(x) < 57

With this choice, a minimizer always exists, it lies between 0 and M
and it is locally Lipschitz continuous.
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Examples

o G(x,s,1) = a(x)G(|n|P™) with G € C?([0,0)),

0<G"(t) < =2 Co, Co positive constants.

and 0 < gg < a(x) < ay < oo and Hélder continuous.

Also
e G(x,s,n) = (A(X)n-n)[nP¥)~2 with A uniformly positive definite
and bounded matrix.



