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Introduction
In this talk we are concerned with regularity of solutions to

div(|∇u|p(x)−2∇u) = 0, x ∈ D ⊂ Rn, (1)

where the exponent p(·) is an L∞(D) function satisfying

1 < α ≤ p(x) ≤ β < +∞ (2)

for almost all x ∈ D.

Solutions of (1) are p(x)-harmonic functions. They are (local)
minimizers of ∫

|∇u|p(x)

p(x)
dx.

Our aim is to investigate regularity properties of p(x)-harmonic
functions under minimal assumptions on the regularity of p(x).
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The research in the area of equations with variable exponent of
nonlinearity was initiated by V.V. Zhikov in the 1980s:

Zhikov V.V. Questions of convergence, duality, and averaging
for functionals of the calculus of variations // Math USSR-Izv.
1984. V. 23, No. 2. P. 243–276. (translated from Izv. Akad.
Nauk. SSSR Ser. Mat. 1983. V. 47, No. 5. P. 961–998.
Russian).

Zhikov V.V. Averaging of functionals of the calculus of
variations and elasticity theory // Math USSR-Izv. 1987. V. 29,
No. 1. P. 33–66. (translated from Izv. Akad. Nauk SSSR Ser.
Mat. 1986. V. 50, No. 4. P. 675–710. Russian).

V.V. Zhikov discovered that in this situation the so called Lavrentiev
phenomenon may arise.
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Lavrentiev’s phenomenon
Let

E[u] = F[u] −
∫

D
g · ∇u dx, F[u] =

∫
D

f (x,∇u) dx, (g ∈ (L∞(D))n,

where f (x, ξ) is measurable in x for all ξ, convex in ξ for almost all
x ∈ D and satisfies

c1 |ξ |
α − c0 ≤ f (x, ξ) ≤ c2 |ξ |

β + c0, c1,c2 > 0, c0 ≥ 0.

An important example is

f (x, ξ) =
|ξ |p(x)

p(x)
. (3)

Zhikov’s example: the infimum of E over u ∈ W1,α
0 (D) can be

strictly smaller than the infimum of E over W1,β
0 (D).
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Lavrentiev’s phenomenon for the Dirichlet problem
Let

F[u] =
∫

D

|∇u|p(x)

p(x)
dx,

E1 = min
u∈S1

F[u], E2 = min
u∈S2

F[u],

where

S1 = {u ∈ W1,α(D) : u = ψ on ∂D},

S2 = {u ∈ W1,∞(D) : u = ψ on ∂D},

One can choose p(·) and ψ ∈ C∞(∂D) so that

E1 < E2.
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Different Sobolev spaces
Let D be a bounded Lipschitz domain. We introduce the natural
Sobolev space W associated with the model Lagrangian (3) (that is,
f (x, ξ) = |ξ |p(x)/p(x)):

W = {u ∈ W1,1
0 (D) : |∇u|p(x) ∈ L1(D)},

‖u‖W1,p(·)
0 (D) = ‖∇u‖Lp(·)(D).

We remind that the Luxemburg norm is defined by

‖f ‖Lp(·)(D) = inf
{
λ > 0 :

∫
D
|fλ−1 |p(x) dx ≤ 1

}
.

It is not hard to see that W ⊂ W1,α
0 .

Let H be the closure of C∞0 (D) in W . Clearly, H ⊂ W . If the
codimension of H in W is greater than 1 there can be intermediate
spaces, H ⊆ V ⊆ W .
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Solutions of different type
For the model Lagrangian (3) the minimization problem

E[u] → min, u ∈ V,

has a unique solution u ∈ V which satisfies∫
D
|∇u|p(x)−2∇u · ∇ϕ dx =

∫
D

g · ∇ϕ dx. (4)

for all ϕ ∈ V . Such a solution can also be constructed by the
monotone operator theory.

On the other hand, u ∈ W is a weak solution to

div
(
|∇u|p(x)−2∇u

)
= div g (5)

if (4) holds for all ϕ ∈ C∞0 (D).

It is natural to say that u ∈ V is a V-solution to (5) if (4) holds for any
ϕ ∈ V .
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V -solutions are called variational solutions.

Variational solutions are unique due to monotonicity. Any variational
solution is a weak solution but there are weak solutions that are not
variational solutions.

A weak solution is a variational solution iff∫
D
|∇u|p(x) dx =

∫
D

g∇u dx.

That is, u is an admissible test function in (4) and the corresponding V
is H ⊕ {u}.

For Zhikov’s classical chessboard exponent p the codimension of H in
W is 1. If minW E < minH E then W -solution is discontinuous at 0,
H-solution is continuous in D.

Same effects occur for other type of problems.
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When Lavrentiev’s phenomenon is absent
Density of smooth functions in the variable exponent Sobolev space
guarantees the absence of the Lavrentiev phenomenon.

In Zhikov’s example the exponent p is discontinuous and has
saddle-point structure:

p(x1,x2) =

{
α < 2 if x1x2 > 0.
β > 2 if x1x2 < 0,

⇒ H , W .

In the same 1986 paper Zhikov observed if that if the two constant
phases p(x) = α and p(x) = β are separated by a smooth hypersurface
then smooth functions are dense in the corresponding variable
exponent Sobolev space:

p(x1,x2) =

{
α if x2 > 0.
β if x2 < 0,

⇒ H = W .
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One simple condition

Edmunds D.E., Rakosnik J. Density of smooth functions in
W k,p(x)(Ω) // Proc. Roy. Soc. London A. 1992. V. 437.
P. 229–236.

Let for all x ∈ D there exist r(x) > 0 and an open cone C(x) with
vertex at the origin such that Br(x)(x) + C(x) ⊂ D and

p(z + y) ≥ p(y) ∀y ∈ Br(x)(x), z ∈ C(x).

Then C∞(D) ∩W k,p(x)(D) is dense in W k,p(x)(D).

For D = B1(0) ⊂ R2 if p(·) takes three constant values, p1, p2 and p3,
separated by three rays emanating from the origin, then H = W (there
is a direction of growth of p).
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Zhikov’s Log condition

Zhikov V.V. On Lavrentiev’s phenomenon // Russian J. Math.
Phys. 1995. V. 3, No. 2. P. 249–269:

Let the exponent p(·) satisfy

|p(x) − p(y)| ≤
L

ln |x − y |−1 , |x − y | <
1
2
. (6)

Then H = W , i.e. smooth functions are dense in variable exponent
Sobolev space.

In the same paper Zhikov refined his previous example showing that
Log-condition can not be significantly improved and Lavrentiev’s
phenomenon can occur even for continuous p(·).

11 / 47



Definitions for the p(x)-Laplace equation

Let W (D) = {u ∈ W1,1(D) : |∇u|p(x) ∈ L1(D}. We say that uε
converges to u in W (D) if∫

D
|uε − u| dx +

∫
D
|∇uε − ∇u|p(x) dx → 0

The space W0(D) is the closure in W (D) of functions compactly
supported in D.

The space H(D) is the closure of C∞(D) in W (D).

The space H0(D) is the closure of C∞0 (D) functions in W (D).

Clearly, H0(D) ⊂ W0(D), H(D) ⊂ W (D).
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A function u ∈ W (D) is a W -solution to (1) if∫
D
|∇u|p(x)−2∇u∇ϕ dx = 0 (7)

for all ϕ ∈ W0(D). A function u ∈ H(D) is an H-solution if (7) holds
for all ϕ ∈ C∞0 (D).

A function u ∈ W (D) (u ∈ H(D)) is a W -supersolution
(H-supersolution) if ∫

D
|∇u|p(x)−2∇u · ∇ϕ dx ≥ 0

for any nonnegative ϕ ∈ W0(D) (ϕ ∈ H0(D)).
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Regularity of solutions under Log-condition
The majority of known results for regularity of p(x)-harmonic
functions and generalizations assume Zhikov’s log-condition

|p(x) − p(y)| ≤ L
(
ln

1
|x − y |

)−1

, x,y ∈ D, |x − y | ≤ 1/2.

Alkhutov Yu. A. The Harnack inequality and the Hoölder
property of solutions of nonlinear elliptic equations with a
nonstandard growth condition // Differ. Uravn. 1997. V. 33,
No. 12. P. 1651–1660. (English transl.: Differ. Equ. 1997.
V. 33. No. 12. P. 1653–1663):

The Hölder continuity and Harnack inequality under Log-condition:
for a bounded nonnegative p(x)-harmonic function in the ball B4R(x0)

there holds

sup
BR(x0)

u ≤ C(n, α, β,L, ‖u‖∞)
(

inf
BR(x0)

+R
)
.
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Gradient estimates
Assuming Log-condition, Zhikov obtained Meyers type estimates for
the gradient of a solution.

Zhikov V.V. Meyer-type estimates for solving the nonlinear
Stokes system // Differ. Uravn. 1997. V. 33, No. 1. P. 107–114.
(English transl.: Differ. Equ. 1997. V. 33. No. 1. P. 108-115).

Gradient estimates were later generalized and sharpened by A. Coscia,
E. Acerbi, G. Mingione, L. Diening, etc.

In particular, if the exponent p(·) is Hölder continuous, then the
gradient of a p(x)-harmonic function is also Hölder continuous.

Coscia A., Mingione G. Hölder continuity of the gradient of
p(x)-harmonic mappings // C. R. Acad. Sci. Paris. 1999.
V. 328, P. 363–368.

15 / 47



Acerbi E., Mingione G. Regularity Results for a Class of
Functionals with Non-Standard Growth // Arch. Rational Mech.
Anal. 2001. V. 156. P. 121–140.

Acerbi E., Mingione G. Regularity results for a class of
quasiconvex functionals with nonstandard growth // Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4). 2001. V. 30. P. 311-339.

Acerbi E., Mingione G. Regularity Results for Stationary
Electro-Rheological Fluids // Arch. Rational Mech. Anal. 2002.
V. 164. P. 213–259.

Acerbi E., Mingione G. Gradient estimates for the p(x)-Laplacean
system // J. Reine Angew. Math. 2005. V. 584. P. 117–148.

Diening L., Schwarzsacher S. Global gradient estimates for the
p(·)-Laplacian // Nonlinear Analysis. 2014. V. 106. P. 70–85.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Gradient estimates: limiting case
Bögelein V., Habermann J. Gradient estimates via non standard
potentials and continuity // Annales Academiae Scientiarum
Fennicae Mathematica. 2010. V. 35. P. 641–678

Ok J. Gradient continuity for p(·)-Laplace systems // Nonlinear
Analysis. 2016. V. 141. P. 139–166.

Ok J. C1-regularity for minima of functionals with p(x)-growth //
J. Fixed Point Theory Appl. 2017. V. 19. P. 2697–2731.

All these advanced results require the modulus of continuity of the
exponent p to be (slightly) better than log-Hölder.

Jihoon Ok, 2016: ∫
0
ω(r) log

(
1
r

)
dr
r
< ∞

implies that solutions are C1 (even with Ln,1 RHS and Dini weights).
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Relaxing Log-condition

Zhikov V.V. On density of smooth functions in Sobolev–Orlich
spaces // Zap. Nauchn. Sem. POMI. 2004. V. 310. P. 67–81.

Smooth functions are dense in the Sobolev-Orlicz space (i.e. H = W )
provided that ∫

0
tnω(t)/α dt

t
= ∞,

where ω(·) is the modulus of continuity of p. For example,

ω(t) = k
ln ln t−1

ln t−1 , t < e−1, (8)

will do provided that k < α/n. An example shows that the restriction
on k here is essential.
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Zhikov V. V., Pastukhova S. E. Improved integrability of the
gradients of solutions of elliptic equations with variable
nonlinearity exponent // Mat. Sb. 2008. V. 199. No. 12.
P. 19–52. (English transl.: Sb. Math. 2008. V. 199. N. 12.
P. 1751–1782).

The higher integrability of solutions still holds if the Logarithmic
condition is replaced by (8). Let D be a bounded Lipschitz domain in
Rn. If u ∈ W1,p(x)

0 (D) is a W -solution (or H-solution) to

div(|∇u|p(x)−2∇u) = div g, u = 0 on ∂D,

then ∫
D
|∇u|p lnδ(2 + |∇u|) dx ≤ C

∫
D
|g |p

′

lnδ(2 + |g |) dx

where posititve constants C and δ depend only on D, α, n, k, and
‖g‖α′.
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Krasheninnikova O. V. Continuity at a Point for Solutions to
Elliptic Equations with a Nonstandard Growth Condition // Tr.
Mat. Inst. Steklova. 2002. V. 236. P. 204–211. (English transl.
Proc. Steklov Inst. Math. 2002. V. 236. P. 193–200).

If the exponent p(·) satisfies Log-condition at a given point then H-
and W -solutions are Hölder continuous at this point.

Let u be a p(x)-harmonic function in Bx0
R and

|p(x) − p(x0)| ≤ L
(
ln

1
|x − x0 |

)−1

.

Then for x ∈ Bx0
R/2 there holds

|u(x)−u(x0)| ≤ C(n, α, β,L, ‖u‖∞)
(
|x − x0 |

R

)γ
, γ = γ(n, α, β,L, ‖u‖∞).
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Alkhutov Yu.A., Krasheninnikova O.V. On the Continuity of
Solutions to Elliptic Equations with Variable Order of
Nonlinearity // Tr. Mat. Inst. Steklova. 2008. V. 261. P. 7–15.
(transl. in Proc. Steklov Inst. Math. 2008. V. 261. P. 1–10).

Let
|p(x) − p(x0)| ≤ L

ln ln ln |x − x0 |
−1

ln |x − x0 |−1 , |x − x0 | <
1
27
, (9)

where L < α/(n + 1) . Then all W -solutions and all H-solutions of the
p(x)-Laplace equation are continuous at x0.

There exists ρ0 = ρ0(n, α, β, ‖u‖∞,L) such that

ess osc
Br (x0)

u ≤ 2‖u‖∞
(
ln
ρ

r

)−1/4
ess osc
Bρ0 (x0)

u + ρ, r < ρ/4 < ρ0.
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Different relaxation of log-condition

Alkhutov Yu.A., Surnachev M.D. Hölder continuity and
Harnack’s inequality for p(x)-harmonic functions // Tr. Mat.
Inst. Steklova. 2020. V. 308. P. 7–27. (transl.: Proc. Steklov
Inst. Math. 2020. V. 308. P. 1–21).

Let Bx0
R0
⊂ D, R0 ∈ (0,1/2), and for a measurable E ⊂ D there holds

|p(x) − p0 | ≤
L

ln |x − x0 |−1 , x ∈ Bx0
R0
\ E,

where p0 ∈ [α, β], and

|Bx0
r ∩ E | ≤ CErn+2γn, 0 < r ≤ R0,

where
γ = (β − α)max

{
1,

1
α − 1

}
.
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Theorem. Under these conditions for H- and W -solutions to the
p(x)-Laplace equation there holds

ess osc
Bx0

r

u ≤ C
(

r
R0

)ν ©­«ess oscBx0
R0

u + Rª®¬
where the constants C and ν depend only on n, α, β, L, CE , ‖u‖∞.

The condition on the set E is satisfied for instance if E is the solid of
revolution

|x ′ − x ′0 | ≤ C |xn − (x0)n |
δ, x = (x ′,xn), δ = 1 +

2γn
n − 1

.

On the set E itself no continuity is assumed, just

1 < α ≤ p(x) ≤ β < ∞, x ∈ E.
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Theorem. For any bounded nonnegative H- or W -supersolution of
the p(x)-Laplace equation in Bx0

4R, 0 < R ≤ R0/4, there holds( ∫
Bx0

2R

(u + R)q dx
)1/q

≤ C ess inf
Bx0

R

(u + R)

where 0 < q < n(p0 − 1)/(n − 1) and the positive constant
C = C(n, α, β,L,CE, ‖u‖∞).

Theorem. For any bounded nonnegative H- or W -solution of the
p(x)-Laplace equation in Bx0

4R, 0 < R ≤ R0/4, there holds

ess sup
Bx0

R

u ≤ C ess inf
Bx0

R

(u + R)

where the positive constant C = C(n, α, β,L,CE, ‖u‖∞).
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Dirichlet problem with variational data
Let f ∈ C∞(D). We can set two Dirichlet problems

Lu = div
(
|∇u|p(x)−2∇u

)
= 0 in D, u − f ∈ W0(D). (10)

and
div

(
|∇u|p(x)−2∇u

)
= 0 in D, u − f ∈ H0(D). (11)

Solutions to (10), (11) can be constructed by minimizing the
functional

F [v] =
∫

D

|∇(v + f )|p(x)

p(x)
dx (12)

over v ∈ W0(D) or v ∈ H0(D). For the minimizer v of this problem
u = v + f . A solution to (10) (or (11)) satisfies∫

D
|∇u|p(x)−2∇u∇ϕ dx = 0

for all ϕ ∈ W0(D) (ϕ ∈ H0(D), respectively).
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Dirichlet problem with continuous boundary function
Let f ∈ C(∂D). Extending f to Rn and approximating f by fk ∈ C∞(D),
constructing corresponding solutions uk to (10) or (11) (that is, uk is a
sequence of W -solutions or H-solutions), and passing to the limit, we
can construct a generalized solution uf to the Dirichlet problem

Luf = 0 in D, uf = f on ∂D. (13)

This solution belongs to W (D′) (H(D′), resp.) for any subdomain
D′ b D, and satisfies Lu = 0 in the sense that∫

D
|∇u|p(x)−2∇u∇ϕ dx = 0

for all ϕ ∈ W0(D) (ϕ ∈ H0(D), respectively), compactly supported in
D. We call this solution a generalized W -solution (H-solution, resp.)
to (13). A generalized W -solution (H-solution) is uniquely defined by
the maximum principle.
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Regular boundary points

Definition. A boundary point x0 ∈ ∂D is regular iff for any f ∈ C(∂D)
the corresponding generalized solution uf of (13) satisfies

lim
D3x→x0

uf (x) = f (x0).

L = 4 —H. Lebesgue (irregular points, Comptes Rendus Soc.
Math. de France. 1913), N. Wiener (criterion, J. Math. Phys. 1924).

L = div(a∇u) —W. Littman, G. Stampacchia, and H.F. Weinberger,
Ann. Scuola Norm. Sup. Pisa 1963.

L = 4p —V.G. Mazya (sufficient condition, Vestn. Leningr. Gos.
Univ. 1970), R. Gariepy and W.P. Ziemer (general equations, Arch.
Rational Mech. Anal. 1977), T. Kilpelainen and J. Maly (necessity
part, Acta Math. 1994).
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Wiener’s criterion for the p(x)-Laplacian

Alkhutov Yu.A., Krasheninnikova O.V. Continuity at boundary
points of solutions of quasilinear elliptic equations with a
non-standard growth condition // Izv. RAN. Ser. Mat. 2004.
V. 68. No. 6. P. 3–60. (English transl.: Izv. Math. 2004. V. 68.
No. 6. P. 1063–1117).

Wiener’s criterion under global log-condition:

|p(x) − p(y)| ≤ L
(
ln

1
|x − y |

)−1

, |x − y | < 1/e, x ∈ D.

The p(x)-capacity of a compact set K b Bx0
R with respect to the ball

Bx0
R is the number

Cp(K,Bx0
R ) = inf

{∫
Bx0

R

|∇ϕ|p(x)

p(x)
dx : ϕ ∈ C∞0 (B

x0
R ) , ϕ ≥ 1 on K

}
.

For a boundary point x0 let p0 = p(x0) and extend p by p0 outside D.
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Define
γ(t) =

(
Cp(B

x0
t \ D,Bx0

2t )
)1/(p0−1)

.

Theorem. The boundary point x0 is regular if and only if∫
0
γ(t)t−1 = +∞.

Alkhutov Yu.A., Surnachev M.D. Regularity of a boundary point
for the p(x)-Laplacian // J. Math. Sci. 2018. V. 232. N. 3.
P. 206–231.

Global log-condition relaxed to log-condition at the given boundary
point:

|p(x) − p(x0)| ≤ L
(
ln

1
|x − x0 |

)−1

, |x − x0 | < 1/e, x ∈ D.
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When density of smooth functions in W (D) is not known one has to
consider different types of solutions, H- and W -solutions.

The H-capacity (W -capacity) of a compact set K b Bx0
R with respect to

the ball Bx0
R is the number

Cp(K,Bx0
R ) = inf

∫
Bx0

R

|∇ϕ|p(x)

p(x)
dx

where the infimum is taken over the set of C∞0 (B
x0
R ) (W0(D)) functions

greater than or equal to one in the neighborhood of K .

When treating H-solutions one has to use H-capacity and for
W -solutions one uses W -capacity.
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Wiener under relaxed log-condition

Alkhutov Yu.A., Surnachev M.D. Behavior of solutions of the
Dirichlet problem for the p(x)-Laplacian at a boundary point //
Algebra i Analiz. 2019. V. 31. N. 2. P. 88–117. (transl.:
St. Petersburg Math. J. 2020. V. 31. No. 2. P. 251–271.)

Let x0 ∈ ∂D and

ess osc
Bx0

r ∩D
p ≤ ω(r), ω(0) = 0.

We assume that the function

θ(r) = r−ω(r)

is nondecreasing on (0,d].
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Recall that
γ(t) =

(
Cp(B

x0
t \ D,Bx0

2t )
) 1

p(x0)−1
.

Theorem. If ∫
0

exp
(
−θ3+2n/α(t)

)
γ(t)t−1 dt = +∞

then the boundary point x0 is regular.

Corollary. Assume that the complement of D contains an open cone
with vertex x0 and

ω(t) ≤ k | ln t |−1 ln ln | ln t |, t ∈ (0,1/27),

where k ∈ (0, α/5n). Then the boundary point x0 is regular.
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Weak Harnack inequality

The key instrument:

Theorem. Let u be a bounded nonnegative supersolution of (1) in
Bx0

4R. Then for 0 < q < n(s − 1)/(n − s), s = ess inf
Bx0

4R

p < n (any q > 0

for s = n), there holds (
R−n

∫
Bx0

2R

(u + R)q dx
)1/q

≤ exp
(
C(n, α, β, ‖u‖∞,q)θ(4R)2(n+s)/2

)
ess inf

Bx0
R

(u + R).
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Double phase problems

Acerbi E., Fusco N. A transmission problem in the calculus of
variations // Calc. Var. Partial Differ. Equ. 1994. V. 2, No. 1.
P. 1–16.

Boundedness, Hölder contiuity and higher integrability of the gradient
(Meyers type estimates) for local minimizers of

F[u] =
∫
D

|∇u|p(x)

p(x)
dx

when the domain D is divided by the hyperplane Σ = {xn = 0} into
two parts, D(1) = D ∩ {xn > 0}, D(2) = D ∩ {xn < 0}, and p(x) = p1 for
x ∈ D(1), p(x) = p2 for x ∈ D(2), p1 and p2 are constant.

A function u ∈ W1,1(D), F[u] < ∞, is a local minimizer if
F[u + ϕ] ≤ F[u] for all ϕ ∈ C∞0 (D).
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Alkhutov Yu.A. Hölder continuity of p(x)-harmonic functions //
Mat. Sb. 2005. V. 196, No. 2. P. 3–28. (English translation:
Sb. Math. 2005. V. 196, No. 2. P. 147–171).

Let x0 ∈ Σ = {xn = 0}, and

|p(x) − p1 | ≤
L

log 1
|x−x0 |

, x ∈ D(1) = D ∩ {xn > 0},

|p(x) − p2 | ≤
L

log 1
|x−x0 |

, x ∈ D(2) = D ∩ {xn < 0},

then both H and W solutions are Hölder continuous at x0.
The constants p1, p2 are limit values of p(x) when x approaches x0
from different sides of the hyperplane Σ.
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Harnack’s inequality for double phase problems

Alkhutov Yu.A., Surnachev M.D. On a Harnack inequality for
the elliptic (p,q)-Laplacian // Dokl. Math. 2016. V. 94, No. 2.
P. 569–573. (translated from Doklady Akademii Nauk. 2016.
V. 470, No. 6, P. 651–655).

Let x = (x ′,xn),

p(x) =

{
p1, xn > 0,
p2, xn < 0,

p2 > p1.

For a nonnegative solution in B4R(x0), x0 ∈ Σ, there holds

sup
QR(x0)

u ≤ C(n,p1,p2)

(
inf

BR(x0)
u + R

)
, QR(x0) = BR(x0)∩{xn < −R/2}.

The classical Harnack inequality is not valid in this case: we can
neither replace QR(x0) by BR(x0) nor remove R.
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Alkhutov Yu.A., Surnachev M.D. A Harnack inequality for a
transmission problem with p(x)-Laplacian // Applicable
Analysis. 2019. V. 98. No. 1/2. P. 332–344.

Constant values p1 and p2 replaced by the variable exponent p(·),
satisfying the log-condition separately in D(1) = D ∩ {xn > 0} and in
D(2) = D ∩ {xn < 0} and such that p(x) ≥ p(x̃) for x ∈ D(2):

|p(x) − p(y)| ≤
L

ln |x − y |−1 , |x − y | <
1
2
, x,y ∈ D(i).

In this case Harnack’s inequality holds in the form

ess sup
QR(x0)

u ≤ C(n, α, β,L, ‖u‖∞)
(
ess inf
BR(x0)

u + R
)
,

QR(x0) = BR(x0) ∩ {xn < −R/2}.
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Alkhutov Yu.A., Surnachev M.D. Harnack’s inequality for the
p(x)-Laplacian with a two-phase exponent p(x) // J. Math. Sci.
2020. V. 244. No. 2. P. 116–147. (transl. from Tr. Sem. im.
I.G. Petrovskogo. 2019. V. 32. P. 8–56).

Let u be a positive bounded W - or H-solution of (1) in B = B8R(x0),
x0 ∈ Σ, 0 < R < 1/32.

Theorem. Let ess oscB p ≤ L/ln R−1. Then

sup
BR(x0)

u ≤ C(n, α, β,L, ‖u‖∞) inf
BR(x0)
(u + R).
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Theorem. Let

ess osc
B∩{xn>0}

p ≤
L

ln R−1 , ess osc
B∩{xn<0}

p ≤
L

ln R−1

ess inf
B∩{xn>0}

p ≤ ess sup
B∩{xn<0}

p +
L

ln R−1 .

Then
ess sup
QR(x0)

u ≤ C(n, α, β,L, ‖u‖∞)(ess inf
BR(x0)

u + R).
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Let v = min(u, ũ) + Rγ, γ ∈ (0,1), where

ũ(x) =

{
u(x), x ∈ D(2),
u(x̃), x ∈ D(1).

Theorem. Under the assumptions of the previous theorem,(
R−n

∫
B2R(x0)

vq dx
)1/q

≤ C(n, α, β,L,M,q) ess inf
BR(x0)

v (14)

for

0 < q <
n(s − 1)

n − 1
, s = ess inf

B8R(x0)
p.

Under the assumptions of the first theorem, (14) is valid for v = u + R.
This result holds true if u is a W - or H- supersolution.
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Yet another double phase toy problem

Alkhutov Yu.A., Surnachev M.D. The Boundary Behavior of a
Solution to the Dirichlet Problem for the p-Laplacian with Weight
Uniformly Degenerate on a Part of Domain with Respect to Small
Parameter // J. Math Sci. 2020. V. 250. P. 183–200.

Now p = const, 1 < p < ∞,

Lu = div(ωε(x)|∇u|p−2∇u = 0),

where

ωε(x) =

{
ε, xn > 0,
1, xn < 0,

and ε ∈ (0,1].

Consider the Dirichlet problem

Luf = 0 in D, uf |∂D = f ∈ C(∂D).
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Denote Σ = {xn = 0}. For x0 ∈ ∂D ∩ Σ let

γ(r) =

(
Cp((B

x0
r ∩ {xn ≤ 0}) \ D,Bx0

2r )

rn−p

) 1
p−1

,

where Cp(E,Ω) is the standard p-capacity of a compact set E with
respect to Ω.
Theorem. If ∫

0
γ(r)r−1 dr = ∞

then the point x0 is regular and for 0 < r ≤ ρ/5 ≤ diamD/4 there
holds

ess sup
D∩Bx0

r

|uf (x0) − f (x0)| ≤ 2 osc
∂D∩Bx0

ρ

f + osc
∂D

f · exp ©­«−C

ρ∫
r

γ(t)t−1 dtª®¬
where C = C(n,p) is independent of ε.
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Special weak Harnack

For a nonnegative supersolution w denote v = min(w, w̃) where w̃ is
the even extension of w from {xn ≤ 0} to {xn > 0}. Then for

0 < β0 < p − 1, ε ≤
β0

4
pp/(p−1)(p − 1)−2, r ≤ (p − β0 − 1)

n
n − 1

there holds

inf
BR

v ≥ C(n,p, β0)

(
R−n

∫
B3R

v r dx
)1/r

.

As a corollary, for ε ≤ ε0, ε0 = ε0(n,p) > 0, there holds

Rp−n−1
∫

B2R

|∇v |p−1 dx + R−n
∫

B2R

vp−1 dx ≤ C(n,p)
(
inf
BR

v
)p−1

.
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Triple phase problem

Alkhutov Yu.A., Surnachev M.D. Harnack inequality for the elliptic
p(x)-Laplacian with a three-phase exponent p(x) // Comp. Math.
Math. Phys. 2020. V. 60. N. 8. P. 1284–1293.

BR = {x ∈ R2 : |x | < R}, D(1) = {0 < ϕ < ϕ1},

D(2) = {ϕ1 < ϕ < ϕ2}, D(3) = {ϕ2 < ϕ < 2π},

p(x) = pi, x ∈ D(i), i = 1,2,3, 1 < p3 < p2 < p1,

D̃(1) = {ϕ1/4 < ϕ < 3ϕ1/4}, ε > 0.

Theorem. For any nonnegative p(x)-harmonic function in B4R,

ess sup
D̃(1)∩{R/2<r<R}

u ≤ C(n,p1,p2,p3, ϕ1, ϕ2, ϕ3)
(
ess inf

BR
u + R

)
.

As a corollary, p(x)-Harmonic functions are Hölder continuous in BR.
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Here H = W (smooth functions are dense in the Sobolev-Orlicz space
W1,p(x)(BR)): see Edmunds, Rakosnik, or

Fan X.L., Wang S., Zhao D. Density of C∞(Ω) in W1,p(x)(Ω)

with discontinuous exponent p(x) // Math. Nachr. 2006. V. 279,
No. 1–2, P. 142–149.

In the latter paper the case of piecewise-constant exponent with
multiple phases was treated.
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Thank you!
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