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Why limiting strain

The talk is based on the following results

M. Buĺıček, J. Málek, K. R. Rajagopal and J. R. Walton: Existence of solutions for the anti-plane
stress for a new class of ”strain-limiting” elastic bodies, Calc. Var. Partial Differential Equations, 2015

M. Buĺıček, J. Málek and E. Süli: Analysis and approximation of a strain-limiting nonlinear elastic
model, Mathematics and Mechanics of Solids, 2014

M. Buĺıček, J. Málek, K. R. Rajagopal and E. Süli: On elastic solids with limiting small strain:
modelling and analysis, EMS Surveys in Mathematical Sciences, 2014.

L. Beck, M. Buĺıček, J. Málek and E. Süli: On the existence of integrable solutions to nonlinear
elliptic systems and variational problems with linear growth, ARMA 2017

L. Beck, M. Buĺıček, E. Maringová: On regularity up to the boundary for variational problems with
linear growth, ESAIM Control Optim. Calc. Var. 2018

L. Beck, M. Buĺıček, F. Gmeineder: On existence of W 1,1 solutions to variational problems with linear
growth, to appear at Annali della Scuola Normale Superiore (Pisa) 2020

M. Buĺıček, V. Patel, Y.Şengül, E. Süli:Existence of large-data global weak solutions to a model of a
strain-limiting viscoelastic body, arXiv, 2020

M. Buĺıček, V. Patel, Y.Şengül, E. Süli:Existence and uniqueness of global weak solutions to
strain-limiting viscoelasticity with Dirichlet boundary, arXiv, 2020
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Minimal surface like systems

Minimal surface equation

Ω ⊂ Rd is an open bounded smooth set and U0 : Ω→ R is smooth.

We look for U ∈W 1,1(Ω)

div

(
∇U

(1 + |∇U|2)
1
2

)
= 0 in Ω, U = U0 on ∂Ω.

It is equivalent to find U ∈W 1,1(Ω), which minimizes

min
U−U0∈W 1,1

0 (Ω)

ˆ
(1 + |∇U|2)

1
2 .

Answers:

If Ω is convex (or generally has nonnegative mean curvature) then there always exists
(smooth) solution.

If Ω has negative mean curvature (or is nonconvex in 2D) then there always exists U0 for
which the solution does not exist.
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Buĺıček (Charles University) viscoelasticity February 1, 2021 3 / 38



Minimal surface like systems

Minimal surface equation

Ω ⊂ Rd is an open bounded smooth set and U0 : Ω→ R is smooth.

We look for U ∈W 1,1(Ω)

div

(
∇U

(1 + |∇U|2)
1
2

)
= 0 in Ω, U = U0 on ∂Ω.

It is equivalent to find U ∈W 1,1(Ω), which minimizes

min
U−U0∈W 1,1

0 (Ω)

ˆ
(1 + |∇U|2)

1
2 .

Answers:

If Ω is convex (or generally has nonnegative mean curvature) then there always exists
(smooth) solution.

If Ω has negative mean curvature (or is nonconvex in 2D) then there always exists U0 for
which the solution does not exist.
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Minimal surface like systems

Minimal surface equation - BV setting - relaxed formulation

Minimize the relaxed functional over the space BV (Ω), i.e., find U ∈ BV (Ω̃) with Ω ⊂ Ω̃
that minimizes

min
U∈BV (Ω̃);U=U0 in Ω̃\Ω

ˆ
(1 + |(∇U)r |2)

1
2 + |(∇U)s |(Ω),

where (∇U)r is the regular (absolutely continuous w.r.t. Lebesgue measure) part of ∇U
(which is a Radon measure), and (∇U)s is the singular part.

Answers:

Weak lower semicontinuity =⇒ minimizer always exists.

De Giorgi =⇒ U ∈ C1,α
loc (Ω) and in fact we have the “half” relaxed formulation:

min
U∈W 1,1(Ω)

ˆ
(1 + |∇U|2)

1
2 +

ˆ
∂Ω
|U − U0|
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Minimal surface like systems

Generalized problem

DATA: Ω ⊂ Rd open smooth bounded (connected), a ∈ (0,∞), U0 ∈ C∞(Ω), G ∈ C∞(Ω;Rd), and
ΓD , ΓN ⊂ ∂Ω are smooth open (in (d-1) sense) disjoint parts of the boundary whose union is of the full measure
of ∂Ω
GOAL: To find for U ∈W 1,1(Ω) such that

div

(
∇U

(1 + |∇U|a)
1
a

)
= divG in Ω,

U = U0 on ΓD ,

∇U
(1 + |∇U|a)

1
a

· n = G · n on ΓN .

Necessary compatibility condition
‖G‖∞ ≤ 1

Safe data condition
‖G‖∞ < 1.
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Minimal surface like systems

Concepts of solutions

Weak solution: we look for U, such that U − U0 ∈W 1,1
ΓD

(Ω) and for all ϕ ∈W 1,1
ΓD

(Ω)ˆ
Ω

∇U
(1 + |∇U|a)

1
a

· ∇ϕ =

ˆ
Ω

G · ∇ϕ

It is equivalent to find U ∈W 1,1(Ω) such that U = U0 on ΓD which minimizes

min
U−U0∈W

1,1
ΓD

ˆ
Ω

F (|∇U|)− G · ∇U, with F (s) :=

ˆ s

0

t

(1 + ta)
1
a

.

“Half” relaxed formulation: to find U ∈W 1,1(Ω) that minimizes

min
U∈W 1,1(Ω)

ˆ
Ω

F (|∇U|)− G · ∇U +

ˆ
ΓD

|U − U0|.

Relaxed formulation: to find U0 ∈ BV (Ω̃) being equal to U0 outside Ω that minimizes

min
U∈BV

ˆ
Ω

F (|(∇U)r |) + |∇Us |(Ω \ ΓN)− 〈G ,∇U〉.
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Minimal surface like systems

Answers & open problems

a ∈ (0,∞) and Ω (uniformly) convex - unique weak solution always exists

a ∈ (0,∞) and general Ω - BV solution exists and the regular part (∇U)r is unique

a ∈ (0, 2) and general Ω - “half” relaxed formulation is enough - U ∈ C0,1
loc (Bildhauer & Fuchs, ....) (works

even for systems)

a > 1 - the weak solution does not exist in general (standard counterexample on the annulus for constant
data and Dirichlet problem)

Problem 1: a > 2 - is half relaxed formulation sufficient (can we avoid the presence of the singular
measure in the interior?) - counterexamples only for more general operators (not having the radial
structure) or for x-dependent operators

Problem 2: a ∈ (0, 1] is there always a weak solution? - the standard counterexample on the annulus does
not work here

Problem 3: Can we find a range of a’s and a class of nonconvex domains for which the weak solution
always exists?

Buĺıček (Charles University) viscoelasticity February 1, 2021 7 / 38



Minimal surface like systems

Answers & open problems

a ∈ (0,∞) and Ω (uniformly) convex - unique weak solution always exists

a ∈ (0,∞) and general Ω - BV solution exists and the regular part (∇U)r is unique

a ∈ (0, 2) and general Ω - “half” relaxed formulation is enough - U ∈ C0,1
loc (Bildhauer & Fuchs, ....) (works

even for systems)

a > 1 - the weak solution does not exist in general (standard counterexample on the annulus for constant
data and Dirichlet problem)

Problem 1: a > 2 - is half relaxed formulation sufficient (can we avoid the presence of the singular
measure in the interior?) - counterexamples only for more general operators (not having the radial
structure) or for x-dependent operators

Problem 2: a ∈ (0, 1] is there always a weak solution? - the standard counterexample on the annulus does
not work here

Problem 3: Can we find a range of a’s and a class of nonconvex domains for which the weak solution
always exists?

Buĺıček (Charles University) viscoelasticity February 1, 2021 7 / 38



Minimal surface like systems

Answers & open problems

a ∈ (0,∞) and Ω (uniformly) convex - unique weak solution always exists

a ∈ (0,∞) and general Ω - BV solution exists and the regular part (∇U)r is unique

a ∈ (0, 2) and general Ω - “half” relaxed formulation is enough - U ∈ C0,1
loc (Bildhauer & Fuchs, ....) (works

even for systems)

a > 1 - the weak solution does not exist in general (standard counterexample on the annulus for constant
data and Dirichlet problem)

Problem 1: a > 2 - is half relaxed formulation sufficient (can we avoid the presence of the singular
measure in the interior?) - counterexamples only for more general operators (not having the radial
structure) or for x-dependent operators

Problem 2: a ∈ (0, 1] is there always a weak solution? - the standard counterexample on the annulus does
not work here

Problem 3: Can we find a range of a’s and a class of nonconvex domains for which the weak solution
always exists?
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Minimal surface like systems

Problems (partially) solved:)

Theorem

Problem 3: a ∈ (0, 2) and ΓD =
⋃N

i=1 Γi such that either Γi is uniformly convex and U0 is
smooth on Γi or Γi is flat and U0 is constant there =⇒ there exists a weak solution (B,
Málek, Rajagopal, Walton).

Problem 2: a ∈ (0, 1] and ΓN = ∅ =⇒ there is always a weak solution (Beck, B,
Maringová).

Problem 1: a > 0, Ω simply connected and ΓD = ∅ =⇒ there is always a weak
solution. (Beck, B, Gmeineder)
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Minimal surface like systems

General result I - regularity up to the boundary

Theorem (Beck, Buĺıček, Maringová)

Let F ∈ C2(0,∞) be increasing strictly convex fulfilling

lim
s→∞

F (s)

s
= lim

s→∞
F ′(s) = K , 0 < lim

s→∞

F ′′(2s)

F ′′(s)
<∞.

Then the following is equivalent

For any Ω ∈ C1,1 and any u0 ∈ C1,1(Ω) there exists unique u ∈W 1,∞(Ω) fulfilling

ˆ
Ω

F (|∇u|) ≤
ˆ

Ω

F (|∇u0 +∇ϕ|) for all ϕ ∈W 1,1
0 (Ω).

ˆ ∞
1

sF ′′(s) =∞.

The second condition is equivalent to the fact that

lim
s→K−

F ∗(s) =∞,

where F ∗ is the convex conjugate function to F .
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Minimal surface like systems

General result I - regularity up to the boundary

Theorem (Beck, Buĺıček, Maringová II)

Let F ∈ C2(0,∞) be increasing strictly convex fulfilling

lim
s→∞

F (s)

s
= lim

s→∞
F ′(s) = K .

If
´∞

1
sF ′′(s) <∞ then for any smooth domain satisfying the inner ball condition (in 2d any nonconvex

domain) there exists a smooth function U0 such that the minimizer does not belong to W 1,1(Ω) ∩ C(Ω).
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Minimal surface like systems

General result II - no BV needed

Theorem (Beck, Buĺıček, Gmeineder)

Let F ∈ C2(0,∞) be increasing strictly convex fulfilling

lim
s→∞

F (s)

s
= lim

s→∞
F ′(s) = K .

Let Ω be simply connected domain, ΓD = ∅ and G satisfy the safe data condition. Then there
exists a unique (up to a constant) weak solution.

The method works even for elliptic systems, having not variational nor radial structure.
But we require both of these structures at least asymptotically.
There is no improvement of integrability of ∇u!!!.

Buĺıček (Charles University) viscoelasticity February 1, 2021 11 / 38



Minimal surface like systems

General result II - no BV needed

Theorem (Beck, Buĺıček, Gmeineder)
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Minimal surface like systems

If you are not interested in continuum mechanics then thank you for your
attention!

If you are not interested in calculus of variations but you are interested in
continuum mechanics, please wake up!
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Limiting strain

Linearized nonlinear elasticity

We consider the elastic deformation of the body Ω ⊂ Rd with ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω described by

−divTTT = f in Ω,

u = u0 on ΓD , and TTTn = g on ΓN .
(El)

where u is displacement, TTT the Cauchy stress, f the external body forces, g the external surface forces and εεε is
the linearized strain tensor, i.e.,

εεε = εεε(u) :=
1

2
(∇u + (∇u)T )

The implicit relation between the Cauchy stress and the strain

GGG(TTT, εεε) = 0

The key assumption in linearized elasticity

|εεε| � 1 . (A)
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Limiting strain

Motivation for symmetric p-Laplace like operator for p = 1 or p =∞

p = 1: the plasticity model, i.e.,

TTT ∼ εεε

|εεε|
for |εεε| � 1

p =∞: the limiting strain model, i.e.,

εεε ∼ TTT

|TTT|
for |TTT| � 1.
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Limiting strain

Limiting strain model

The standard linear models immediately may lead to the contradiction:

Consider Ω a domain with non-convex corner at x0, Γ = ∂Ω, u0 = 0 and GGG of the form

TTT = εεε.

There exists a smooth f such that the solution (TTT, εεε) fulfils

|TTT(x)| = |εεε(x)| x→x0→ ∞.

=⇒ contradicts the assumption of the model (A) =⇒ not valid model at least in the
neighborhood of x0.
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Variational approach and BV setting

Simplified setting - potential structure

We look for (u,TTT) such that u = u0 on ΓD and TTTn = g on ΓN and fulfilling

−divTTT = f ,
εεε(u) = εεε∗(TTT).

}
⇔

{
−divTTT∗(εεε(u)) = f .

in Ω with

εεε∗(TTT) :=
TTT

(1 + |TTT|a)
1
a

and T ∗(WWW) := (εεε∗)−1(WWW) :=
WWW

(1− |WWW|a)
1
a

for all TTT ∈ Rd×d
sym and WWW ∈ Rd×d

sym satisfying |WWW| < 1.
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Variational approach and BV setting

Simplified setting - potential structure

First, we introduce the space of functions having bounded the symmetric gradient

E := {u ∈W 1,1(Ω)d ; εεε(u) ∈ L∞(Ω)d×d}.

and assume at least u0 ∈ E , f ∈ L2(Ω)d and g ∈ L1(ΓN)d .

the set of admissible displacements

V := {u ∈ E : u − u0 ∈W 1,1
ΓD

(Ω)d}

the set of admissible stresses

S :=

{
TTT ∈ L1(Ω)d×d

sym : ∀v ∈ E ∩W 1,1
ΓD

ˆ
Ω

TTT · εεε(v) =

ˆ
Ω

f · v +

ˆ
ΓN

g · v
}

Weak solution: Find (u,TTT) ∈ V × S such that εεε(u) = εεε∗(TTT) a.e. in Ω.
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Variational approach and BV setting

Potential structure - primary formulation

Find potential F : Rd×d
sym → R+ such that F (0) = 0 and

∂F (WWW)

∂WWW
= TTT∗(WWW) if |WWW| < 1,

F (WWW) =∞ if |WWW| > 1.

Primary (variational) formulation: Find u ∈ V such that for all v ∈ V
ˆ

Ω

F (εεε(u))− f · u −
ˆ

ΓN

g · u ≤
ˆ

Ω

F (εεε(v))− f · v −
ˆ

ΓN

g · v

Lemma

Let ‖εεε(u0)‖∞ < 1 (the safety strain condition). Then there exists a unique u solving the primary formulation.
Moreover there exists TTT ∈ L1(Ω)d×d such that εεε(u) = εεε∗(TTT) and for all v ∈ V such that TTT∗(εεε(v)) ∈ L1 there
holds ˆ

Ω

TTT · εεε(u − v) ≤
ˆ

Ω

f · (u − v) +

ˆ
ΓN

g · (u − v)

In addition, if there is a weak solution then it also solves the primary formulation. Similarly, if u satisfies the
safety strain condition, then (u,TTT) is a weak solution.
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Variational approach and BV setting

Potential structure - dual formulation

Find potential F ∗ : Rd×d
sym → R+ such that F (0) = 0 and (note here that F (WWW) ∼ |WWW| at infinity

∂F ∗(WWW)

∂WWW
= εεε∗(WWW).

Dual (variational) formulation: Find TTT ∈ S such that for all WWW ∈ S
ˆ

Ω

F ∗(TTT)−TTT · εεε(u0) ≤
ˆ

Ω

F ∗(WWW)−WWW · εεε(u0)

Lemma

The existence of a weak solution is equivalent to the existence of a minimizer to the dual problem. Moreover, if
‖εεε(u0)‖∞ < 1 (the safety strain condition) then there exists a finite infimum of the dual formulation which may
be attained by TTT ∈M(Ω)d×d

sym .
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Variational approach and BV setting

Potential structure - relaxed dual formulation

the relaxed set of admissible stresses

Sm :=

{
TTT ∈M(Ω)d×d

sym : ∀v ∈ C1
ΓD (Ω)d

ˆ
Ω

TTT · εεε(v) =

ˆ
Ω

f · v +

ˆ
ΓN

g · v
}

Dual (variational) relaxed formulation: For u0 ∈ C1(Ω)d , find TTT ∈ Sm such that for all WWW ∈ Sm

ˆ
Ω

F ∗(TTTr ) + (WWWr −TTTr ) · εεε(u0) + |TTTs |(Ω) + 〈WWWs −TTTs , εεε(u0)〉 ≤
ˆ

Ω

F ∗(WWWr ) + |WWWs |(Ω)

where TTT = TTTr + TTTs and TTTr is a regular part (i.e., absolutely continuous w.r.t. Lebesgue measure) and TTTs is a
singular part (i.e., supported on the set of zero Lebesgue measure).

Lemma

Let ‖εεε(u0)‖∞ < 1. Then there exists a minimizer to relaxed dual formulation. Moreover, the regular part TTTr is
unique and satisfies εεε(u) = εεε∗(TTTr ), where u is the (unique) minimizer to primary formulation. In addition, if TTTs

1

and TTTs
2 are two singular parts then for all v ∈ C1

ΓD
(Ω)d

|TTTs
1|(Ω)− 〈TTTs

1, εεε(u0)〉 = |TTTs
2|(Ω)− 〈TTTs

2, εεε(u0)〉 and 〈TTTs
1 −TTTs

2,∇v〉 = 0
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Variational approach and BV setting

Conclusion

We solved the problem completely. Natural setting is the relaxed dual formulation. The
displacement is unique. The regular part of the Cauchy stress is unique. There is
non-uniquely given singular part of the Cauchy stress.

Where is the singular measure supported? Is it really there? How do you explain that the
regular part did not solve the balance equation? Is there some crack/damage possible
region? Is there any influence of the shape of Ω or the parameter a? etc. etc.
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Special geometry

Limiting strain model - anti-plane stress

We consider the following special geometry

Ω

g

g

ν

Figure: Anti-plane stress geometry.

and we look for the solution in the following from:

u = u(x1, x2) = (0, 0, u(x1, x2)), g(x) = (0, 0, g(x1, x2)),

and

TTT(x) =

 0 0 T13(x1, x2)
0 0 T23(x1, x2)

T13(x1, x2) T23(x1, x2) 0

 . (1)
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Special geometry

Equivalent reformulation-simply connected domain

Find U : Ω→ R - the Airy stress function such that

T13 =
1√
2
Ux2 and T23 = − 1√

2
Ux1 .

=⇒ divTTT = 0 is fulfilled.

U must satisfy (εεε(u) = TTT

(1+|TTT|a)
1
a

)

div

(
∇U

(1 + |∇U|a)
1
a

)
= 0 in Ω,

Ux2n1 − Ux1n2 =
√

2g on ∂Ω.

Dirichlet problem, indeed assume that ∂Ω is parameterized by γ(s) = (γ1(s), γ2(s)). Then

U(γ(s0)) = a0 +
√

2

ˆ s0

0

g(γ(s))
√

(γ
′
1(s))2 + (γ

′
2(s))2ds =: U0(x).
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Special geometry

Consequences for U

We look for U ∈W 1,1(Ω)

div

(
∇U

(1 + |∇U|a)
1
a

)
= 0 in Ω, U = U0 on ∂Ω.

Calculus of variations and BV setting are back! Please wake up!
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General setting

General setting & general geometry

All presented results were based either on the scalar structure or on the radial structure

There is NO theory for nonlinear systems having the radial-like structure with respect to
the symmetric gradient, which would be better than the theory for general elliptic systems
having no structure.
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General setting

Result for particular model and general geometry

Consider εεε∗(TTT) = TTT/(1 + |TTT|a)
1
a :

Theorem (General result for a > 0)

Let a > 0 and u0 satisfy the safety strain condition. Then there exists a unique triple
(u,TTT, g̃) ∈ V × L1(Ω)d×d

sym × (C1
0 (ΓN))∗ such that for all v ∈ C1

ΓD
(Ω)

εεε(u) = εεε∗(TTT)ˆ
Ω

TTT · εεε(u − w) ≤
ˆ

Ω

f · (u − w) +

ˆ
ΓN

g · (u − w)

u = u0 on ΓD ,

where w ∈ V is arbitrary such that there exists T̃TT ∈ L1 fulfilling εεε(w) = εεε∗(T̃TT).

Moreover,

ˆ
Ω

TTT · ∇v =

ˆ
Ω

f · v + 〈g − g̃ , v〉ΓN
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General setting

Assumptions for general model

Assumptions on εεε∗: Denote AAA(TTT) := ∂εεε∗(TTT)
∂TTT

.

εεε∗ is coercive, i.e.,
εεε∗(TTT) ·TTT ≥ C1|TTT| − C2

εεε∗ is h-elliptic, i.e., there exists nonincreasing function h such that for all WWW 6= 0

0 < h(|TTT|)|WWW|2 ≤ (WWW,WWW)AAA(TTT) ≤
|WWW|2

1 + |TTT| ,

where

(WWW,WWW)AAA(TTT) :=
∑

AAAνiµj(TTT)WWWνiWWWµj , AAAνiµj(TTT) :=
∂(εεε∗)νi (TTT)

∂TTTµj
.

AAA is asymptotically symmetric, i.e.,

|AAAs(TTT)−AAA(TTT)|2

h(|TTT|) ≤ C2

1 + |TTT| .

either h does not decrease faster than |TTT|−1−2/d or εεε∗ is asymptotically radial, i.e., there exists a function
g such that g(|TTT|) ≤ C(1 + |TTT|) fulfilling

|g(|TTT|)εεε∗(TTT)−TTT|2

h(|TTT|) ≤ C2(1 + |TTT|3).
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General setting

Assumptions for general models

Assumptions on data:

f ∈ L2

g ∈ L1

u0 satisfies safety strain condition, i.e., there exists a compact set K ⊂ εεε∗(Rd×d
sym ) such that for almost all

x ∈ Ω
εεε(u0(x)) ∈ K

.
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General setting

Result for limiting strain models

Theorem (General result)

There exists a unique triple (u,TTT, g̃) ∈W 1,1(Ω)d × L1(Ω)d×d
sym × (C1

0 (Γd))∗ such that

ˆ
Ω

TTT · εεε(v) =

ˆ
Ω

f · v + 〈g − g̃ , v〉ΓN

εεε(u) = DDD(TTT) ∈ L∞(Ω;Rd×d)ˆ
Ω

TTT · εεε(u − w) ≤
ˆ

Ω

f · (u − w) +

ˆ
ΓN

g · (u − w)

u = u0 on ΓD ,

are satisfied for all v ∈ C1
ΓD

(Ω) and all w ∈W 1,∞(Ω), where w is an arbitrary function being equal to u0 on ΓD

and for which there exists T̃TT ∈ L1(Ω)d×d
sym fulfilling εεε(w) = εεε∗(T̃TT).
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General setting

Conclusion II

The first result for the symmetric gradient, where the radial setting plays the crucial role.

The same result obviously holds also for the full gradient case.

For any C1 strictly monotone operator being asymptotically symmetric and radial we
avoided the presence of the singular part in the interior!

At least in 2D and simply connected domains, we can convert this setting to the minimal
surface-like problems and get the same result.

The method does not use the improved integrability result (which even may not be true)!

The same theory for minimal surface-like problems and general geometries. Sharp
identification of the cases when the theory can be built up to the boundary.
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Sketch of the proof

Scheme of the proof

We find a mollified problem for which we have a solution and then go to the limit. The
approximation is of the form

εεε∗n(TTT) := εεε∗(TTT) + n−1 TTT

(1 + |TTT|)1− 1
n

.

The first a priori estimate
ˆ

Ω
|TTTn| ≤ C , ‖εεε(un)‖n ≤ C .

TTTn ⇀∗ TTT inM(Ω)d×dsym ,

εεε(un) ⇀ εεε(u) in Lq(Ω)d×dsym , for all q <∞.

and TTT solves the equation but we do not know that εεε(u) = εεε∗(TTT)
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Sketch of the proof

Scheme

First we show that
TTTn → TTT a.e. in Ω,

where TTT ∈ L1(Ω)d×dsym but we do not know that TTT = TTT.

Then due to the continuity of εεε∗ we have

εεε(u) = εεε∗(TTT) a.e. in Ω.

The Fatou lemma and monotonicity justify the limit passage in

ˆ
Ω

TTT · εεε(u −w) ≤
ˆ

Ω
f · (u −w) +

ˆ
ΓN

g · (u −w).

The final step is to show that
−divTTT = f .
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Sketch of the proof

Point-wise convergence of TTTn

The final uniform bound

ˆ
Ω

τ2|∇TTTn|2

(1 + |TTTn|)a+1
≤ C

∑
k

ˆ
Ω

(τ∂kTTTn, τ∂kTTTn)AAAn(TTTn) ≤ C .

we are able to deduce that
TTTn → TTT a.e. in Ω

Renormalized solution - for any g ∈ D(R) and any v ∈ D(Ω)d

ˆ
Ω

TTT · (g(|TTT|)∇v)−
ˆ

Ω
g(|TTT|)f · v = −

ˆ
Ω

TTT · (v ⊗∇g(|TTT|))

Our goal is to let g ↗ 1. In the first two terms it is easy. The last term causes troubles.
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Viscoelasticity

Time dependent models - elasticity

We look for (u,TTT) fulfilling (Q := (0,T )× Ω)

∂2
ttu − divTTT = f in Q,

εεε(u) = εεε∗(TTT) in Q,

u = u0 on ΓD ⊂ (0,T )× ∂Ω ∩ {0} × Ω,

TTTn = g on ΓN := (0,T )× ∂Ω \ ΓD

with

εεε∗(TTT) :=
TTT

(1 + |TTT|a)
1
a

nonlinear hyperbolic system of second order

case is lost - except one dimensional setting
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Viscoelasticity

Time dependent models - viscoelasticity

We look for (u,TTT) fulfilling (Q := (0,T )× Ω)

∂2
ttu − divTTT = f in Q,

εεε(u) + εεε(∂tu) = εεε∗(TTT) in Q,

u = u0 on ΓD ⊂ (0,T )× ∂Ω ∩ {0} × Ω,

TTTn = g on ΓN := (0,T )× ∂Ω \ ΓD

with

εεε∗(TTT) :=
TTT

(1 + |TTT|a)
1
a

nonlinear parabolic - hyperbolic system of second order

a hope for the existence of solution
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Viscoelasticity

Limiting strain - viscoelastic

Consider

εεε∗(TTT) ∼ TTT

(1 + |TTT|a)
1
a

.

Assume that the existence of ψ∗ fulfilling (it has linear growth)

∂ψ∗(TTT)

∂TTT
= εεε∗(TTT)

convex conjugate (corresponds to the Helmholtz free energy)

ψ(εεε) := sup
WWW

(εεε ·WWW − ψ∗(WWW))

ψ(εεε) =∞ if |εεε| > 1.

Theorem (Buĺıček, Patel, Şengül, Süli (2020))

Let ΓN = ∅. Then for any reasonable data there exists a weak solution.

Buĺıček (Charles University) viscoelasticity February 1, 2021 36 / 38



Viscoelasticity

A priori estimates

Multiply

∂2
ttu − divTTT = f

by ∂tu and integrate over Ω (e.g. periodic data).

Using that ∂TTTψ
∗ = (∂εεεψ)−1

ˆ
Ω

f · ∂tu =
d

dt

ˆ
Ω

|∂tu|2

2
+

ˆ
Ω

TTT · ∂tεεε(u)

=
d

dt

(ˆ
Ω

|∂tu|2

2
+ ψ(εεε(u))

)
+

ˆ
Ω

(TTT− ∂εεεψ(εεε(u))) · ∂tεεε(u)

=
d

dt

(ˆ
Ω

|∂tu|2

2
+ ψ(εεε(u))

)
+

ˆ
Ω

(TTT− ∂εεεψ(εεε(u))) · (∂TTTψ
∗(TTT)− εεε(u))

=
d

dt

(ˆ
Ω

|∂tu|2

2
+ ψ(εεε(u))

)
︸ ︷︷ ︸

energy

+

ˆ
Ω

(TTT− ∂εεεψ(εεε(u))) · (∂TTTψ
∗(TTT)− ∂TTTψ

∗(∂εεεψ(εεε(u)))︸ ︷︷ ︸
dissipation ≥0
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Viscoelasticity

A priori estimates

First a priori estimate
|εεε(u)| ≤ 1, ∂tu ∈ L∞(L2), TTT ∈ L1(Q)

Second a priori estimates - test by ∆u, ∆∂tu and ∂2
ttu

εεε(u) ∈ L∞(L2), TTT ∈ L∞(L1), ∂2
ttu ∈ L2(Q),

ˆ
Q

(∇TTT,∇TTT)AAA(TTT) <∞

Starting point done - time for renormalization, etc...
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