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Orthotropic functionals

We want to consider local minimizers of a functional with
orthotropic structure

N ou
fi(ux) d fi ) xi =
’2_1/ (uy) dx convex, Uy B

Example
By taking f:(t) = t2/2, we get

Y1 1
22/|Ux,-|2 dx = 5 /|Vu|2 dx Dirichlet integral
i=1

A well-known functional without orthotropic structure
For p # 2, the classical

1
- /|Vu|p dx p—Dirichlet integral
p

does not fall in this class



Leading example
Orthotropic p—Dirichlet integral

N

1
Soo [ luglax
i=1 P

This is a natural generalization of the Dirichlet integral

The orthotropic p—Laplacian operator
Local minimizers are weak solutions of the Euler-Lagrange equation
N

Z (™ uXi)x,' =0

i=1

Remark

This equation looks similar to the more familiar one
N

> (IVulP?uy), =0

i=1
but they are quite different



So similar, yet so different

Let us set
N
I(z)=1|zlP  and  O(z)=> |zl
i=1

Similarities: growth
Both of them are strictly convex, with p—growth, i.e.

O(z2) = |zP = 1(2)
For basic regularity (i.e. L and C%® estimates, Harnack
inequalities, Gehring-type gradient integrability etc.)

N N

S (e e, amd Y (P ),

i=1 i=1

can be treated in exactly the same manner and there is nothing
new (see Chapters 6 & 7 of Giusti’s book)



Differences: ellipticity (p > 2)

> isotropic
(D?I(2) €,€) ~ |2|P~2 [¢]?
least eigenvalue of D?Z(z) becomes 0 only at z =0

» orthotropic
N
(D*0(2)€,€) = > |zl 2 &
i=1

least eigenvalue of D?O(z) becomes 0 each time z = 0

For higher regularity (i.e. Lipschitz and C1'%) these are
completely different

— | this talk | will be interested in Lipschitz regularity —



Some variations on the theme

Our motivation for this orthotropic functional was a problem in
Optimal Transport, but once we opened the hell's gates....

/]Vu]pdx

The relevant p—Laplacian behaves like the isotropic one only when
the norm | - || is uniformly convex, otherwise it is a completely
different story

1. General norms

where || - || is any norm

2. Orthotropic & non-standard growth

N
Z/|uxl.|p"dx, l<pr<p<...py < 400
i=1

For gradient regularity, this is one of the nastiest functionals
(introduced by the Soviet school already in the 70s and
independently by Marcellini in Western Countries)



A handful of (old) references

1. Orthotropic p—Laplacian has been considered for example in
» Visik, Mat. Sbornik (1962)

» Lions’ book “Quelques méthodes de résolution etc.” (1969)

» Zeidler's book “Nonlinear functional analysis and its
applications’ (1990)

They tackle the existence issue for its parabolic version

N
Z (‘”Xf‘piz UX,-) = Ug
x;

i=1 '
2. For higher regularity (i.e. Lipschitz & C1), this equation
has been overlooked or neglected, apart for
» Uralt'seva - Urdaletova, Vest. Leningr. Univ. Math. (1984)

They proved Lipschitz regularity for p > 4, without using
energy methods, but Bernstein's one



Disclaimer

» From now on, | will manipulate solutions as if they were C2
> | will focus on formally obtaining a priori estimates

> everything can then be rigorously justified by approximations



2. Isotropic VS. Orthotropic



One step back: isotropic case

Consider a local weak solution of the standard p—Laplacian

N
N Z(‘VU‘P_z Ux)x; =0
i=1

How to prove that Vu € L7

loc*
Equation for the gradient
We still use the notation Z(z) = |z|P, then the equation rewrites

—divVZ(Vu) =0
Differentiate the equation in direction xi, we get that u,, solves
—div(D?*Z(Vu) Vuy,) =0

We can think of this as degenerate linear equation, with
coefficients matrix D2Z(Vu)



One step back: isotropic case Il

Subsolutions
For every f : R — R convex

/(Dzl'(Vu)Vf(uXk),V@ <0 for every ¢ >0

that is, f(uy, ) is a subsolution of the linearized equation

—div(D?I(Vu) V) =0

Caccioppoli for the gradient
Take the test function ¢ = 7% f(uy, ), then we get

Caccioppoli inequality for convex functions of u,,

[0V F(0). VHw ) S [(OL(V) T, 90 £, 2



One step back: isotropic case Il

We are in troubles, since

D?*Z(Vu) ~ |Vu[P~2

thus Caccioppoli for the gradient is apparently useless when
Vu=20

Absorption trick

We can bypass this problem by absorbing D?>Z(Vu) into the
subsolution. More precisely, find suitable convex functions f and
F such that

(D*Z(Vu) Vi (uy,), V(ug)) = [VulP=? [VF(uy,)I®
> [ug P72 [VF (g ) 2
= [VF(ux,)I?

Ok....but which kind of f and F work?



One step back: isotropic case IV

Power functions! Take f(uy,) = |ux,|°, then F is still a power

By using this trick, from “Caccioppoli for the gradient” we get

—212
[ Bl =] s [ apere
B, B

and combining with Sobolev inequality

2
2\
</ ’uXk‘(2,3+p2)22> 5/ IV u[20+P2
B, Br

iterative scheme of reverse Holder inequalities (2*/2 > 1)

Moser's iteration
Start with 5 =1 and iterate infinitely many times



Now move forward

For the orthotropic case, we try to mimick the same strategy

Equation for the gradient
We have a look at the equation solved by u,,

By differentiating the equation with respect to x;, we get

Z/’ux| uXk XISOXI_O

a linear degenerate elliptic equation with diagonal coefficient
matrix

|Uxy ‘p_Q
D?0O(Vu) =

| Uxy |p_2

The least eigenvalue is 0 each time a component of Vu vanishes




Subsolutions
For every f : R — R convex

N
Z / |“x,~‘p72 (f(uxk))x_ ox <0 for every ¢ > 0
i=1 !

that is f(uy, ) is a subsolution of the linearized equation

N
div(D*O(Vu) Vi) = 3 (yux,|f3—2 wx,.) =0

i=1
Caccioppoli inequality for the gradient
Take the test function ¢ = 1% f(uy, ), then we get

Caccioppoli inequality for convex functions of u,,

N 2 N
> [l (f(uXk))x.‘ PSS [ ol s b
i=1 ' i=1




A major obstruction

In the isotropic case Caccioppoli for the gradient gave a control
on

[V ulP? |V f ()]
but now it is much worse!

We only control
2

N
> g2

i=1

(),

i.e. a weighted gradient of f(uy,)...too much degeneracy

No way that the “absorption trick” works as before



3. Lipschitz regularity



Lipschitz regularity for p > 2

Theorem (Bousquet-B.-Leone-Verde)
Let p > 2. If u is a local minimizer of

N

1
Z/|uxi|de
i=1 p

then Vu € LS°. and

loc
1
P
IVull oo (g ) S <][ |VulP dx)
Br
Remark

We want to perform a Moser's iteration, but we need new ideas in
order to exploit Caccioppoli for the gradient and circumvent the
degeneracy of the weights |uy, |P~2



A technical innovation
We cook up new Caccioppoli inequalities for the gradient

The method

> as before, take the equation differentiated with respect to xx

Z/’ux| uXk Xl(‘lDXI_O

» now insert the weird test function (a < f3)

0 = I 27 o 2

» combine the Caccioppoli inequality so obtained (we call it

weird Caccioppoli)...

» ...with the Caccioppoli for the gradient (I mean, the one we
obtained previously)...

» ... plus a finite iteration on indexes o and 3 with « + 3 fixed
(this is the magic & scaring part that nobody wants to see in
a talk)



“The dish is ready”

For every g = 2™ we get for every j, k
N
- [lusl i lugfPe 5 [ Va2
i=1

Why two indices j, k? What we do now?

We can now perform the usual absorption trick on the left-hand
side!! In the sum, keep only the term / =

[l 2 H~/\ g |5

and sum over k to reconstruct the full gradient of |uxj|f’/2+f”!




Conclusion

After all these struggles, we get

Caccioppoli for power-functions

2
/’v’uxj|’§+q‘ §/|Vu|p+2q

We are in the same situation as for the standard p—Laplacian:

» use Sobolev inequality
> get an iterative Moser's scheme
> iterate infinitely many times for a diverging sequence g,

(I am hiding sous le tapis other — lower order yet annoying —
technical complications)



Some comments

Related results
The same Lipschitz result has been obtained by means of viscosity
techniques by Demengel [Adv. Differ. Equ. (2016)]

Right-hand side

» Our result also covers much more degenerate situations and
the non-homogeneous case

N
> () =1
i=1 i

under some non-sharp assumptions on f

» The expected sharp assumption on f to get Lipschitz
regularity is f € L9 with g > N (actually the sharpest
assumption should be on the Lorentz scale f € LN'! as in
Beck - Mingione [CPAM (2019)])

» At present, this is still an open problem



Other regularity results

Higher differentiability a /a Uhlenbeck
Local minimizers are such that

p—2
|7 0y € W2

Still true with a right-hand side f, under the sharp assumption
f e WSP asin B.-Santambrogio [Comm. Cont. Math. (2016)]

C! regularity
In dimension N = 2, local minimizers are such that (Bousquet - B.)

Vue C°

The proof works with a right-hand side f, as well....but the paper
was already quite complicated with f =0



Still on C! regularity

» Lindqvist - Ricciotti [Nonlinear Anal. (2018)] improved the

result to
Vue Co%

for some logarithmic modulus of continuity w
» this is for the homogeneous equation only

» for a right-hand side f, one could try to transfer the
excess-decay estimate

][ |Vu — Vug,|Pdx < w(r)

from solutions of the homogeneous equation...

» ...but the modulus w is too weak for this strategy to work (in
other words, Campanato’s Theorem fails for C%%, see Spanne
[Ann. SNS (1965)])



4. Beyond standard growth



Next challenge

What about the orthotropic & non-standard growth?
N1
Zp./wxi‘pidx' l<pr<pp<...py <400
i=1""

Well-known fact

We can not expect regularity for local minimizers, when
N
1< PN
P1
(Giaquinta-Marcellini's counterexamples)

In this case, local minimizers may be unbounded

Question
What if we impose a priori that a local minimizer is bounded?



Orthotropic & non-standard growth

Theorem (Bousquet - B.)
Let2 < p; <--- < pp. Ifu is a bounded local minimizer of

N

1
oo [ lusler o
1 Pi

then Vue l®

loc

Remarks

» no upper bound on py/p; is assumed. Under such a
generality, the result is claimed in Lieberman [Adv. Diff. Eq.
(2005)]

» case Nl = 2 previously proved in B. - Leone - Pisante - Verde,
by using a different argument i.e. a two-dimensional trick
introduced in Bousquet - B. - Julin

» for p1 > 4 and py < 2 p1, proved by Uralt'seva & Urdaletova
(by Bernstein's method)



A glimpse of the proof

The proof is composed of two main steps:

A. a Moser's iteration similar to the one for p; = --- = py, to get

140

:
Vulinisy S ( [ 19017)
B

~ could be very big (here, we do not need v € L{°)

loc

B. a self-improving scheme for the gradient a /a
Bildhauer-Fuchs-Zhong [Ann. SNS (2007)]

P2
/ |t [P dx < C+ C Z/ | (Pet2+a) 4
8 i£k Y BR
The constant C depends on ”uHLi’S’c

o

Final gain of B.: Vu € L] _ for every g



Some comments

L> assumption

» Sharp assumptions in order to get u € L5 arein

Fusco - Sbordone [Manuscripta Math. (1990)]

» for example, in dimension N = 2 local minimizers are always
locally bounded

» for more general functionals with nonstandard growth, many
authors contributed to local boundedness. Among others, we
mention

Cupini - Marcellini - Mascolo [Nonlinear Anal. (2019)]
Hirsch - Schaffner [Comm. Contemp. Math. (2020)]



Right-hand side

» Qur result does not cover the non-homogeneous case
N
_ Z ( P2 ) —f
Xj

» the proof is very likely to be adapted (with some sweat &
tears) to include the right-hand side f, without sharp
assumptions

» The expected sharp assumption on f to get Lipschitz
regularity is...? In view of Beck - Mingione it is reasonable to
expect f € LN:1

Higher differentiability a /a Uhlenbeck

LY® local minimizers are such that (Bousquet - B.)

)
|| 77wy, € W2

loc



C! regularity

» in dimension N = 2 Lindqvist - Ricciotti [Nonlinear Anal.

(2018)] proved also
Vue C%

for some logarithmic modulus of continuity w, even for
2<p1<p

» again, this is for the homogeneous equation only



Many thanks for your kind attention

“I knew it would take some time to get to that point.
And | worked hard to get there"
C. SCHULDINER
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