Regularity issues for orthotropic functionals

Brasco

Università degli Studi di Ferrara
lorenzo.brasco@unife.it - http://cvgmt.sns.it/person/198/

Somewhere, 12th October 2020

References

The research presented is part of a project started in 2011, mainly in collaboration with Pierre Bousquet (Toulouse)

1. Bousquet - B., Rev. Mat. Iberoam. (2019)
2. Bousquet - B. - Leone - Verde, Calc. Var. PDE (2018)
3. Bousquet - B., Anal. PDE (2018)
4. B. - Leone - Pisante - Verde, Nonlinear Anal. (2017)
5. Bousquet - B. - Julin, Ann. SNS (2016)
6. B. - Carlier, Adv. Calc. Var. (2014)

Outline

1. The functionals
2. Isotropic VS. Orthotropic
3. Lipschitz regularity
4. Beyond standard growth

Orthotropic functionals

We want to consider local minimizers of a functional with orthotropic structure

$$
\sum_{i=1}^{N} \int f_{i}\left(u_{x_{i}}\right) d x \quad f_{i} \text { convex, } \quad u_{x_{i}}=\frac{\partial u}{\partial x_{i}}
$$

Example
By taking $f_{i}(t)=t^{2} / 2$, we get

$$
\sum_{i=1}^{N} \frac{1}{2} \int\left|u_{x_{i}}\right|^{2} d x=\frac{1}{2} \int|\nabla u|^{2} d x \quad \text { Dirichlet integral }
$$

A well-known functional without orthotropic structure For $p \neq 2$, the classical

$$
\frac{1}{p} \int|\nabla u|^{p} d x \quad p-\text { Dirichlet integral }
$$

does not fall in this class

Leading example

Orthotropic p-Dirichlet integral

$$
\sum_{i=1}^{N} \frac{1}{p} \int\left|u_{x_{i}}\right|^{p} d x
$$

This is a natural generalization of the Dirichlet integral
The orthotropic p-Laplacian operator
Local minimizers are weak solutions of the Euler-Lagrange equation

$$
\sum_{i=1}^{N}\left(\left|u_{x_{i}}\right|^{p-2} u_{x_{i}}\right)_{x_{i}}=0
$$

Remark
This equation looks similar to the more familiar one

$$
\sum_{i=1}^{N}\left(|\nabla u|^{p-2} u_{x_{i}}\right)_{x_{i}}=0
$$

but they are quite different

So similar, yet so different

Let us set

$$
\mathcal{I}(z)=|z|^{p} \quad \text { and } \quad \mathcal{O}(z)=\sum_{i=1}^{N}\left|z_{i}\right|^{p}
$$

Similarities: growth
Both of them are strictly convex, with p-growth, i.e.

$$
\mathcal{O}(z) \simeq|z|^{p}=\mathcal{I}(z)
$$

For basic regularity (i.e. L^{∞} and $C^{0, \alpha}$ estimates, Harnack inequalities, Gehring-type gradient integrability etc.)

$$
\sum_{i=1}^{N}\left(|\nabla u|^{p-2} u_{x_{i}}\right)_{x_{i}} \quad \text { and } \quad \sum_{i=1}^{N}\left(\left|u_{x_{i}}\right|^{p-2} u_{x_{i}}\right)_{x_{i}}
$$

can be treated in exactly the same manner and there is nothing new (see Chapters 6 \& 7 of Giusti's book)

Differences: ellipticity $(p \geq 2)$

- isotropic

$$
\left\langle D^{2} \mathcal{I}(z) \xi, \xi\right\rangle \simeq|z|^{p-2}|\xi|^{2}
$$

least eigenvalue of $D^{2} \mathcal{I}(z)$ becomes 0 only at $z=0$

- orthotropic

$$
\left\langle D^{2} \mathcal{O}(z) \xi, \xi\right\rangle \simeq \sum_{i=1}^{N}\left|z_{i}\right|^{p-2}\left|\xi_{i}\right|^{2}
$$

least eigenvalue of $D^{2} \mathcal{O}(z)$ becomes 0 each time $z_{i}=0$
For higher regularity (i.e. Lipschitz and $C^{1, \alpha}$) these are completely different

- I this talk I will be interested in Lipschitz regularity -

Some variations on the theme

Our motivation for this orthotropic functional was a problem in Optimal Transport, but once we opened the hell's gates....

1. General norms

$$
\int\|\nabla u\|^{p} d x
$$

where $\|\cdot\|$ is any norm
The relevant p-Laplacian behaves like the isotropic one only when the norm $\|\cdot\|$ is uniformly convex, otherwise it is a completely different story
2. Orthotropic \& non-standard growth

$$
\sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p_{i}} d x, \quad 1<p_{1} \leq p_{2} \leq \ldots p_{N}<+\infty
$$

For gradient regularity, this is one of the nastiest functionals (introduced by the Soviet school already in the 70s and independently by Marcellini in Western Countries)

A handful of (old) references

1. Orthotropic p-Laplacian has been considered for example in

- Visik, Mat. Sbornik (1962)
- Lions' book "Quelques méthodes de résolution etc." (1969)
- Zeidler's book "Nonlinear functional analysis and its applications" (1990)
They tackle the existence issue for its parabolic version

$$
\sum_{i=1}^{N}\left(\left|u_{x_{i}}\right|^{p-2} u_{x_{i}}\right)_{x_{i}}=u_{t}
$$

2. For higher regularity (i.e. Lipschitz \& $C^{1, \alpha}$), this equation has been overlooked or neglected, apart for

- Uralt'seva - Urdaletova, Vest. Leningr. Univ. Math. (1984)

They proved Lipschitz regularity for $p \geq 4$, without using energy methods, but Bernstein's one

Disclaimer

- From now on, I will manipulate solutions as if they were C^{2}
- I will focus on formally obtaining a priori estimates
- everything can then be rigorously justified by approximations

1. The functionals

2. Isotropic VS. Orthotropic
3. Lipschitz regularity
4. Beyond standard growth

One step back: isotropic case

Consider a local weak solution of the standard p-Laplacian

$$
-\sum_{i=1}^{N}\left(|\nabla u|^{p-2} u_{x_{i}}\right)_{x_{i}}=0
$$

How to prove that $\nabla u \in L_{\text {loc }}^{\infty}$?
Equation for the gradient
We still use the notation $\mathcal{I}(z)=|z|^{p}$, then the equation rewrites

$$
-\operatorname{div} \nabla \mathcal{I}(\nabla u)=0
$$

Differentiate the equation in direction x_{k}, we get that $u_{x_{k}}$ solves

$$
-\operatorname{div}\left(D^{2} \mathcal{I}(\nabla u) \nabla u_{x_{k}}\right)=0
$$

We can think of this as degenerate linear equation, with coefficients matrix $D^{2} \mathcal{I}(\nabla u)$

One step back: isotropic case II

Subsolutions

For every $f: \mathbb{R} \rightarrow \mathbb{R}$ convex

$$
\int\left\langle D^{2} \mathcal{I}(\nabla u) \nabla f\left(u_{x_{k}}\right), \nabla \varphi\right\rangle \leq 0 \quad \text { for every } \varphi \geq 0
$$

that is, $f\left(u_{x_{k}}\right)$ is a subsolution of the linearized equation

$$
-\operatorname{div}\left(D^{2} I(\nabla u) \nabla \psi\right)=0
$$

Caccioppoli for the gradient Take the test function $\varphi=\eta^{2} f\left(u_{x_{k}}\right)$, then we get

Caccioppoli inequality for convex functions of $u_{x_{k}}$

$$
\int\left\langle D^{2} \mathcal{I}(\nabla u) \nabla f\left(u_{x_{k}}\right), \nabla f\left(u_{x_{k}}\right)\right\rangle \eta^{2} \lesssim \int\left\langle D^{2} \mathcal{I}(\nabla u) \nabla \eta, \nabla \eta\right\rangle f\left(u_{x_{k}}\right)^{2}
$$

One step back: isotropic case III

We are in troubles, since

$$
D^{2} \mathcal{I}(\nabla u) \simeq|\nabla u|^{p-2}
$$

thus Caccioppoli for the gradient is apparently useless when $\nabla u=0$

Absorption trick
We can bypass this problem by absorbing $D^{2} \mathcal{I}(\nabla u)$ into the subsolution. More precisely, find suitable convex functions f and F such that

$$
\begin{aligned}
\left\langle D^{2} \mathcal{I}(\nabla u) \nabla f\left(u_{x_{k}}\right), \nabla f\left(u_{x_{k}}\right)\right\rangle & \simeq|\nabla u|^{p-2}\left|\nabla f\left(u_{x_{k}}\right)\right|^{2} \\
& \geq\left|u_{x_{k}}\right|^{p-2}\left|\nabla f\left(u_{x_{k}}\right)\right|^{2} \\
& =\left|\nabla F\left(u_{x_{k}}\right)\right|^{2}
\end{aligned}
$$

Ok....but which kind of f and F work?

One step back: isotropic case IV

Power functions! Take $f\left(u_{x_{k}}\right)=\left|u_{x_{k}}\right|^{\beta}$, then F is still a power
By using this trick, from "Caccioppoli for the gradient" we get

$$
\left.\left.\int_{B_{\varrho}}|\nabla| u_{x_{k}}\right|^{\beta+\frac{p-2}{2}}\right|^{2} \lesssim \int_{B_{R}}|\nabla u|^{2 \beta+p-2}
$$

and combining with Sobolev inequality

$$
\left(\int_{B_{Q}}\left|u_{x_{k}}\right|^{(2 \beta+p-2) \frac{2^{*}}{2}}\right)^{\frac{2}{2^{*}}} \lesssim \int_{B_{R}}|\nabla u|^{2 \beta+p-2}
$$

iterative scheme of reverse Hölder inequalities $\left(2^{*} / 2>1\right)$
Moser's iteration
Start with $\beta=1$ and iterate infinitely many times

Now move forward

For the orthotropic case, we try to mimick the same strategy
Equation for the gradient
We have a look at the equation solved by $u_{x_{k}}$
By differentiating the equation with respect to x_{k}, we get

$$
\sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p-2}\left(u_{x_{k}}\right)_{x_{i}} \varphi_{x_{i}}=0
$$

a linear degenerate elliptic equation with diagonal coefficient matrix

$$
D^{2} \mathcal{O}(\nabla u)=\left[\begin{array}{lll}
\left|u_{x_{1}}\right|^{p-2} & & \\
& \ddots & \\
& & \left|u_{x_{N}}\right|^{p-2}
\end{array}\right]
$$

The least eigenvalue is 0 each time a component of ∇u vanishes

Subsolutions

For every $f: \mathbb{R} \rightarrow \mathbb{R}$ convex

$$
\sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p-2}\left(f\left(u_{x_{k}}\right)\right)_{x_{i}} \varphi_{x_{i}} \leq 0 \quad \text { for every } \varphi \geq 0
$$

that is $f\left(u_{x_{k}}\right)$ is a subsolution of the linearized equation

$$
\operatorname{div}\left(D^{2} \mathcal{O}(\nabla u) \nabla \psi\right)=\sum_{i=1}^{N}\left(\left|u_{x_{i}}\right|^{p-2} \psi_{x_{i}}\right)_{x_{i}}=0
$$

Caccioppoli inequality for the gradient
Take the test function $\varphi=\eta^{2} f\left(u_{x_{k}}\right)$, then we get
Caccioppoli inequality for convex functions of $u_{x_{k}}$

$$
\sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p-2}\left|\left(f\left(u_{x_{k}}\right)\right)_{x_{i}}\right|^{2} \eta^{2} \lesssim \sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p-2} f\left(u_{x_{k}}\right)^{2}\left|\eta_{x_{i}}\right|^{2}
$$

A major obstruction

In the isotropic case Caccioppoli for the gradient gave a control on

$$
|\nabla u|^{p-2}\left|\nabla f\left(u_{x_{k}}\right)\right|^{2}
$$

but now it is much worse!
We only control

$$
\sum_{i=1}^{N}\left|u_{x_{i}}\right|^{p-2}\left|\left(f\left(u_{x_{k}}\right)\right)_{x_{i}}\right|^{2}
$$

i.e. a weighted gradient of $f\left(u_{x_{k}}\right)$...too much degeneracy

No way that the "absorption trick" works as before

1. The functionals

2. Isotropic VS. Orthotropic
3. Lipschitz regularity
```
4. Beyond standard growth
```


Lipschitz regularity for $p \geq 2$

Theorem (Bousquet-B.-Leone-Verde)
Let $p \geq 2$. If u is a local minimizer of

$$
\sum_{i=1}^{N} \frac{1}{p} \int\left|u_{x_{i}}\right|^{p} d x
$$

then $\nabla u \in L_{\text {loc }}^{\infty}$ and

$$
\|\nabla u\|_{L^{\infty}\left(B_{R / 2}\right)} \lesssim\left(f_{B_{R}}|\nabla u|^{p} d x\right)^{\frac{1}{p}}
$$

Remark
We want to perform a Moser's iteration, but we need new ideas in order to exploit Caccioppoli for the gradient and circumvent the degeneracy of the weights $\left|u_{x_{i}}\right|^{p-2}$

A technical innovation

We cook up new Caccioppoli inequalities for the gradient
The method

- as before, take the equation differentiated with respect to x_{k}

$$
\sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p-2}\left(u_{x_{k}}\right)_{x_{i}} \varphi_{x_{i}}=0
$$

- now insert the weird test function $(\alpha \leq \beta)$

$$
\varphi=\left|u_{x_{k}}\right|^{2 \alpha-1}\left|u_{x_{j}}\right|^{2 \beta} \eta^{2}
$$

- combine the Caccioppoli inequality so obtained (we call it weird Caccioppoli)...
- ...with the Caccioppoli for the gradient (I mean, the one we obtained previously)...
- ... plus a finite iteration on indexes α and β with $\alpha+\beta$ fixed (this is the magic \& scaring part that nobody wants to see in a talk)

"The dish is ready"

For every $q=2^{m}$ we get for every j, k

$$
\sum_{i=1}^{N} \int\left|u_{x_{i}}\right|^{p-2} u_{x_{i} x_{k}}^{2}\left|u_{x_{j}}\right|^{2 q} \lesssim \int|\nabla u|^{p+2 q}
$$

Why two indices j, k ? What we do now?
We can now perform the usual absorption trick on the left-hand side!! In the sum, keep only the term $i=j$

$$
\int\left|u_{x_{j}}\right|^{p-2} u_{x_{j} x_{k}}^{2}\left|u_{x_{j}}\right|^{2 q} \simeq \int\left|\left(\left|u_{x_{j}}\right|^{\frac{p}{2}+q}\right)_{x_{k}}\right|^{2}
$$

and sum over k to reconstruct the full gradient of $\left|u_{x_{j}}\right|^{p / 2+p}$!

Conclusion

After all these struggles, we get
Caccioppoli for power-functions

$$
\left.\left.\int|\nabla| u_{x_{j}}\right|^{\frac{p}{2}+q}\right|^{2} \lesssim \int|\nabla u|^{p+2 q}
$$

We are in the same situation as for the standard p-Laplacian:

- use Sobolev inequality
- get an iterative Moser's scheme
- iterate infinitely many times for a diverging sequence q_{n}
(I am hiding sous le tapis other - lower order yet annoying technical complications)

Some comments

Related results

The same Lipschitz result has been obtained by means of viscosity techniques by Demengel [Adv. Differ. Equ. (2016)]
Right-hand side

- Our result also covers much more degenerate situations and the non-homogeneous case

$$
-\sum_{i=1}^{N}\left(\left|u_{x_{i}}\right|^{p-2} u_{x_{i}}\right)_{x_{i}}=f
$$

under some non-sharp assumptions on f

- The expected sharp assumption on f to get Lipschitz regularity is $f \in L^{q}$ with $q>N$ (actually the sharpest assumption should be on the Lorentz scale $f \in L^{N, 1}$ as in Beck - Mingione [CPAM (2019)])
- At present, this is still an open problem

Other regularity results

Higher differentiability à la Uhlenbeck

Local minimizers are such that

$$
\left|u_{x_{i}}\right|^{\frac{p-2}{2}} u_{x_{i}} \in W_{\mathrm{loc}}^{1,2}
$$

Still true with a right-hand side f, under the sharp assumption $f \in W_{\mathrm{loc}}^{\mathrm{s}, p^{\prime}}$, as in B.-Santambrogio [Comm. Cont. Math. (2016)] C^{1} regularity
In dimension $N=2$, local minimizers are such that (Bousquet - B.)

$$
\nabla u \in C^{0}
$$

The proof works with a right-hand side f, as well....but the paper was already quite complicated with $f=0$

Still on C^{1} regularity

- Lindqvist - Ricciotti [Nonlinear Anal. (2018)] improved the result to

$$
\nabla u \in C^{0, \omega}
$$

for some logarithmic modulus of continuity ω

- this is for the homogeneous equation only
- for a right-hand side f, one could try to transfer the excess-decay estimate

$$
f_{B_{r}}\left|\nabla u-\overline{\nabla u}_{B_{r}}\right|^{p} d x \lesssim \omega(r)
$$

from solutions of the homogeneous equation...

- ...but the modulus ω is too weak for this strategy to work (in other words, Campanato's Theorem fails for $C^{0, \omega}$, see Spanne [Ann. SNS (1965)])

1. The functionals

2. Isotropic VS. Orthotropic
3. Lipschitz regularity
4. Beyond standard growth

Next challenge

What about the orthotropic \& non-standard growth?

$$
\sum_{i=1}^{N} \frac{1}{p_{i}} \int\left|u_{x_{i}}\right|^{p_{i}} d x, \quad 1<p_{1} \leq p_{2} \leq \ldots p_{N}<+\infty
$$

Well-known fact
We can not expect regularity for local minimizers, when

$$
1 \ll \frac{p_{N}}{p_{1}}
$$

(Giaquinta-Marcellini's counterexamples)
In this case, local minimizers may be unbounded
Question
What if we impose a priori that a local minimizer is bounded?

Orthotropic \& non-standard growth

Theorem (Bousquet - B.)
Let $2 \leq p_{1} \leq \cdots \leq p_{N}$. If u is a bounded local minimizer of

$$
\sum_{i=1}^{N} \frac{1}{p_{i}} \int\left|u_{x_{i}}\right|^{p_{i}} d x
$$

then $\quad \nabla u \in L_{\text {loc }}^{\infty}$

Remarks

- no upper bound on p_{N} / p_{1} is assumed. Under such a generality, the result is claimed in Lieberman [Adv. Diff. Eq. (2005)]
- case $N=2$ previously proved in B. - Leone - Pisante - Verde, by using a different argument i.e. a two-dimensional trick introduced in Bousquet - B. - Julin
- for $p_{1} \geq 4$ and $p_{N}<2 p_{1}$, proved by Uralt'seva \& Urdaletova (by Bernstein's method)

A glimpse of the proof

The proof is composed of two main steps:
A. a Moser's iteration similar to the one for $p_{1}=\cdots=p_{N}$, to get

$$
\|\nabla u\|_{L^{\infty}\left(B_{1 / 2}\right)} \lesssim\left(\int_{B_{1}}|\nabla u|^{\gamma}\right)^{\frac{1+\Theta}{\gamma}}
$$

γ could be very big (here, we do not need $u \in L_{\text {loc }}^{\infty}$)
B. a self-improving scheme for the gradient à la Bildhauer-Fuchs-Zhong [Ann. SNS (2007)]

$$
\int_{B_{\sigma R}}\left|u_{x_{k}}\right|^{p_{k}+2+\alpha} d x \leq C+C \sum_{i \neq k} \int_{B_{R}}\left|u_{x_{i}}\right|^{\frac{p_{i}-2}{p_{k}}\left(p_{k}+2+\alpha\right)} d x
$$

The constant C depends on $\|u\|_{L_{\text {loc }}^{\infty}}$
Final gain of B.: $\nabla u \in L_{\text {loc }}^{q}$ for every q

Some comments

L^{∞} assumption

- Sharp assumptions in order to get $u \in L_{\text {loc }}^{\infty}$ are in

Fusco - Sbordone [Manuscripta Math. (1990)]

- for example, in dimension $N=2$ local minimizers are always locally bounded
- for more general functionals with nonstandard growth, many authors contributed to local boundedness. Among others, we mention

Cupini - Marcellini - Mascolo [Nonlinear Anal. (2019)]
Hirsch - Schäffner [Comm. Contemp. Math. (2020)]

Right-hand side

- Our result does not cover the non-homogeneous case

$$
-\sum_{i=1}^{N}\left(\left|u_{x_{i}}\right|^{p_{i}-2} u_{x_{i}}\right)_{x_{i}}=f
$$

- the proof is very likely to be adapted (with some sweat \& tears) to include the right-hand side f, without sharp assumptions
- The expected sharp assumption on f to get Lipschitz regularity is...? In view of Beck - Mingione it is reasonable to expect $f \in L^{N, 1}$

Higher differentiability à la Uhlenbeck

$L_{\text {loc }}^{\infty}$ local minimizers are such that (Bousquet - B.)

$$
\left|u_{x_{i}}\right|^{\frac{p_{i}-2}{2}} u_{x_{i}} \in W_{\mathrm{loc}}^{1,2}
$$

C^{1} regularity

- in dimension $N=2$ Lindqvist - Ricciotti [Nonlinear Anal. (2018)] proved also

$$
\nabla u \in C^{0, \omega}
$$

for some logarithmic modulus of continuity ω, even for $2 \leq p_{1} \leq p_{2}$

- again, this is for the homogeneous equation only

Many thanks for your kind attention

"I knew it would take some time to get to that point. And I worked hard to get there"
C. Schuldiner

