Maximal regularity for local minimizers of non-autonomous functionals

Jihoon Ok

(Sogang University, Seoul)

This is a joint work with Peter Hästö.

Monday's Nonstandard Seminar 2020/21 (MIMUW)

October 19, 2020

Jihoon Ok (Sogang Univ.)

$$W^{1,1}(\Omega) \ni v \quad \mapsto \quad \mathcal{F}(v,\Omega) = \int_{\Omega} f(x,Dv) \, dx.$$
 (1)

u is always a minimizer (or a weak solution to a PDE problem).

$$W^{1,1}(\Omega) \ni v \quad \mapsto \quad \mathcal{F}(v,\Omega) = \int_{\Omega} f(x,Dv) \, dx.$$
 (1)

u is always a minimizer (or a weak solution to a PDE problem).

- If the integrand f is independent of x, i.e., $\mathcal{F}(v, \Omega) = \int_{\Omega} f(Dv) dx$, the functional \mathcal{F} is said to be autonomous.
- If the integrand f depends also on x, the functional \mathcal{F} is said to be non-autonomous.

2/38

$$W^{1,1}(\Omega) \ni v \quad \mapsto \quad \mathcal{F}(v,\Omega) = \int_{\Omega} f(x,Dv) \, dx.$$
 (1)

u is always a minimizer (or a weak solution to a PDE problem).

- If the integrand f is independent of x, i.e., $\mathcal{F}(v, \Omega) = \int_{\Omega} f(Dv) dx$, the functional \mathcal{F} is said to be autonomous.
- If the integrand f depends also on x, the functional \mathcal{F} is said to be non-autonomous.
- In particular, if $z \mapsto f(x, z)$ depends only on |z|, i.e.,

$$\mathcal{F}(v,\Omega) = \int_{\Omega} \varphi(x,|Dv|) dx \quad (f(x,z) \equiv \varphi(x,|z|)),$$

then we say that ${\mathcal F}$ has so-called Uhlenbeck's structure.

Functional with *p*-growth

$$\begin{cases} z \mapsto f(x,z) \text{ is } C^1(\mathbb{R}^n) \cap C^2(\mathbb{R}^n \setminus \{0\}), \\ 1$$

$$\begin{split} W^{1,p}(\Omega) \ni v &\mapsto \int_{\Omega} f(x,Dv) \, dx. \\ \text{E-L eq:} \ \operatorname{div} \left(\partial f(x,Du) \right) = 0. \end{split}$$

• Model case

$$\begin{split} f(x,z) &\equiv \varphi(x,|z|) = a(x)|z|^p, \quad 0 < \nu \leq a(\cdot) \leq L. \\ \text{E-L eq:} \quad \text{div} \left(a(x)|Du|^{p-2}Du\right) = 0. \end{split}$$

Functional with *p*-growth

Jihoon Ok (Sogang Univ.)

$$\begin{split} \omega(r) &:= \sup_{z \in \mathbb{R}^n \setminus \{0\}} \sup_{x, y \in B_r, B_r \subset \Omega} \frac{|f(x, z) - f(y, z)|}{|z|^p} \le 2L. \\ & \left(\mathsf{model \ case:} \ \omega(r) := \sup_{x, y \in B_r, B_r \subset \Omega} |a(x) - a(y)| \right) \end{split}$$

< 同 ▶

э

Functional with *p*-growth

$$\begin{split} \omega(r) &:= \sup_{z \in \mathbb{R}^n \setminus \{0\}} \sup_{x, y \in B_r, B_r \subset \Omega} \frac{|f(x, z) - f(y, z)|}{|z|^p} \le 2L. \\ & \left(\mathsf{model \ case:} \ \omega(r) := \sup_{x, y \in B_r, B_r \subset \Omega} |a(x) - a(y)| \right) \end{split}$$

DeGiorgi theory

• (No additional condition) $\implies u \in C^{\alpha}$ for some $\alpha \in (0, 1)$.

$\label{eq:continuous for x} x$

•
$$\lim_{r\to 0^+} \omega(r) = 0 \implies u \in C^{\alpha}$$
 for any $\alpha \in (0, 1)$.

- $\omega(r) \lesssim r^{\beta} \implies u \in C^{1,\alpha}$ for some $\alpha \in (0,1)$. (Maximal regularity)
- (model case) It is well known that if $a(\cdot)$ is VMO then $u \in W^{1,q}$ for any q > p hence $u \in C^{\alpha}$ for any $\alpha \in (0, 1)$. Moreover, if $a(\cdot)$ is VMO only for x_1, \ldots, x_{n-1} ($x = (x_1, \ldots, x_n)$), then $u \in W^{1,q}$ for any q > p. (Byun-Kim(16), Kim(18)).

Jihoon Ok (Sogang Univ.)

Marcellini introduced a general class of functionals.

(p,q)-growth condition (Marcellini, 1989)

$$\begin{split} z &\mapsto f(x,z) \text{ is } C^1(\mathbb{R}^n) \cap C^2(\mathbb{R}^n \setminus \{0\}), \\ 1 &$$

In this talk, I will introduce regularity results for the following problems.

Jihoon Ok (Sogang Univ.)

In this talk, I will introduce regularity results for the following problems.

 $\bullet \ (p,q)\mbox{-}{\rm growth}\ {\rm functionals}\ {\rm with}\ {\rm Uhlenbeck's}\ {\rm structure}$

 $f(x,z)\equiv \varphi(x,|z|)$

$$W^{1,\varphi}(\Omega) \ni v \mapsto \int_{\Omega} \varphi(x, |Dv|) \, dx.$$
 (2)

In this case, the previous (p,q)-growth condition can be simplified as

$$\begin{cases} t \mapsto \varphi(x,t) \text{ is in } C^1([0,\infty)) \cap C^2((0,\infty)), \\ 1 (3)$$

In this talk, I will introduce regularity results for the following problems.

 $\bullet \ (p,q)\mbox{-}{\rm growth}$ functionals with Uhlenbeck's structure

 $f(x,z)\equiv \varphi(x,|z|)$

$$W^{1,\varphi}(\Omega) \ni v \mapsto \int_{\Omega} \varphi(x, |Dv|) \, dx.$$
 (2)

In this case, the previous (p,q)-growth condition can be simplified as

$$\begin{cases} t \mapsto \varphi(x,t) \text{ is in } C^1([0,\infty)) \cap C^2((0,\infty)), \\ 1 (3)$$

Bounded or Hölder continuous minimizers

Jihoon Ok (Sogang Univ.)

• functionals and PDEs with generalized Orlicz growth

$$W^{1,\varphi}(\Omega) \ni v \quad \mapsto \quad \int_{\Omega} f(x,Dv) \, dx.$$

$$\begin{cases} z \mapsto f(x,z) \in \mathbb{R} \text{ is } C^1(\mathbb{R}^n) \cap C^2(\mathbb{R}^n \setminus \{0\}), \\ \nu\varphi(x,|z|) \le f(x,z) \le L\varphi(x,|z|), \\ \nu\frac{\varphi'(x,|z|)}{|z|} |\lambda|^2 \le \partial^2 f(x,z)\lambda \cdot \lambda \le L\frac{\varphi'(x,|z|)}{|z|} |\lambda|^2. \end{cases}$$

 $\operatorname{div} A(x, Du) = 0.$

$$\begin{cases} z \mapsto A(x,z) \in \mathbb{R}^n \text{ is } C^1(\mathbb{R}^n \setminus \{0\}), \\ |A(x,|z|)| + |z| |\partial A(x,z)| \le L\varphi'(x,|z|), \\ \nu \frac{\varphi'(x,|z|)}{|z|} |\lambda|^2 \le \partial A(x,z)\lambda \cdot \lambda. \end{cases}$$

Jihoon Ok (Sogang Univ.)

Generalized Orlicz function

• We say $f: U \subset \mathbb{R} \to \mathbb{R}$ is almost increasing (or almost decreasing) if $f(t) \leq Lf(s)$ (or $f(s) \leq Lf(t)$) for any t < s for some $L \geq 1$.

Let $\varphi = \varphi(x,t) : \Omega \times [0,\infty) \to [0,\infty)$ and $\gamma > 0$. $(\operatorname{alnc})_{\gamma} : t \mapsto \frac{\varphi(x,t)}{t^{\gamma}}$ is almost increasing uniformly x with $L \ge 1$. $(\operatorname{aDec})_{\gamma} : t \mapsto \frac{\varphi(x,t)}{t^{\gamma}}$ is almost decreasing uniformly x with $L \ge 1$.

- When L = 1, $(Inc)_{\gamma} = (aInc)_{\gamma}$ and $(Dec)_{\gamma} = (aDec)_{\gamma}$.
- $p-1 \leq \frac{t\varphi''(x,t)}{\varphi'(x,t)} \leq q-1 \quad \stackrel{\varphi \in C^2}{\Longrightarrow} \quad \varphi' \text{ satisfies } (\mathsf{Inc})_{p-1} \text{ and } (\mathsf{Dec})_{q-1}.$ $\implies \varphi \text{ satisfies } (\mathsf{Inc})_p \text{ and } (\mathsf{Dec})_q.$

Generalized Orlicz function

• We say $f: U \subset \mathbb{R} \to \mathbb{R}$ is almost increasing (or almost decreasing) if $f(t) \leq Lf(s)$ (or $f(s) \leq Lf(t)$) for any t < s for some $L \geq 1$.

Let $\varphi = \varphi(x,t) : \Omega \times [0,\infty) \to [0,\infty)$ and $\gamma > 0$. $(\operatorname{alnc})_{\gamma} : t \mapsto \frac{\varphi(x,t)}{t^{\gamma}}$ is almost increasing uniformly x with $L \ge 1$. $(\operatorname{aDec})_{\gamma} : t \mapsto \frac{\varphi(x,t)}{t^{\gamma}}$ is almost decreasing uniformly x with $L \ge 1$.

• When L = 1, $(Inc)_{\gamma} = (aInc)_{\gamma}$ and $(Dec)_{\gamma} = (aDec)_{\gamma}$.

• $p-1 \leq \frac{t\varphi''(x,t)}{\varphi'(x,t)} \leq q-1 \quad \stackrel{\varphi \in C^2}{\Longrightarrow} \quad \varphi' \text{ satisfies } (\mathsf{Inc})_{p-1} \text{ and } (\mathsf{Dec})_{q-1}.$ $\implies \varphi \text{ satisfies } (\mathsf{Inc})_p \text{ and } (\mathsf{Dec})_q.$

(A0) $\varphi(\cdot, 1) \approx 1$ (i.e., $\exists L \ge 1$ s.t. $L^{-1} \le \varphi(x, 1) \le L \quad \forall x \in \Omega$).

From now on, $\varphi \in \Phi_w(\Omega)$ and satisfies (A0), (alnc)_p and (aDec)_q.

Perturbed Orlicz(general growth)

 $\varphi(x,t) = a(x)\varphi_0(t),$

where

$$\begin{cases} 0 < \nu \le a(\cdot) \le L & (\iff \varphi \text{ is (A0) and } \varphi \approx \varphi_0), \\ t\varphi_0''(t) \approx \varphi_0'(t) & (\implies \varphi \text{ is (Inc)}_p \text{ and (Dec)}_q, \ 1 < p \le q). \\ W^{1,\varphi_0}(\Omega) \ni v & \mapsto \int_{\Omega} a(x)\varphi_0(|Dv|) \ dx. \end{cases}$$

< - Fill ▶

э

Perturbed Orlicz(general growth)

 $\varphi(x,t) = a(x)\varphi_0(t),$

where

.

$$\begin{cases} 0 < \nu \le a(\cdot) \le L \quad (\iff \varphi \text{ is (A0) and } \varphi \approx \varphi_0), \\ t\varphi_0''(t) \approx \varphi_0'(t) \quad (\implies \varphi \text{ is (Inc)}_p \text{ and (Dec)}_q, \ 1 < p \le q). \end{cases}$$

$$W^{1,\varphi_0}(\Omega) \ni v \quad \mapsto \quad \int_{\Omega} a(x)\varphi_0(|Dv|) \, dx.$$

Define

$$\omega(r) := \sup_{x,y \in B_r, B_r \subset \Omega} |a(x) - a(y)| \le 2L.$$

Regularity (Lieberman(91), ...)

• (No additional condition) $\implies u \in C^{\alpha}$ for some $\alpha \in (0, 1)$.

•
$$\lim_{r \to 0^+} \omega(r) = 0$$
 $(a(\cdot) \in C^0) \implies u \in C^{\alpha}$ for any $\alpha \in (0, 1)$.

$$\bullet \ \omega(r) \lesssim r^\beta \ \big(a(\cdot) \in C^\beta\big) \ \implies \ u \in C^{1,\alpha} \text{ for some } \alpha \in (0,1).$$

Non-standard growth

Standard growth cases:

$$\varphi(x,t) = a(x)t^p \quad (\text{or} \quad a(x)\varphi_0(t)).$$

The power, or growth, of t is independent of x.

Non-standard growth

Standard growth cases:

$$\varphi(x,t) = a(x)t^p \quad (\text{or} \quad a(x)\varphi_0(t)).$$

The power, or growth, of t is independent of x.

Zhikov's examples

(*On Lavrentiev's phenomenon*, Russian J. Math. Phys. (1995)) (Anna Balci's talk on next week!)

• Variable exponent

$$\varphi(x,t) = t^{p(x)},$$

$$1$$

• Double phase

$$\begin{split} \varphi(x,t) &= t^p + b(x)t^q,\\ 0 \leq b(\cdot) \leq L \text{ and } b(\cdot) \in C^{0,\beta}, \ \beta \in (0,1]. \end{split}$$

In last two decades, there have been a lot of researches on regularity theory for these problems.

Jihoon Ok (Sogang Univ.)

General non-autonomous problems

$$W^{1,\varphi}(\Omega) \ni v \quad \mapsto \quad \int_{\Omega} \varphi(x, |Dv|) \, dx.$$

э

General non-autonomous problems

$$W^{1,\varphi}(\Omega) \ni v \quad \mapsto \quad \int_{\Omega} \varphi(x, |Dv|) \, dx.$$

Harjulehto and Hästö found the following crucial conditions on φ :

(A1) There exists $L \geq 1$ such that for any $B_r \subseteq \Omega$ with $|B_r| < 1$, $\varphi_{B_r}^+(t) \le L \varphi_{B_r}^-(t)$ for any t > 0 with $\varphi_{B_r}^-(t) \in [1, |B_r|^{-1}]$. (A1-s) There exists $L \geq 1$ such that for any $B_r \in \Omega$ with $|B_r| < 1$, $\varphi_B^+(t) \leq L\varphi_B^-(t)$ for any t > 0 with $t^s \in [1, |B_r|^{-1}]$. Here, $\varphi_{U}^{+}(t) := \sup_{x \in U} \varphi(x, t)$ and $\varphi_{U}^{-}(t) := \inf_{x \in U} \varphi(x, t)$. • (A1) means $\varphi_{B_n}^+(t)$ and $\varphi_{B_n}^-(t)$ are comparable uniformly for t > 0

Hölder continuity for non-autonomous problems

If φ satisfies (A1), then $u \in C^{\alpha}_{loc}(\Omega)$ for some $\alpha = \alpha(n, p, q, L) \in (0, 1)$. If φ satisfies (A1-n) and $u \in L^{\infty}(\Omega)$, then $u \in C^{\alpha}_{loc}(\Omega)$ for some $\alpha = \alpha(n, p, q, L) \in (0, 1)$.

• The paper considers more general functionals and quasi-minimizers and proves Harnack's inequality.

Hölder continuity for non-autonomous problems

If φ satisfies (A1), then $u \in C^{\alpha}_{loc}(\Omega)$ for some $\alpha = \alpha(n, p, q, L) \in (0, 1)$. If φ satisfies (A1-n) and $u \in L^{\infty}(\Omega)$, then $u \in C^{\alpha}_{loc}(\Omega)$ for some $\alpha = \alpha(n, p, q, L) \in (0, 1)$.

• The paper considers more general functionals and quasi-minimizers and proves Harnack's inequality.

What about C^{α} -regularity for any $\alpha \in (0,1)$ and $C^{1,\alpha}$ -regularity for some $\alpha \in (0,1)$?

Note: In particular cases, the proofs of these regularities use perturbation arguments that depend on their particular structures.

(VA1): Vanishing (A1)

There exists a non-decreasing, bounded, continuous function $\omega: [0,\infty) \to [0,1]$ with $\omega(0) = 0$ such that for any small $B_r \Subset \Omega$,

 $\varphi^+_{B_r}(t) \leq (1+\omega(r))\varphi^-_{B_r}(t) \quad ^\forall t>0 \ \text{ with } \ \varphi^-_{B_r}(t) \in [\omega(r), |B_r|^{-1}].$

(A1):
$$\varphi_{B_r}^+(t) \leq L \varphi_{B_r}^-(t) \quad \forall t > 0 \text{ with } \varphi_{B_r}^-(t) \in [1, |B_r|^{-1}].$$

- (VA1) implies (A1).
- (VA1) implies that $x \mapsto \varphi(x,t)$ is continuous for all $t \in (0,\infty)$.

Theorem (Hästö-Ok, to appear in JEMS)

Let $\varphi(x, \cdot) \in C^1([0, \infty))$ for every $x \in \Omega$ with φ' satisfying (A0), (Inc)_{p-1} and (Dec)_{q-1} for some 1 .

- (1) If φ satisfies (VA1), then $u \in C^{\alpha}_{loc}(\Omega)$ for any $\alpha \in (0,1)$.
- (2) If φ satisfies (VA1) and $\omega(r) \lesssim r^{\beta}$ for some $\beta > 0$, then $u \in C^{1,\alpha}_{loc}(\Omega)$ for some $\alpha \in (0,1)$.

14/38

Theorem (Hästö-Ok, to appear in JEMS)

Let $\varphi(x, \cdot) \in C^1([0, \infty))$ for every $x \in \Omega$ with φ' satisfying (A0), (Inc)_{p-1} and (Dec)_{q-1} for some 1 .

- (1) If φ satisfies (VA1), then $u \in C^{\alpha}_{loc}(\Omega)$ for any $\alpha \in (0,1)$.
- (2) If φ satisfies (VA1) and $\omega(r) \lesssim r^{\beta}$ for some $\beta > 0$, then $u \in C^{1,\alpha}_{loc}(\Omega)$ for some $\alpha \in (0,1)$.
 - φ is assumed to be C^1 for t (In former regularity results in the case $\varphi(x,t) = \varphi(t)$, φ is always assumed to be $C^2((0,\infty))$). In fact, the assumption implies $W^{2,\infty}_{\text{loc}}((0,\infty))$.
 - Recall that

$$p-1 \leq rac{t \varphi''(t)}{\varphi'(t)} \leq q-1 \quad \stackrel{\varphi \in C^2}{\Longleftrightarrow} \quad \varphi'(t): \ (\operatorname{Inc})_{p-1} \text{ and } (\operatorname{Dec})_{q-1}.$$

- For instance $\varphi(t) := \int_0^t \max\{s^{p-1}, s^{q-1}\} ds$ satisfies the assumptions in the above theorem, but is not C^2 .

(A1) and (VA1)

Let $B_r = B_r(x_0)$. Since sup $|\varphi(x,t) - \varphi(y,t)| = \varphi_{B_r}^+(t) - \varphi_{B_r}^-(t)$, $x, y \in B_r$ (A1)

$$\begin{split} \sup_{x,y\in B_r} \frac{|\varphi(x,t)-\varphi(y,t)|}{\varphi(x_0,t)} &\leq \sup_{x,y\in B_r} \frac{|\varphi(x,t)-\varphi(y,t)|}{\varphi_{B_r}^-(t)} \leq L-1, \\ & \forall t > 0 \text{ with } \varphi_{B_r}^-(t) \in [1,|B_r|^{-1}]. \end{split}$$

$$\begin{aligned} \text{(VA1)} \\ \sup_{x,y\in B_r} \frac{|\varphi(x,t)-\varphi(y,t)|}{\varphi(x_0,t)} &\leq \omega(r), \ \forall t > 0 \text{ with } \varphi_{B_r}^-(t) \in [\omega(r),|B_r|^{-1}]. \end{aligned}$$

< 17 × <

3

(A1) and (VA1)

Let $B_r = B_r(x_0)$. Since $\sup |\varphi(x,t) - \varphi(y,t)| = \varphi_{B_r}^+(t) - \varphi_{B_r}^-(t)$, $x, y \in B_r$ (A1)

$$\begin{split} \sup_{x,y\in B_r} \frac{|\varphi(x,t)-\varphi(y,t)|}{\varphi(x_0,t)} &\leq \sup_{x,y\in B_r} \frac{|\varphi(x,t)-\varphi(y,t)|}{\varphi_{B_r}^-(t)} \leq L-1, \\ & \forall t > 0 \text{ with } \varphi_{B_r}^-(t) \in [1,|B_r|^{-1}]. \end{split}$$

$$\begin{aligned} \text{(VA1)} \\ \sup_{x,y\in B_r} \frac{|\varphi(x,t)-\varphi(y,t)|}{\varphi(x_0,t)} &\leq \omega(r), \ \forall t > 0 \text{ with } \varphi_{B_r}^-(t) \in [\omega(r),|B_r|^{-1}]. \end{aligned}$$

• If the above inequalities hold for all $t \in (0, \infty)$, they imply

 $\varphi(x,t) \approx a(x)\varphi(x_0,t)$ (perturbed Orlicz case),

where $\omega_a(r) \lesssim L - 1$ and $\omega_a(r) \lesssim \omega(r)$, respectively.

x

(Recall) Functional with *p*-growth

$$\omega(r) := \sup_{z \in \mathbb{R}^n \setminus \{0\}} \sup_{x, y \in B_r, B_r \Subset \Omega} \frac{|f(x, z) - f(y, z)|}{|z|^p}$$

DeGiorgi theory

• (No additional condition) $\implies u \in C^{\alpha}$ for some $\alpha \in (0, 1)$.

$\label{eq:continuous for x} x$

•
$$\lim_{r\to 0^+} \omega(r) = 0 \implies u \in C^{\alpha}$$
 for any $\alpha \in (0, 1)$.
• $\omega(r) \leq r^{\beta} \implies u \in C^{1,\alpha}$ for some $\alpha \in (0, 1)$. (Maximal regularity

If
$$f(x,z) \Rightarrow \varphi(x,|z|)$$
 and $|z|^p \Rightarrow \varphi(x_0,|z|)$,

$$\omega(r) = \sup_{t \in (0,\infty)} \sup_{x,y \in B_r, B_r \Subset \Omega} \frac{|\varphi(x,t) - \varphi(y,t)|}{\varphi(x_0,t)}$$

The previous theorem covers most known regularity results with continuity assumption for x in special cases.

The previous theorem covers most known regularity results with continuity assumption for x in special cases.

Double phase problem

$$\begin{split} \varphi(x,t) &= t^p + b(x)t^q, \quad b \in C^{0,\beta} \text{ and } 0 \leq b(\cdot) \leq L. \\ \text{- If } \tfrac{q}{p} < 1 + \tfrac{\beta}{n}, \, \varphi \text{ satisfies (VA1) with } \omega(r) \lesssim r^{\gamma}, \, \gamma = \beta - \tfrac{n(q-p)}{p} > 0, \\ \text{hence } u \in C^{1,\alpha}_{\text{loc}}. \text{ (Colombo-Mingione (2015))} \end{split}$$

The previous theorem covers most known regularity results with continuity assumption for x in special cases.

Double phase problem

$$\begin{split} \varphi(x,t) &= t^p + b(x)t^q, \quad b \in C^{0,\beta} \text{ and } 0 \leq b(\cdot) \leq L. \\ \text{- If } \frac{q}{p} < 1 + \frac{\beta}{n}, \, \varphi \text{ satisfies (VA1) with } \omega(r) \lesssim r^{\gamma}, \, \gamma = \beta - \frac{n(q-p)}{p} > 0, \\ \text{hence } u \in C^{1,\alpha}_{\text{loc}}. \text{ (Colombo-Mingione (2015))} \\ \text{- If } \frac{q}{n} \geq 1 + \frac{\beta}{n}, \, \varphi \text{ does not satisfy (VA1).} \end{split}$$

The previous theorem covers most known regularity results with continuity assumption for x in special cases.

Double phase problem

 $\varphi(x,t)=t^p+b(x)t^q, \quad b\in C^{0,\beta} \ \text{ and } \ 0\leq b(\cdot)\leq L.$

- If $\frac{q}{p} < 1 + \frac{\beta}{n}$, φ satisfies (VA1) with $\omega(r) \lesssim r^{\gamma}$, $\gamma = \beta - \frac{n(q-p)}{p} > 0$, hence $u \in C_{\text{loc}}^{1,\alpha}$. (Colombo-Mingione (2015))

- If
$$rac{q}{p} \geq 1 + rac{eta}{n}$$
, $arphi$ does not satisfy (VA1).

- However, if $\frac{q}{p} = 1 + \frac{\beta}{n}$, $u \in C^{1,\alpha}_{loc}$. (Baroni-Colombo-Mingione (2018))

u is a minimizer of

$$v \mapsto \int_{\Omega} \varphi(x, |Dv|) \, dx$$

if and only if it is a weak solution to

$$\operatorname{div}\left(\frac{\varphi'(x,|Du|)}{|Du|}Du\right) = 0.$$
(4)

 If we regard u as a weak solution to (4) and do not return to a variational problem, (as far as we have checked) the approach used in the proof implies the same regularity results except for replacing the inequality in (VA1) by

$$(\varphi')^+_{B_r}(t) \le (1+\omega(r))(\varphi')^-_{B_r}(t) \quad \forall t > 0 \text{ with } \varphi^-_{B_r}(t) \in [\omega(r), |B_r|^{-1}].$$

Note The above inequality is not comparable to the original one.

18/38

(wVA1): weak (VA1)

For any $\epsilon > 0$, there exists a non-decreasing, bounded, continuous function $\omega = \omega_{\epsilon} : [0, \infty) \to [0, 1]$ with $\omega(0) = 0$ such that for any small ball $B_r \Subset \Omega$,

 $\varphi_{B_r}^+(t) \le (1+\omega(r))\varphi_{B_r}^-(t) + \omega(r) \quad \text{with} \quad \varphi_{B_r}^-(t) \in [\omega(r), |B_r|^{-1+\epsilon}].$

• (VA1) \implies (wVA1) \implies (A1).

(wVA1): weak (VA1)

For any $\epsilon > 0$, there exists a non-decreasing, bounded, continuous function $\omega = \omega_{\epsilon} : [0, \infty) \to [0, 1]$ with $\omega(0) = 0$ such that for any small ball $B_r \Subset \Omega$,

 $\varphi_{B_r}^+(t) \le (1+\omega(r))\varphi_{B_r}^-(t) + \omega(r) \quad \text{with} \quad \varphi_{B_r}^-(t) \in [\omega(r), |B_r|^{-1+\epsilon}].$

• (VA1)
$$\implies$$
 (wVA1) \implies (A1).
• $\varphi(x,t) = t^p + b(x)t^q$ ($b \in C^{0,\beta}$, $0 \le b(\cdot) \le L$)
If $\frac{q}{p} \le 1 + \frac{\beta}{n}$, φ satisfies (wVA1) with $\omega_{\epsilon}(r) \le r^{\gamma_{\epsilon}}$,
 $\gamma_{\epsilon} = \beta - \frac{n(1-\epsilon)(q-p)}{p} > 0$.

 The following inequality implies the inequality in (wVA1) (with different ω).

 $(\varphi')^+_{B_r}(t) \leq (1 + \omega(r))(\varphi')^-_{B_r}(t) + \omega(r) \text{ with } \varphi^-_{B_r}(t) \in [\omega(r), |B_r|^{-1+\epsilon}]$

Theorem (Hästö-Ok, to appear in JEMS)

Let $\varphi(x, \cdot) \in C^1([0, \infty))$ for every $x \in \Omega$ with φ' satisfying (A0), (Inc)_{p-1} and (Dec)_{q-1} for some 1 .

- (1) If φ satisfies (wVA1), then $u \in C^{\alpha}_{loc}(\Omega)$ for any $\alpha \in (0,1)$.
- (2) If φ satisfies (wVA1) with $\omega_{\epsilon}(r) \leq r^{\beta_{\epsilon}}$ for some $\beta_{\epsilon} > 0$, then $u \in C^{1,\alpha}_{loc}(\Omega)$ for some $\alpha \in (0,1)$.
 - (As far as we have checked) The above theorem covers all previous regularity results with continuity assumptions (w.r.t. x) for special cases: standard growth case, p(x)-growth case, double phase case,
 - (wVA1) can be replaced by the combination of (A1) and (wVA1) with fixed small ϵ that depends on the structure contants.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Examples (variable exponent type)

< 同 ▶

э

Examples (variable exponent type)

$$\varphi(x,t) = t^{p(x)}$$

- $\lim_{r \to 0} \omega_p(r) \ln(1/r) = 0 \iff \varphi$ satisfies (VA1) $\implies u \in C^{\alpha} \quad \forall \alpha$. (Acerbi-Mingione(2001))
- $\omega_p(r) \lesssim r^{\tilde{\beta}} \iff \varphi$ satisfies (VA1) with $\omega(r) \lesssim r^{\beta} \implies u \in C^{1,\alpha}$. (Cosica-Mingione(1999))

Examples (variable exponent type)

$$\varphi(x,t) = t^{p(x)}$$

- $\lim_{r \to 0} \omega_p(r) \ln(1/r) = 0 \iff \varphi$ satisfies (VA1) $\implies u \in C^{\alpha} \quad \forall \alpha$. (Acerbi-Mingione(2001))
- $\omega_p(r) \leq r^{\tilde{\beta}} \iff \varphi$ satisfies (VA1) with $\omega(r) \leq r^{\beta} \implies u \in C^{1,\alpha}$. (Cosica-Mingione(1999))

$$\varphi(x,t) = t^{p(x)} + t^{q(x)}, \qquad p(\cdot) \le q(\cdot)$$

• $\lim_{r \to 0} \omega_p(r) = 0$, $\lim_{r \to 0} \omega_q(r) \ln(1/r) = 0 \implies \varphi$ satisfies (VA1) $\implies u \in C^{\alpha} \quad \forall \alpha.$ • $\omega_p(r), \omega_q(r) \lesssim r^{\tilde{\beta}} \implies \varphi$ satisfies (VA1) with $\omega(r) \lesssim r^{\beta}.$ $\implies u \in C^{1,\alpha}.$

・白シト ・コト ・コト

Examples (double phase type)

 $\frac{\xi}{\psi} \text{ is almost increasing, } a(\cdot), b(\cdot) \in C^0 \text{, } a(\cdot), b(\cdot) \geq 0 \text{ and } a(\cdot) + b(\cdot) \approx 1.$

 $\varphi(x,t) := a(x)\psi(t) + b(x)\xi(t),$

 $\text{Define } \omega_{\epsilon}(r):=\omega_a(r)+\omega_b(r)r^{n(1-\epsilon)}\xi\big(\psi^{-1}(r^{-n(1-\epsilon)})\big),\quad \epsilon\in[0,1).$

- $\lim_{r \to 0} \omega_{\epsilon}(r) = 0 \implies \varphi$ satisfies (wVA1). $\implies u \in C^{\alpha} \ \forall \alpha \in (0, 1).$
- Moreover, $\omega_{\epsilon}(r) \lesssim r^{\beta_{\epsilon}} \implies u \in C^{1, \alpha}$ for some $\alpha \in (0, 1)$.

If ψ and ξ are general Orlicz functions,

• it is natural to assume that $b \in C^{\omega_b} \Leftrightarrow \sup_{x,y} \frac{|b(x)-b(y)|}{\omega_b(|x-y|)} < \infty \Leftrightarrow |b(x)-b(y)| \lesssim \omega_b(|x-y|).$

• we can distinguish $C^{\alpha}\text{-regularity}$ for any $\alpha\in(0,1)$ and $C^{1,\alpha}\text{-regularity}.$

22 / 38

Step 1. Higher integrability

There exists $\sigma_0=\sigma_0(n,p,q,L)>0$ and $c_1=c_1(n,p,q,L)\geq 1$ such that

$$\left(\oint_{B_r} \varphi(x, |Du|)^{1+\sigma_0} \, dx\right)^{\frac{1}{1+\sigma_0}} \le c_1 \left(\oint_{B_{2r}} \varphi(x, |Du|) \, dx + 1\right)$$

for any $B_{2r} \Subset \Omega$ with $\int_{B_{2r}} \varphi(x, |Du|) dx \leq 1$. Hence $\varphi(\cdot, |Du|) \in L^{1+\sigma_0}_{loc}(\Omega)$.

• We have the following reverse Hölder and Jensen type inequalities:

$$\begin{split} \int_{B_r} \varphi(x, |Du|) \, dx &\leq c_t \bigg[\bigg(\int_{B_{2r}} \varphi(x, |Du|)^t \, dx \bigg)^{\frac{1}{t}} + 1 \bigg], \qquad t \in (0, 1]. \\ \int_{B_r} \varphi(x, |Du|) \, dx &\leq c \varphi_{B_{2r}}^- \bigg(\int_{B_{2r}} |Du| \, dx + 1 \bigg). \end{split}$$

Step 2. Construction of a regular function

Let $B = B_{2r}(x_0)$, $t_1 := (\varphi_B^-)^{-1}(\omega(2r))$ and $t_2 := (\varphi_B^-)^{-1}(|B|^{-1})$.

We construct $\tilde{\varphi}$ s.t.

(1)
$$\tilde{\varphi} \in C^1([0,\infty)) \cap C^2((0,\infty))$$
 and $t\tilde{\varphi}''(t) \approx \tilde{\varphi}'(t)$.

- (2) $0 \leq \tilde{\varphi}(t) \varphi(x_0, t) \leq c(r\varphi_B^-(t) + \omega(2r)), \forall t \in [t_1, t_2].$
- (3) $\theta_0(x,t) := \varphi(x, \tilde{\varphi}^{-1}(t))$ satisfies (A0), $(\operatorname{alnc})_1$, $(\operatorname{aDec})_{q/p}$ and (A1).

$$\psi_B(t) := \begin{cases} a_1 \left(\frac{t}{t_1}\right)^{p-1} & \text{if } 0 \le t < t_1, \\ \varphi'(x_0, t) & \text{if } t_1 \le t \le t_2, \\ a_2 \left(\frac{t}{t_2}\right)^{p-1} & \text{if } t_2 < t < \infty, \end{cases} \qquad \varphi_B(t) := \int_0^t \psi_B(s) \, ds,$$

where $a_1 = \varphi'(x_0,t_1)$ and $a_2 = \varphi'(x_0,t_2)$, and

$$\begin{split} \tilde{\varphi}(t) &:= \int_0^\infty \varphi_B(t\sigma) \eta_r(\sigma-1) \, d\sigma = \int_1^{1+r} \varphi_B(t\sigma) \eta_r(\sigma-1) \, d\sigma, \\ \eta &\in C_0^\infty(\mathbb{R}^+) \text{ with } \operatorname{supp} \eta \subset (0,1) \text{ and } \|\eta\|_1 = 1, \text{ and } \eta_r(t) := \frac{1}{r} \eta(\frac{t}{r}). \end{split}$$

Step 3. Regularity results for the regularized problem Let $v \in W^{1,\tilde{\varphi}}(B_r)$ be the minimizer of the functional

$$u + W_0^{1,\tilde{\varphi}}(B_r) \ni v \mapsto \int_{B_r} \tilde{\varphi}(|Dv|) dx,$$

equivalently, v is a weak solution to

$$\operatorname{div}\left(\frac{\tilde{\varphi}'(|Dv|)}{|Dv|}Dv\right) = 0 \quad \text{in} \quad B_r, \quad v = u \quad \text{on} \quad \partial B_r.$$

25 / 38

Step 3. Regularity results for the regularized problem Let $v \in W^{1,\tilde{\varphi}}(B_r)$ be the minimizer of the functional

$$u + W_0^{1,\tilde{\varphi}}(B_r) \ni v \mapsto \int_{B_r} \tilde{\varphi}(|Dv|) \, dx,$$

equivalently, v is a weak solution to

$$\operatorname{div}\left(\frac{\tilde{\varphi}'(|Dv|)}{|Dv|}Dv\right) = 0 \quad \text{in} \quad B_r, \quad v = u \quad \text{on} \quad \partial B_r.$$

$C^{1, \alpha}$ -regularity

$$\begin{split} u \in C^{1,\alpha}_{\mathsf{loc}}(B_r) \text{ for some } \alpha \in (0,1). \text{ For any } B_{\rho}(y) \subset B_r \\ & \sup_{B_{\rho/2}(y)} |Dv| \leq c \oint_{B_{\rho}(y)} |Dv| \, dx \\ \text{and, for any } \tau \in (0,1), \\ & \oint_{B_{\tau\rho}(y)} |Dv - (Dv)_{B_{\tau\rho}(y)}| \, dx \leq c\tau^{\alpha} \oint_{B_{\rho}(y)} |Dv| \, dx. \end{split}$$

Calderón-Zygmund type estimates

Suppose $\theta = \theta(x,t)$ satisfies (A0), $(alnc)_{p_1}$, $(aDec)_{q_1}$ and (A1) for some $1 < p_1 < q_1$. Then

$$\|\tilde{\varphi}(|Dv|)\|_{L^{\theta}(B_r)} \le c \|\tilde{\varphi}(|Du|)\|_{L^{\theta}(B_r)}.$$

This implies that

prov

$$\begin{split} & \oint_{B_r} \theta(x, \tilde{\varphi}(|Dv|)) \, dx \leq c \bigg(\int_{B_r} \theta(x, \tilde{\varphi}(|Du|)) \, dx + 1 \bigg), \\ \text{ided that } \int_{B_r} \theta(x, \tilde{\varphi}(|Du|)) \, dx \leq 1. \end{split}$$

Set
$$\theta(x,t) = \theta_0(x,t)^{1+\sigma} = \varphi(x,\tilde{\varphi}^{-1}(t))^{1+\sigma}$$
.

$$\begin{split} & \oint_{B_r} \varphi(x, |Dv|)^{1+\sigma} \, dx = \int_{B_r} \theta(x, \tilde{\varphi}(|Dv|)) \, dx \\ & \leq c \bigg(\int_{B_r} \theta(x, \tilde{\varphi}(|Du|)) \, dx + 1 \bigg) = c \bigg(\int_{B_r} \varphi(x, |Du|)^{1+\sigma} \, dx + 1 \bigg). \end{split}$$

26 / 38

In particular, $v \in W^{1,\varphi}(B_r)$ and $\varphi(\cdot, |Dv|) \in L^{1+\sigma}(B_r)$.

extrapolation

lf

$$||f||_{L^p_w(B_r)} \le c([w]_p) ||g||_{L^p_w(B_r)}$$

for some $1 and for all weight <math>w \in A_p$, then

$$\|f\|_{L^{\theta}(B_r)} \le c \|g\|_{L^{\theta}(B_r)}$$

for any $\theta = \theta(x, t)$ satisfying (A0), $(\text{alnc})_{p_1}$, $(\text{aDec})_{q_1}$ and (A1).

•
$$f = \tilde{\varphi}(|Dv|)$$
 and $g = \tilde{\varphi}(|Du|)$.

Step 4. Approximating estimate

• Use that

$$\int_{B_r} \varphi(x, |Du|) \, dx \leq \int_{B_r} \varphi(x, |Dv|) \, dx, \ \int_{B_r} \tilde{\varphi}(|Dv|) \, dx \leq \int_{B_r} \tilde{\varphi}(|Du|) \, dx$$

• Separate $B_{r/2}$ into the three regions:

$$\{|Du| \le t_1\}, \qquad \{t_1 < |Du| \le t_2\}, \qquad \{|Du| > t_2\},$$

where $t_1 := (\varphi_{B_{2r}})^{-1}(\omega(2r))$ and $t_2 := (\varphi_{B_{2r}})^{-1}(|B_{2r}|^{-1})$, and estimate integrals over the above regions independently.

• By applying reverse type estimates, we obtain L^1 comparison estimate.

$$\int_{B_{r/2}} |Du - Dv| \, dx \lesssim \tilde{\omega}(r) \int_{B_{2r}} |Du| \, dx,$$

where $\tilde{\omega}(r) = (\omega(r) + r)^{(\text{power})}$.

28/38

Step 5. Iteration

By standard iteration arguments with B_{r_j} with $r_j = 2 \cdot 4^{-j} r$, we obtain

Morrey type estimate

For each
$$\alpha \in (0,1)$$

$$\int_{B_r} |Du| \, dx \lesssim r^{n-1+\alpha} \quad \text{for any small ball } B_r,$$
which imply $u \in C_{\text{loc}}^{\alpha}$.

Campanato type estimate

Suppose
$$\omega_{\epsilon}(r) \lesssim r^{\beta_{\epsilon}}$$
. For some $\alpha \in (0, 1)$
$$\int_{B_{r}} |Du - (Du)_{B_{r}}| dx \lesssim r^{n+\alpha} \text{ for any small ball } B_{r}$$
which implies $u \in C^{1,\alpha}_{\text{loc}}$.

Jihoon Ok (Sogang Univ.) Regula

(VA1-s) : vanishing (A1-s)

Let s>0. There exists a non-decreasing, bounded, continuous function $\omega:[0,\infty)\to [0,1]$ with $\omega(0)=0$ such that for any small ball $B_r\Subset \Omega$,

 $\varphi_{B_r}^+(t) \leq (1+\omega(r))\varphi_{B_r}^-(t) + \omega(r) \quad \text{for all} \quad t^s \in [\omega(r), |B_r|^{-1}].$

(wVA1-s) : weak (VA1-s)

Let s > 0. For any small $\epsilon > 0$, there exists a non-decreasing, bounded, continuous function $\omega = \omega_{\epsilon} : [0, \infty) \to [0, 1]$ with $\omega(0) = 0$ such that for any small ball $B_r \Subset \Omega$,

$$\varphi_{B_r}^+(t) \leq (1+\omega(r))\varphi_{B_r}^-(t) + \omega(r) \quad \text{for all} \ t^s \in [\omega(r), |B_r|^{-1+\epsilon}].$$

• If φ satisfies (wVA1-s), then it does (VA1- \tilde{s}) for any $\tilde{s} > s$.

Theorem (Hästö-Ok, in preparation)

(1) If φ satisfies $(VA1-\frac{n}{1-\gamma'})$ and $u \in C^{\gamma}(\Omega)$ for some $0 < \gamma' < \gamma < 1$, then $u \in C^{\alpha}_{loc}(\Omega)$ for any $\alpha \in (0,1)$.

- (2) If φ satisfies $(VA1-\frac{n}{1-\gamma'})$ with $\omega(r) \lesssim r^{\delta}$ and $u \in C^{\gamma}(\Omega)$ for some $0 < \gamma' < \gamma < 1$ and $\delta > 0$, then $u \in C^{1,\alpha}_{loc}(\Omega)$ for some $\alpha \in (0,1)$.
 - $\varphi(x,t) = t^p + b(x)t^q$ with $b \in C^{0,\beta}$. Baroni-Colombo-Mingione (2018) prove that if

$$q with $\gamma \in (0, 1)$ (5)$$

and $u \in C^{\gamma}(\Omega)$, then $u \in C^{1,\alpha}_{\text{loc}}(\Omega)$.

Theorem (Hästö-Ok, in preparation)

(1) If φ satisfies $(VA1 - \frac{n}{1 - \gamma'})$ and $u \in C^{\gamma}(\Omega)$ for some $0 < \gamma' < \gamma < 1$, then $u \in C^{\alpha}_{loc}(\Omega)$ for any $\alpha \in (0, 1)$.

(2) If φ satisfies $(VA1-\frac{n}{1-\gamma'})$ with $\omega(r) \lesssim r^{\delta}$ and $u \in C^{\gamma}(\Omega)$ for some $0 < \gamma' < \gamma < 1$ and $\delta > 0$, then $u \in C^{1,\alpha}_{loc}(\Omega)$ for some $\alpha \in (0,1)$.

•
$$\varphi(x,t) = t^p + b(x)t^q$$
 with $b \in C^{0,\beta}$.
Baroni-Colombo-Mingione (2018) prove that if

$$q with $\gamma \in (0, 1)$ (5)$$

and $u \in C^{\gamma}(\Omega)$, then $u \in C^{1,\alpha}_{\text{loc}}(\Omega)$. Note that (5) implies that φ satisfies (VA1- $\frac{n}{1-\gamma'}$) with $\omega(r) \leq r^{\delta}$, where $\gamma' \in (0,\gamma)$ is chosen to satisfy

$$\delta := \beta - (q-p)(1-\gamma') = \frac{\beta - (q-p)(1-\gamma)}{2 + 2\beta} > 0.$$

Theorem (Hästö-Ok, in preparation)

(1) If φ satisfies (wVA1-n) and $u \in L^{\infty}(\Omega)$, then $u \in C^{\alpha}_{loc}(\Omega)$ for any $\alpha \in (0, 1)$.

- (2) If φ satisfies (wVA1-n) with $\omega_{\epsilon}(r) \lesssim r^{\beta_{\epsilon}}$ for some $\beta_{\epsilon} > 0$ and $u \in L^{\infty}(\Omega)$, then $u \in C^{1,\alpha}_{loc}(\Omega)$ for some $\alpha \in (0,1)$.
 - This is a corollary of the preceding theorem.

$$(\mathsf{wVA1-}n) \quad \Rightarrow \quad \left\{ \begin{array}{c} (\mathsf{A1-}n) \ \Rightarrow \ u \in C^{\gamma} \text{ for some } \gamma \in (0,1) \\ (\mathsf{VA1-}\gamma') \text{ for any small } \gamma' > 0 \end{array} \right\}$$

• $\varphi(x,t) = t^p + b(x)t^q$ with $b \in C^{0,\beta}$. Colombo-Mingione (2015) prove that if

$$q \le p + \beta \tag{6}$$

and $u \in L^{\infty}(\Omega)$, then $u \in C^{1,\alpha}_{\mathsf{loc}}(\Omega)$.

• $\varphi(x,t) = t^p + b(x)t^q$ with $b \in C^{0,\beta}$. Colombo-Mingione (2015) prove that if

$$q \le p + \beta \tag{6}$$

and $u \in L^{\infty}(\Omega)$, then $u \in C^{1,\alpha}_{loc}(\Omega)$. Note that (6) implies that φ satisfies (wVA1-*n*) with $\omega_{\epsilon}(r) \leq r^{\delta_{\epsilon}}$, where

$$\delta_{\epsilon} = \beta - (q - p)(1 - \epsilon) > 0.$$

• $\varphi(x,t) = t^p + b(x)t^q$ with $b \in C^{0,\beta}$. Colombo-Mingione (2015) prove that if

$$q \le p + \beta \tag{6}$$

and $u \in L^{\infty}(\Omega)$, then $u \in C^{1,\alpha}_{loc}(\Omega)$. Note that (6) implies that φ satisfies (wVA1-*n*) with $\omega_{\epsilon}(r) \leq r^{\delta_{\epsilon}}$, where

$$\delta_{\epsilon} = \beta - (q - p)(1 - \epsilon) > 0.$$

Remark In the bounded or Hölder continuous minimizer case, we cannot take advantage of the extrapolation.

Functional with generalized Orlicz growth

$$W^{1,\varphi}(\Omega) \ni v \quad \mapsto \quad \int_{\Omega} f(x, Dv) \, dx.$$

$$\begin{aligned} z &\mapsto f(x,z) \text{ is } C^1(\mathbb{R}^n) \cap C^2(\mathbb{R}^n \setminus \{0\}), \\ \varphi &\in C^1([0,\infty)) \text{ and } \varphi' \text{ satisfies (A0), } (\operatorname{Inc})_{p-1} \text{ and } (\operatorname{Dec})_{q-1}. \\ \nu\varphi(x,|z|) &\leq f(x,z) \leq L\varphi(x,|z|), \\ \nu\frac{\varphi'(x,|z|)}{|z|}|\lambda|^2 &\leq \partial^2 f(x,z)\lambda \cdot \lambda \leq L\frac{\varphi'(x,|z|)}{|z|}|\lambda|^2. \end{aligned}$$

(AF): version of (wVA1) in the functional setting

For any $\epsilon>0$, there exists a non-decreasing, bounded, continuous function $\omega=\omega_\epsilon:[0,\infty)\to[0,1]$ with $\omega(0)=0$ such that for any small ball $B_r\Subset\Omega$,

$$f_{B_r}^+(z) \le (1 + \omega(r))f_{B_r}^-(z) + \omega(r)$$

for all $z \in \mathbb{R}^n$ with $\varphi_{B_r}^-(|z|) \in [\omega(r), |B_r|^{-1+\epsilon}].$

Theorem (Hästö-Ok, in preparation)

Jihoon Ok (Sogang Univ.)

If f satisfies (AF), then u ∈ C^α_{loc}(Ω) for any α ∈ (0,1).
 If f satisfies (AF) with ω_ε(r) ≤ r^{β_ε} for some β_ε > 0, then u ∈ C^{1,α}_{loc}(Ω) for some α ∈ (0,1).

PDE with generalized Orlicz growth

 $\operatorname{div} A(x, Du) = 0.$

$$\begin{aligned} z &\mapsto A(x,z) \in \mathbb{R}^n \text{ is } C^1(\mathbb{R}^n \setminus \{0\}), \\ \varphi &\in C^1([0,\infty)) \text{ and } \varphi' \text{ satisfies (A0), } (\mathsf{Inc})_{p-1} \text{ and } (\mathsf{Dec})_{q-1}. \\ |A(x,|z|)| + |z||\partial A(x,z)| &\leq L\varphi'(x,|z|), \\ \nu \frac{\varphi'(x,|z|)}{|z|}|\lambda|^2 &\leq \partial A(x,z)\lambda \cdot \lambda. \end{aligned}$$

(AP): version of (wVA1) in PDE setting

For any $\epsilon > 0$, there exists a non-decreasing, bounded, continuous function $\omega = \omega_{\epsilon} : [0, \infty) \to [0, 1]$ with $\omega(0) = 0$ such that for any small ball $B_r \Subset \Omega$,

 $|A(x,z) - A(y,z)| \le \omega(r)((\varphi')^{-}_{B_r}(|z|) + 1)$

for all $x, y \in B_r$ and for all $z \in \mathbb{R}^n$ with $\varphi_{B_r}^-(|z|) \in [\omega(r), |B_r|^{-1+\epsilon}]$.

э

Theorem (Hästö-Ok, in preparation)

If A satisfies (AP), then u ∈ C^α_{loc}(Ω) for any α ∈ (0,1).
 If A satisfies (AP) with ω_ϵ(r) ≤ r^{β_ϵ} for some β_ϵ > 0, then u ∈ C^{1,α}_{loc}(Ω) for some α ∈ (0,1).

Remark In the general functional or PDE case we have to construct $\tilde{f}(z)$ or $\tilde{A}(z)$ with $\tilde{\varphi}$ -growth, where $\tilde{\varphi} = \tilde{\varphi}(t)$ is the regular function.

THANK YOU.

< 4 1 → <

< ∃ →

э