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Abstract

Motivated by study of the higher order Sobolev embeddings on interval
and their approximation we introduce and study a non-linear
pg-biharmonic eigenvalue problem on the unit segment subject to Navier
boundary condition. We will disuse existence of periodic symmetric
solutions. In the case p, p’ we show that all eigenvalues and
eigenfunctions can be expressed in terms of generalized trigonometric
functions.

(Theses results were obtained with Lyonell Boulton.)
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Introduction

The Main Problem: pg-bi-Lapalcian (with Navier boundary condition)
([P~ = ALu]*! 0<t<t
u(0) = u(to) = [u"(0)]P~ = [u"(t)]P! =0,
where [u(t)]P~! = |u(t)|P~tsgn(u(t)), 1 < p,q < oo and X € R.
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Introduction

The Main Problem: pg-bi-Lapalcian (with Navier boundary condition)
([u"1P~1)" = A[u] 0<t<t
u(0) = u(to) = [u"(0)]P~* = [ (t0)]P~* = O,

where [u(t)]P~! = |u(t)|P~tsgn(u(t)), 1 < p,q < oo and X € R.

pg-Laplacian problem (with Dirichlet boundary condition)

([WPHY =A™ 0<t<t
u(0) = u(ty) = 0.

Jan Lang, The Ohio State University Fourth order pg-Laplacian



Introduction

Consider Sobolev embeddings

Er : WP(T) — L9(T).
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Introduction

Consider Sobolev embeddings
Er : WP(T) — L9(T).

Where T = [0, to], 1 < p,q < oo and by WOI’P(I) we denote the closure of C5°(IntT)
in the Sobolev space WP(Z) with respect to the usual norm
lullwre := llullp,z + ||t/ ||lp,z. And WP is equipped with the norm
llully1.p := llu’[lp,z due to the vanishing of its functions at 0 and to.
0
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Introduction

Consider Sobolev embeddings
Er : WP(T) — L9(T).

Where T = [0, to], 1 < p,q < oo and by WOI’P(I) we denote the closure of C5°(IntT)
in the Sobolev space WP(Z) with respect to the usual norm
lullwre := llullp,z + ||t/ ||lp,z. And WP is equipped with the norm
llully1.p := llu’[lp,z due to the vanishing of its functions at 0 and to.
0

From compactness of E; and reflexivity of the underlying spaces, it follows that there
exists an optimal element ug € WOI"’(I) such that
lullg.z _ lluollg,z

sup = .
werpony 1oz~ 16l
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Introduction

In order to characterize ug(t), write the quotient of modular as

ull? L
S(u) = T for 0 # v € Wy (7).
P,
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Introduction

In order to characterize ug(t), write the quotient of modular as

q
e

1
= o—5—, for 0 # u € Wy P(T).
Tl

S(u)

Let u € LP(Z). Taking the Gateux derivative of the LP norm,

grad [lullp.z(v) = l|u[L 7 / ()P~ v(1) dt,

T

yields
grad(HUHZ,I)(V)=p/[U(t)]"_l\/(t)dt,

where [u(£)]P~! = |u(t)|P~ sgn(u(t)). Then,Z
grad S(u) =0 = ([u']P~1) = —A[u]* 3)

for an appropriate multiplier/eigenvalue A > 0.
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Introduction

In order to characterize ug(t), write the quotient of modular as

ull? L
S(u) = T for 0 # v € Wy (7).
P,

Let u € LP(Z). Taking the Gateux derivative of the LP norm,

grad [lullp.z(v) = l|u[L 7 / ()P~ v(1) dt,

T

yields
grad(HUHZ,I)(V)=p/[U(t)]"_IV(f)dt,
z

where [u(£)]P~ = |u(t)[P~ ! sgn(u(t)). Then,
grad S(u) =0 = (W) = Au]?! )

for an appropriate multiplier/eigenvalue A > 0.
In other words, the eigenfunctions of a suitable pg-Laplacian eigenvalue problem, are

exactly the extremal functions of the Sobolev embedding E;.
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Small detour: sin, 4, cos, 4 (specjalne wspaniate funkcje)

Let 1 < p, g < oo and define a (differentiable) function Fp 4 : [0,1] — R by

1
F, = | ——dt, 0<x<1. 4
P7Q(X) /0 m SX S ( )

Since Fp,q is strictly increasing it is a one-to-one function on [0, 1] with range
[0,7p,4/2], where

0<x<1. (5)

1
1
Tpg = 2 ——dft,
Py /om S XS

The inverse of F, 4 on [0, 7, /2] we denote by sin, 4 and extend as in the case
of sin (p=q=2) to [0, 7p,q] by defining

Sinp,q(X) = sinp,q(Tp,g — X) for x € [Tp,q/2, Tp,ql;

further extension is achieved by oddness and 27, -periodicity on the whole of
R. By this means we obtain a differentiable function on R which coincides with
sin when p = g = 2.
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Review: Some special functions: sin, 4, cos, 4

Corresponding to this we define a function cosp, 4 by the prescription

d
COSP»Q(X) = a Sinp,q(X), X € R. (6)

Clearly cosp. q is even, 27, o-periodic and odd about 7, q/2; and cosz 2 = cos. If
x € [0,7p,q/2], then from the definition it follows that

cospq(x) = (1 — (Sinpyq(x))q)l/g (7)
Moreover, the asymmetry and periodicity show that

|sinp,q(x)|? + [ cospq(x)I" =1, x€R. (8)
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Review: Some special functions: sin, 4, cos, 4

Corresponding to this we define a function cosp, 4 by the prescription

d
COSP»Q(X) = a Sinp,q(X), X € R. (6)

Clearly cosp. q is even, 27, o-periodic and odd about 7, q/2; and cosz 2 = cos. If
x € [0,7p,q/2], then from the definition it follows that

cosp,q(x) = (1 - (Sinpyq(x))q)l/g (7)
Moreover, the asymmetry and periodicity show that
|sinp,q(x)|? + [ cospq(x)I" =1, x€R. (8)

We will use:
Tp := Tp,p, SiNp := Sinp p and cos, := cosp p, and then we have

[sinp(x)” + |cosp(x)]P =1, x€R. (9)
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Review: Some special functions: sin, 4, cos, 4

06

06

sin 6
cos b

Figure: sing,coss and  sini.2, cosi.»
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Some special functions: sin, 4, cos, q

06 051 fi

06

sin 6
cos b

Figure: sing,coss and

sin_1
cos |

S

Sinl,z, COS1.2

History: Erik Lundberg (1879),S. Giinther (1881), V.l.Levin (1938), E.Schmidt
(1940), R. Grammel (1948), D. Shelupsky (1959), Tichomirov, Makovoz, Buslaev &
etc. (1960-90), J.Peetre (1972), A.Elbert (1979), M.Otani (1984), P.Lindqvist

(1995), P.Drabek (1999)
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Review: Some special functions: sin, 4, cos, 4

Theorem (Edmunds, Gurka, L.)

Let p,q € (1,00) and let

/
4
L ~ 2.14. (10)
g 7w -8

Then the sequence (sinp,q(nﬂp,q t)) neN is a Schauder basis in L"(0,1) for any
r € (1, 00).

P _y4

q

1 :
1/q
1

Jan Lang, The Ohio State University Fourth order pg-Laplacian



Review: Some special functions: sin, 4, cos, 4

Theorem (Edmunds, Gurka, L.)

Let p,q € (1,00) and let
p’ 4
LS ~ 2.14. (10)
g 7w -8

Then the sequence (sinp,q(nﬂp,q t)) is a Schauder basis in L"(0,1) for any

r € (1, 00).

neN

The functions f; p(x) := sinp(nmpx) form a basis in Lq(0,1) for every q € (1, 00) if
po < p < oo, where pg is defined by the equation

2 2
ul (i.e. po ~ 1.05) (11)

1/q 1
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Review: p-Laplacian

We recall the definition of the p-Laplacian which is a natural extension of the
Laplacian:

Bpu = (020’
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Review: p-Laplacian

We recall the definition of the p-Laplacian which is a natural extension of the
Laplacian:

Apu = (Ju'|P720") (evidently Aqu = Au).
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Review: p-Laplacian

We recall the definition of the p-Laplacian which is a natural extension of the
Laplacian:

Apu = (Ju'|P720") (evidently Apu = Au).
Then the analogue of (3) is the eigenvalue problem

Apu+MulP72u=0 on (0,7),
u(0) =0,u(T)=0.

(12)
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Review: p-Laplacian

We recall the definition of the p-Laplacian which is a natural extension of the
Laplacian:

Apu = (Ju'|P720") (evidently Apu = Au).
Then the analogue of (3) is the eigenvalue problem

Apu+MulP72u=0 on (0,7),
u(0) =0,u(T)=0.

(12)

In [Elbert, Lindqvist, Drabek] it is shown that all eigenvalues of this problem are of the

form
= (ﬂ)” 2
T p’

with corresponding eigenfunctions

un(t) =sinp (n—;T_Pt) .

Jan Lang, The Ohio State University Fourth order pg-Laplacian



Review: pg-Laplacian

Theorem (Drabek, Manasevic (1999))

Consider the following Dirichlet problem

Apu+ AMul92u=0 on (0, T),
u(0) =0,u(T) =0.

All eigenvalues are of the form:

q P—q
Ama = (m) "% R\ o}, neN
T p’

with corresponding eigenfunctions

aT . nmp,
o) = 2 (222¢)
p.q

(13)

Jan Lang, The Ohio State University Fourth order pg-Laplacian




Review: Sobolev embedd., Extremals, Approx. (1-dim)

Let 1 < p<ooand —oo < a < b < co. Consider the Sobolev embedding on
I = [a7 b]’
Er: WyP(I) — LP()) (14)

Then u(x) = sinp (Enp) is the extremal functions.
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Review: Sobolev embedd., Extremals, Approx. (1-dim)

Let 1 < p<ooand —oo < a < b < co. Consider the Sobolev embedding on
I = [a7 b]’
Er: WyP(I) — LP()) (14)

Then u(x) = sinp (Ewp) is the extremal functions.

Theorem

Let ;,, stands for any strict s-number (i.e. ap,dn,d", mn, bn,in). Let n be an integer,

then 1/
/ / P
sn(E) = A1 (5)
nmp \ p
and
X —a
sn(E1) = (B2 — R)EILP (D), where g(x) = siny (5 —2mon)

Here

n—1
/
Rof = E Pif, where Pif(x) = x;,(x)f (a—l—iu) :
n
i=1
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Let 1 < p<ooand —oo < a; < bj < o0 and set R := Hi:l(ai’bi) or on
D := Rk x H:’;lk(a;, b;). Consider the Sobolev embedding:

Er: W, P(Q) — LP(Q), with Q@ = R or D. (15)
and where:

1/p
llo = (allp ) + 11V ulie sy

Study of this embedding is related to study of this pseudo-p-Laplacian problem:
Apu = NulP2u, with u =0 on 9Q

< "~ 9 [ 0u|P~2 du
Apu = .
Pt Z 8x,- (’ BX,' aX,'>

i=1

where

If Q = R then these functions are eigenfunctions:

n

Pl — &

I | sinp (W) ,  (x1,x2,...,xn) € R, for some k; € N.
1 I

i=1

Question: Are all eigenfunctions of the above problem of the above form?
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Theorem (Edmunds, Mihula, L.)

(i) The case D: There is not an extremal function and
n—k -1/p
1
W, (D) — LP(D)|| = [ 1+ 7h(p—1
IWg (D) = LP(D)]| He-1)

. b)P
=1 l)
(i) The case R: The norm of embedding Wol’p(R) — LP(R) is reached by function

u(X) = f[ sinp (Wpéj(i__;i))

i=1

Lemma (Edmunds, Mihula, L.)

The first egenfunction for

Apu = NulP2u, with u =0 on OR

u(x) = H sing (Wpéx’__al '))
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Theorem (Edmunds, Mihula, L.)

Let1<p<oo, k€N, k<n—1 D:=RKx[[-“(ai, b). Then we have

n—k -1/p
1
S(W(D) » () = (14 be- DY |
i=1

where s, stands for any strict s-number.
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W3P — L9

Consider Sobolev embeddings
E> : W3P(T) — L9(T),

where Z = [0, tp], 1 < p, g < oo and WEZ)’P(I) = C}(IntT) N W2P(Z) equipped with

//‘

the norm HUHWE"’ =u"|lp,z-
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Wy (1-dim)

Consider Sobolev embeddings
E> : W3P(T) — L9(T),

where Z = [0, tp], 1 < p, g < oo and WEZ)’P(I) = C}(IntT) N W2P(Z) equipped with

//‘

the norm HUHWE"’ =u"|lp,z-

Due compactness of E, and reflexivity of the underlying spaces, it follows that there
exists an optimal element ug € Ws’p(I) such that

0.z

u U
RN 7 PE

vz 10710z~ Tgllnz
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WDP — Lq

As before, in order to characterize ug(t), write the quotient of modular as

lullg 2
D(u) = m for 0 # u € WyP(Z).
P,
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W3P — L9

As before, in order to characterize ug(t), write the quotient of modular as

llullg
D(u) = — 2L for 0 # u € W3P(T).
=
Take the Gateux derivative of D(u). Then
grad D(u) =0 <= |[u"||5 grad(||ullg) = [lullg grad(][u"[|3), (16)

which can be re-written as as a differential equation which is reminiscent of the
equation form the introduction:

(6P~ = Al 0<t<n
u(0) = u(to) = [u"(0)]P~" = [u" ()P =0
for u#0 and A € R.
And we can see that the eigenfunctions of a suitable fourth order p, g-Laplacian

(17)

eigenvalue problem, are exactly the extremal functions of the Sobolev embedding E;.
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W5P — L9

Idea: Assume that A > 0. Writing
u(t) = u(t), w(t)=u'(t),
wi(t) = —[u" (P! and  wa(t) = —([u" ()P,
we get the system of differential equations
u(t)=w(t) () = —[m()F
wi(t) = wa(t)  wh(t) = Al (£)]9

or the system of integral equations

Ul(t):/ up(s)ds Uz(t):af/ [wl(s)]P'—lds
0 0

t t (18)
wi(t) = / wo(s)ds wo(t) =B — )\/ [u1(s)]7 " tds,
0 0
both subject to the initial and final conditions
Ul(o) = Ul(to) = W]_(O) = Wl(to) =0. (19)
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pg-bi-Laplacian

It is useful to fix A and understand (17) in the context of (18) as a
dynamical system seeking for the trajectory
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pg-bi-Laplacian

It is useful to fix A and understand (17) in the context of (18) as a
dynamical system seeking for the trajectory

starting from an initial state at t =0

)
p(0)=¢= Wl(o))
)

Let l<p<g<oo,A>0andsetr=2p/(p—q). Let H,K >0 be
arbitrary (fixed). Then u(t) = K(H — t)" is a solution of our
pg-bi-Laplacian with a finite time blow-up at t,, = H > 0.
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pg-bi-Laplacian

It is useful to fix A and understand (17) in the context of (18) as a
dynamical system seeking for the trajectory

Let l<p<g<oo,A>0andsetr=2p/(p—q). Let H,K >0 be
arbitrary (fixed). Then u(t) = K(H — t)" is a solution of our
pg-bi-Laplacian with a finite time blow-up at t,, = H > 0.

(Here to, denotes the blow-up time)
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pg-bi-Laplacian

Using By Picard-Lindeléf or Cauchy-Peano techniques we get:

Given X\, p, q, a and 3 fixed, there exists a unique solution to (18) for all t € (0, to).

Then by careful analysis of our system and using observation like:

Consider the system of integral equations (18) with X > 0 and initial conditions

u1(0) = wy1(0) = 0.

(i) If « > 0, B < O then uy is strictly increasing and w is strictly decreasing for t > 0.
(ii) If < 0, B > 0 then uy is strictly decreasing and wy is strictly increasing for t > 0.

iii) ...

we obtain that there must exists values «, 8 > 0 for which we have a unique positive
solution on (0, tg) with given boundary conditions.
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pg-bi-Laplacian

Using By Picard-Lindeléf or Cauchy-Peano techniques we get:

Given X\, p, q, a and 3 fixed, there exists a unique solution to (18) for all t € (0, to).

Then by careful analysis of our system and using observation like:

Consider the system of integral equations (18) with X > 0 and initial conditions

u1(0) = wy1(0) = 0.

(i) If « > 0, B < O then uy is strictly increasing and w is strictly decreasing for t > 0.
(ii) If < 0, B > 0 then uy is strictly decreasing and wy is strictly increasing for t > 0.

iii) ...

we obtain that there must exists values «, 8 > 0 for which we have a unique positive
solution on (0, tg) with given boundary conditions.
Note about initial value problem:
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pg-bi-Laplacian

Lemma

Let A\, p, q be fixed. Consider the evolution systems (x). Let oo < a3 and B1 < Ba.

Let t; > 0 be any point such that all the quantities® |uf((t)| and \w,’((t)| are finite for
0<t<ty. Then,

w2(t) < up(t) and wi(t) <wd(t) Vk=1,2 te(0,t). (20)

Moreover,
up(t) = ui(t) > (o1 — a2)t
w(t) — wi(t) > (B2 — Bi)t
In fact, if one of the inequalities involving aj or f; is strict, then u?(t) < ui(t) and
wi(t) < w2(t) for 0 < t < t.

vt € (0, t1). (21)

@Here and everywhere below, the indices j (on top) refer to corresponding
sub-indices of a or 3, in context.
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pg-bi-Laplacian

Lemma

Let A\, p, q be fixed. Consider the evolution systems (x). Let oo < a3 and B1 < Ba.
Let t; > 0 be any point such that all the quantities® |u (t)| and |w; ()| are finite for
0<t<ty. Then,
w2(t) < up(t) and wi(t) <wd(t) Vk=1,2 te(0,t). (20)

Moreover,

ub() = u3(e) > (r — a)t

wi(t) — wi(t) > (B2 — Bu)t
In fact, if one of the inequalities involving aj or f; is strict, then u?(t) < ui(t) and
wi(t) < w2(t) for 0 < t < t.

vt € (0, t1). (21)

@Here and everywhere below, the indices j (on top) refer to corresponding
sub-indices of a or 3, in context.

Theorem (Existence and Uniqueness)

Let to > 0 be fixed. If p # q, then for all X > O there exists a unique solution u(t)
positive on (0, to) satisfying (17). If p = q, then there exists a unique X = X(tp) > 0
such that a solution u(t) positive on (0, ty) satisfying (17) exists. Moreover this
solution is unique up to multiplication by a constant.
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pg-bi-Laplacian

Theorem (Existence and Uniqueness)

Let to > 0 be fixed. If p # q, then for all X > O there exists a unique solution u(t)
positive on (0, to) satisfying (17). If p = q, then there exists a unique A = X\(to) > 0
such that a solution u(t) positive on (0, to) satisfying (17) exists. Moreover this
solution is unique up to multiplication by a constant.

Theorem (Symmetricity)

Let u(t) be a positive solution of (17) on (0, ty). Then, u(t) = u(ty — t) for all
0<t< %0. Moreover, u(t) can be extended to a 2ty-periodic function u. € C*(R)
satisfying

([ (P = Mu. ()] VEeR.
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pg-bi-Laplacian

Theorem (Existence and Uniqueness)

Let to > 0 be fixed. If p # q, then for all X > O there exists a unique solution u(t)
positive on (0, to) satisfying (17). If p = q, then there exists a unique A = X\(to) > 0
such that a solution u(t) positive on (0, to) satisfying (17) exists. Moreover this
solution is unique up to multiplication by a constant.

Theorem (Symmetricity)

Let u(t) be a positive solution of (17) on (0, ty). Then, u(t) = u(ty — t) for all
0<t< %0. Moreover, u(t) can be extended to a 2ty-periodic function u. € C*(R)
satisfying

([ (P = Mu. ()] VEeR.

Let u(t) be a solution of (17) with exactly n zeros in (0, ty). Then, these zeros are all
simple and located at

it
i = L Jj=1...,n

n+1
Moreover, u'’(t) also vanish exactly at the points t;.

Jan Lang, The Ohio State University Fourth order pg-Laplacian



pg-bi-Laplacian

The case g = p’

Theorem

Let1 < p < oo and T > 0. Then for any given c # 0 and n € N, the n-eigenvalue of
problem (17) on [0, T] is

2\ P
(772,;7’7727P" )

—_n

An(c) =
and the corresponding n-eigenfunction is (i.e. eigenfunction which change n — 1 times
sign on (0, T)) is

fo,c(x) = csing (ma, pynx/T), (22)

and this eigenfunction is the unique n-eigenfunction to the given eigenvalue \n(c).
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pg-bi-Laplacian

The case g = p’

Theorem

Let1 < p < oo and T > 0. Then for any given c # 0 and n € N, the n-eigenvalue of
problem (17) on [0, T] is

2\ P
(772,;7’7727P" )

—_n

An(c) =
and the corresponding n-eigenfunction is (i.e. eigenfunction which change n — 1 times
sign on (0, T)) is

fo,c(x) = csing (ma, pynx/T), (22)

and this eigenfunction is the unique n-eigenfunction to the given eigenvalue \n(c).

Note

{Sinz,p/(ﬂ'zp/ nx/T)}n is a basis in L"(0, T) for any 1 < r < oo.
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Approximation of W3P — L9

Definition

Given any continuous function f on closed interval / we denote by Z(f) the number of
distinct zeros of f on interior of I, and by P(f) the number of sign changes of f on
interval I.

By SP.(/, p, q) we denote the set of all spectral couples (f,\) with Z(f) = n on
interval I, and by sps(/, p, q) a set of all corresponding spectral numbers .

Lemma

For each n € N, SP,(I, p,q) contains only one spectral couple (f, ).
Let (fi,\1) be a spectral couple from SPy([0,1], p, q) and let us consider that fi is
periodically extended on R, then

X:= n?I\; and f(t) := fi(nt)/n?

is a spectral couple for SP,([0, 1], p, q).

If (f,A) € SPa([0,1], p, q), then X := d9/P—=1=24X\ and f(t) := d*~1/Pf(t/d) is a
spectral couple for SPy([0,d], p, q).

Then we have that

X := n?9d9/P=1=24)\; and f(t) := d* Y/Pf(nt/d)

is a spectral couple for SP,([0, d], p, q).
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Approximation of W3P — L9

Let1 < p,q < oo, | =[a,b] and Ey : W3P(I) — LI(I). Then

u f _
1Bl = sup Aoz _ ez _yovsa yraaserasis,
uEW2:p(I) v llp,z £ 1lp,z

where (f,\) € SPy(l, p,q) and Xo € spo([0, 1], p, q).

Theorem

Let | = [a,b] and Ey : WSP(I) — LI(I).
If1< p< q< oo then

. J|Y/a+2-1/p
i) = bnlie) = 277 = T
n%x,
and if1 < g < p < oo then
. J|1/a+2—1/p
an(E2) = dn(E2) = A, /9 = Hzil/q
n\,

where A\ € spa(l, p,q) and Ao € spo([0, 1], p, q).
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