Non Linear Asymptotic Mean Value Properties for Monge-Ampère Equations

Julio D. Rossi University of Buenos Aires

Monday's Nonstandard Seminar

Joint work with P. Blanc (Jyväskylä), F. Charro (Detroit), and J.J. Manfredi (Pittsburgh)

March, 2021

Mean Value Property for Harmonic functions

Theorem

$$\Delta u(x)=0$$

if and only if

(1)
$$u(x) = \int_{\partial B(x,r)} u(y) \, d\sigma(y)$$

or

$$\left(\lim_{r \to 0}\right) \frac{1}{r^2} \left[\int_{\partial B(x,r)} u(y) \, d\sigma(y) - u(x) \right] = 0.$$

(2)
$$u(x) = \int_{B(x,r)} u(y) \, d\sigma(y)$$

or

$$\left(\lim_{r \to 0}\right) \frac{1}{r^2} \left[\int_{B(x,r)} u(y) \, d\sigma(y) - u(x) \right] = 0.$$

Introduction. Asymptotic MVF

Theorem (Blasche, 1916)

An upper-semicontinuous function u is subharmonic, $\Delta u \geq 0,$ if and only if

$$\limsup_{\epsilon \to 0} \frac{1}{\epsilon^2} \left[\oint_{\partial B(x,\epsilon)} u(y) \, d\sigma(y) - u(x) \right] \ge 0$$

Theorem (Privaloff, 1916)

An upper-semicontinuous function u is subharmonic, $\Delta u \geq 0,$ if and only if

$$\limsup_{\epsilon \to 0} \frac{1}{\epsilon^2} \left[\oint_{B(x,\epsilon)} u(y) \, d(y) - u(x) \right] \ge 0$$

Introduction

Theorem

A function u is harmonic, $\Delta u = 0$, if and only if

$$u(x) = \frac{1}{n} \sum_{j=1}^{n} \left\{ \frac{1}{2} u(x + \varepsilon e_j) + \frac{1}{2} u(x - \varepsilon e_j) \right\} + o(\varepsilon^2) \quad as \ \varepsilon \to 0,$$

where $\{e_1,\ldots,e_n\}$ is the canonical basis of $\mathbb{R}^n,$ or

$$u(x) = \left[\oint_{B(x,\epsilon)} u(y) d(y) \right] + o(\varepsilon^2) \quad as \ \varepsilon \to 0.$$

Modern Linear results

If we replace the Laplace equation $\Delta u = 0$ by a linear elliptic equation with constant coefficients $Lu = \sum_{i,j} a_{ij}u_{x_ix_j} = 0$ then mean value formulas hold for appropriate ellipsoids instead of balls.

Nonlinear operators. (Manfredi-Parvianen-R., 2010)

Viscosity solutions to the 1-homogeneous p-Laplacian

$$\Delta_p^N u = \frac{1}{p-2} |\nabla u|^{2-p} \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right) = \frac{1}{p-2} \Delta u + \Delta_{\infty}^N u = 0,$$

for 1 are characterized by a mean value formula

$$u(x) - \left(\frac{p-2}{p+n}\right) \left(\frac{\max_{\overline{B}_{\varepsilon}(x)} u + \min_{\overline{B}_{\varepsilon}(x)} u}{2}\right) + \left(\frac{2+n}{p+n}\right) f_{B_{\varepsilon}(x)} u(y) dy$$
$$= o(\varepsilon^{2}) \text{ as } \varepsilon \to 0.$$

We will discuss mean value properties for solutions to the

Monge-Ampère equation

$$\det D^2 u = f,$$

with $f \geq 0$ in a convex domain Ω .

As usual, we look for convex solutions u, thus the $D^2 u \ge 0$ and hence f is non-negative. In terms of eigenvalues of $D^2 u$ we have

$$\min_{\lambda \text{ eigenvalue of } D^2 u} \{\lambda\} \ge 0.$$

Let $\phi(\epsilon)$, $\phi : \mathbb{R}_+ \mapsto \mathbb{R}_+$ be such that

$$\lim_{\epsilon \to 0} \phi(\epsilon) = +\infty$$

and

$$\lim_{\epsilon\to 0}\epsilon\,\phi(\epsilon)=0.$$

$$(\phi(\epsilon) = \epsilon^{-1/2} \text{ works}).$$

Theorem (Convex C^2 Case)

Let u be convex and C^2 in Ω . Fix $x \in \Omega$. We have

$$u(x)-\inf_{\substack{\det A=1\\A\leq\phi(\epsilon)I}}\left\{\oint_{B_{\epsilon}(0)}u(x+Ay)\,dy\right\}+\frac{n}{2(n+2)}\left(\det D^{2}u(x)\right)^{1/n}\epsilon^{2}=o(\epsilon^{2}).$$

as $\epsilon \rightarrow 0$.

Convex C^2 case. Remarks

• Notice that for every A with det A = 1, it holds

$$\left\{ \int_{B_{\epsilon}(0)} u(x + Ay) \, dy \right\} = \left\{ \int_{E_{\epsilon}(A,x)} u(z) \, dz \right\}$$

where $E_{\epsilon}(A, x) = \{x + Ay : y \in B_{\epsilon}(0)\}.$

• The restriction $A \leq \phi(\epsilon)I$ in the infimum makes the formula local. For every $x \in \Omega$, the conditions $A \leq \phi(\varepsilon)I$ and $|y| \leq \varepsilon$ imply that

 $\operatorname{dist}(E_{\epsilon}(A, x), x) = \operatorname{dist}(x + Ay, x), x) = |Ay| \le |A||y| \le \epsilon \, \phi(\epsilon) \to 0$

(since $\epsilon \phi(\epsilon) \to 0$ as $\epsilon \to 0$). Hence, $E_{\epsilon}(A, x) \subset \Omega$ for ε small enough. Replace the condition $A \leq \phi(\epsilon)$ by requiring

$$E_{\epsilon}(A,x) = \left\{ x + Ay: \ y \in B_{\epsilon}(0)
ight\} \subset \Omega.$$

Theorem (Non-Local Convex C^2 -case)

Let u be convex and C^2 in Ω . Fix $x \in \Omega$. We have

$$u(x) - \inf_{\substack{\det A = 1 \\ E_{\epsilon}(A, x) \subset \Omega}} \left\{ \oint_{B_{\epsilon}(0)} u(x + Ay) \, dy \right\} + \frac{n}{2(n+2)} \left(\det D^2 u(x) \right)^{1/n} \epsilon^2 = o(\epsilon^2)$$
as $\epsilon \to 0$

Corollary (Characterization of C^2 -solutions)

Let u be convex and C^2 in Ω , $f \ge 0$. TFAE:

$$\left(\det D^2 u(x)\right)^{1/n} = f(x)$$

$$u(x) - \inf_{\substack{\det A=1\\A \le \phi(\epsilon)I}} \left\{ \oint_{B_{\epsilon}(0)} u(x + Ay) \, dy \right\} + \frac{\epsilon^2 n}{2(n+2)} f(x) = o(\epsilon^2)$$
$$u(x) - \inf_{\substack{\det A=1\\B_{\epsilon}(A,x) \subset \Omega}} \left\{ \oint_{B_{\epsilon}(0)} u(x + Ay) \, dy \right\} + \frac{\epsilon^2 n}{2(n+2)} f(x) = o(\epsilon^2).$$

Theorem (Characterization of viscosity solutions)

Let $f \in C(\Omega)$ be non-negative and $u \in C(\Omega)$ be convex. TFAE: u is a viscosity subsolution (respectively, supersolution) of

$$\det D^2 u = f \quad in \ \Omega, \qquad (\det D^2 u \ge f)$$

$$u(x) \leq \inf_{\substack{\det A=1\\A \leq \phi(\epsilon)I}} \left\{ \oint_{B_{\epsilon}(0)} u(x + Ay) \, dy \right\} - \frac{\epsilon^2 n}{2(n+2)} f(x) + o(\epsilon^2)$$

$$u(x) \leq \inf_{\substack{\det A=1\\ E_{\epsilon}(A,x)\subset\Omega}} \left\{ \oint_{B_{\epsilon}(0)} u(x+Ay) \, dy \right\} - \frac{\epsilon^2 n}{2(n+2)} f(x) + o(\epsilon^2)$$

(respectively, \geq) in the viscosity sense (the mean value expansions are satisfied for convex paraboloids P that touch u at x).

Discrete Mean Values

Discrete asymptotic expansion

For $u \in C^2$ convex we have the asymptotic expansion

$$u(x) = \inf_{V \in \mathbb{O}} \inf_{\alpha_i \in I_{\epsilon}^n} \left\{ \frac{1}{n} \sum_{i=1}^n \frac{u(x + \epsilon \sqrt{\alpha_i} v_i) + u(x - \epsilon \sqrt{\alpha_i} v_i)}{2} \right\}$$
$$- \frac{\epsilon^2}{2} (\det(D^2 u)(x))^{1/n} + o(\epsilon^2)$$

as $\epsilon \rightarrow 0$.

Here $\mathbb O$ is the set all orthonormal bases $V = \{v_1, \ldots, v_n\}$ of $\mathbb R^n$ and

$$I_{\varepsilon}^{n} = \Big\{ (\alpha_{1}, \ldots, \alpha_{n}) \in \mathbb{R}^{n} : \prod_{j=1}^{n} \alpha_{j} = 1 \quad \text{ and } \quad 0 < \alpha_{j} < \phi^{2}(\epsilon) \Big\}.$$

Theorem (Characterization of viscosity solutions by Discrete Mean Values)

Let u be a convex function in a domain $\Omega \subset \mathbb{R}^n$. Then, u is a solution to the Monge-Ampère equation

 $\det(D^2u(x))=f(x)$

in the viscosity sense if and only if

$$u(x) = \inf_{V \in \mathbb{O}} \inf_{\alpha_i \in I_{\epsilon}^n} \left\{ \frac{1}{n} \sum_{i=1}^n \frac{u(x + \epsilon \sqrt{\alpha_i} v_i) + u(x - \epsilon \sqrt{\alpha_i} v_i)}{2} \right\}$$
$$- \frac{\epsilon^2}{2} (f(x))^{1/n} + o(\epsilon^2)$$

as $\varepsilon \to 0$, holds in the viscosity sense.

Determinant identity for $M \ge 0$

$$n(\det M)^{1/n} = \inf_{\det A=1} \operatorname{trace}(A^t M A),$$

where the matrix A is symmetric and positive definite.

Linear averages

Let M be a square matrix of dimension n. We have

trace(M) =
$$\frac{n+2}{\varepsilon^2} \int_{B_{\varepsilon}(0)} \langle My, y \rangle \, dy.$$

Main argument

Suppose $D^2u(x) > 0$. Extra work is needed when det $D^2u(x) = 0$. Given $x \in \Omega$, consider the paraboloid

$$P(z) = u(x) + \langle \nabla u(x), z - x \rangle + \frac{1}{2} \langle D^2 u(x)(z - x), (z - x) \rangle.$$

Since $u \in C^2(\Omega)$, we have

$$u(z) - P(z) = o(|z - x|^2)$$
 as $z \to x$,

that is,

$$P(z) - \frac{\eta}{2}|z-x|^2 \le u(z) \le P(z) + \frac{\eta}{2}|z-x|^2$$

for every $z \in B_{\delta}(x)$, with equality only when z = x. Let us denote

$$P_{\eta}^{\pm}(z)=P(z)\pm\frac{\eta}{2}|z-x|^2.$$

Main argument

$$\begin{split} \int_{B_{\epsilon}(0)} (P_{\eta}^{\pm}(x+Ay) - u(x)) dy &= \frac{1}{2} \int_{B_{\epsilon}(0)} (\langle A^{t} D^{2} u(x) Ay, y \rangle \pm \eta |Ay|^{2}) dy \\ &= \frac{1}{2} \int_{B_{\epsilon}(0)} \langle A^{t} (D^{2} u(x) \pm \eta I) Ay, y \rangle dy \\ &= \frac{\epsilon^{2}}{2(n+2)} \operatorname{trace} \left(A^{t} (D^{2} u(x) \pm \eta I) A \right), \end{split}$$

Using

$$n(\det M)^{1/n} = \inf_{\det A=1} \operatorname{trace}(A^t M A),$$

and that $P_{\eta}^{\pm}(x) = u(x)$ we obtain

$$\inf_{\substack{\det A=1\\A\leq\phi(\epsilon)I}} \left\{ \oint_{B_{\epsilon}(0)} \left(P_{\eta}^{\pm}(x+Ay) - P_{\eta}^{\pm}(x) \right) dy \right\} = \frac{n \epsilon^{2}}{2(n+2)} \left(\det \left(D^{2}u(x) \pm \eta I \right) \right)^{1/n}$$

The heart of the matter

Now we use that

$$P^-_\eta(x+Ay) \leq u(x+Ay) \leq P^+_\eta(x+Ay) \qquad ext{for every } y \in B_\epsilon(0).$$

to obtain

$$\inf_{\substack{\det A=1,\\A\leq\phi(\epsilon)I}} \left\{ \oint_{B_{\epsilon}(0)} (u(x+Ay) - u(x)) \, dy \right\} \leq \frac{n \, \epsilon^2}{2(n+2)} \left(\det \left(D^2 u(x) + \eta I \right) \right)^{1/n}$$

$$\inf_{\substack{\det A=1,\\A\leq\phi(\epsilon)I}} \left\{ \oint_{B_{\epsilon}(0)} (u(x+Ay)-u(x)) \, dy \right\} \geq \frac{n \, \epsilon^2}{2(n+2)} \left(\det \left(D^2 u(x)-\eta I \right) \right)^{1/n}.$$

The result follows from

$$\left(\det\left(D^2u(x)\pm\eta I\right)\right)^{1/n}
ightarrow \left(\det D^2u(x)
ight)^{1/n}$$
 as $\eta
ightarrow 0.4$

We describe a one-player game (or control problem) RULES OF THE GAME :

- Fix a convex domain $\Omega \subset \mathbb{R}^n$
- Fix a final payoff $g \colon \mathbb{R}^n \setminus \Omega \mapsto \mathbb{R}$ and a running cost $f \in C(\Omega)$, $f \ge 0$,
- Fix $\varepsilon > 0$ small
- Place a token at an initial position $x_0 \in \Omega$
- The player chooses an orthonormal basis $\{v_1, ..., v_n\}$ and n real nonnegative numbers $(\alpha_1, ..., \alpha_n) \in I_{\varepsilon}^n$ where

$$I_{\varepsilon}^{n} = \left\{ (\alpha_{i})_{i=1,\dots,n} \in \mathbb{R}^{n} \colon \prod_{i=1}^{n} \alpha_{i} = 1 \quad \text{ and } \quad 0 < \alpha_{i} < \frac{1}{\varepsilon} \right\}.$$

• The token is moved to

$$x_1 = x_0 \pm \varepsilon \sqrt{\alpha_i} v_i$$

with equal probabilities $\frac{1}{2n}$

• Player 1 pays $\frac{1}{2}\varepsilon^2(f(x_0))^{1/n}$

- Repeat the process starting at x_1 to get x_2 and so on
- Get a sequence of positions $\{x_0, x_1, \ldots, x_j \ldots\}$
- The game stops when the token leaves Ω . Let τ be first time that $x_{\tau} \notin \Omega$. The player gets paid $g(x_{\tau})$
- At the end the player obtains

$$g(x_{\tau}) - \frac{1}{2} \varepsilon^2 \sum_{j=0}^{\tau-1} (f(x_j))^{1/n}$$

- A STRATEGY S for the player is a choice of orthonormal basis and numbers $(\alpha_i) \in I_{\varepsilon}^n$.
- \bullet Given a strategy S we can look for the expected outcome

$$\mathbb{E}_{S}^{x_{0}}\left[g(x_{\tau})-\frac{1}{2}\varepsilon^{2}\sum_{j=0}^{\tau-1}[f(x_{j})]^{1/n}\right]$$

Games, III

Suppose that the player wants to minimize the payment.

The value of the game at
$$x_0 \in \Omega$$

$$u_{\varepsilon}(x_0) = \inf_{S} \mathbb{E}_{S}^{x_0} \left[g(x_{\tau}) - \frac{1}{2} \varepsilon^2 \sum_{j=0}^{\tau-1} [f(x_j)]^{1/n} \right]$$

The value function satisfies the DPP

$$u_{\varepsilon}(x) = \inf_{V \in \mathbb{O}} \inf_{\alpha_i \in I_{\varepsilon}^n} \left\{ \frac{1}{n} \sum_{i=1}^n \frac{u_{\varepsilon}(x + \varepsilon \sqrt{\alpha_i} v_i) + u_{\varepsilon}(x - \varepsilon \sqrt{\alpha_i} v_i)}{2} \right\}$$
$$- \frac{\varepsilon^2}{2} (f(x))^{1/n} \quad \text{for } x \in \Omega$$
$$u_{\varepsilon}(x) = g(x) \quad \text{for } x \notin \Omega$$

Existence and Uniqueness for the DPP hold.

Solving the DPP for each $\varepsilon > 0$ we get a family of functions $\{u_{\varepsilon}\}$.

Theorem

When the domain Ω is strictly convex we have

$$u_{\varepsilon} \rightarrow u$$
 as $\varepsilon \rightarrow 0$

uniformly in $\overline{\Omega}$, where u is the unique viscosity solution to the problem

ſ	$\det D^2 u = f$	in Ω ,
J	u = g	on $\partial \Omega$.

General picture

MVP (continuous, discrete) \iff DPP (usually discrete) \iff PDE (usually continuous)

(Meta) Theorem

For an appropriate real function u we have a meta-equivalence among

- u satisfies a Mean Value Property (in an appropriate asymptotic sense)
- u can be approximated by solutions to a Dynamic Programming Principle associated to a game or control problem
- **3** *u* solves a (possibly nonlinear) PDE

Introduction

Flexibility of this approach

Euclidean spaces, Riemannian manifolds, Sub-Riemannian manifolds (Heisenberg group), graphs (trees), metric-measure spaces, parabolic versions.

But limited to \mathbb{R} -valued functions and 2nd order PDEs (we use viscosity theory).

References

- P. Blanc and J. D. R., *Game Theory and Partial Differential Equations*, 2019
- M. Lewicka, A course on Tug-of-War Games with Random Noise, 2020.
- P. Blanc, F. Charro, J. D. R., J. J. Manfredi, *A nonlinear Mean Value Property for the Monge-Ampère operator*, to appear in J. Convex Analysis (2021).

Thanks !!! Gracias !!!