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Modular density of smooth functions

In Musielak-Orlicz-Sobolev spaces the norm is defined by the means
of functional

& [ M(z.6) oz
z
with typical choice of Z=Q or Z=Q x [0, T].

Smooth functions are not dense in norm (in general) in the spaces,
but in modular topology and only the growth of M with respect to &
is well balanced with small perturbations of z-variable.

Y. Ahmida, I. C., P. Gwiazda, A. Youssfi,
Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces,
J. Functional Analysis 275 (9) (2018), 2538-2571.
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but in modular topology and only the growth of M with respect to &
is well balanced with small perturbations of z-variable.

Y. Ahmida, I. C., P. Gwiazda, A. Youssfi,
Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces,
J. Functional Analysis 275 (9) (2018), 2538-2571.

there will appear also references to several papers joint with Gwiazda & Zatorska-Goldstein with applications of similar

density results in existence to renormalized solutions to elliptic and parabolic problems with merely integrable data
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Examples

Musielak-Orlicz spaces unify theory for spaces with norm given by
* £ [q|€|P dx (Lebesgue/Sobolev spaces)
o & [o]€]PO) dx (variable exponent Lebesgue/Sobolev spaces)

o &= Jo lElP +a(x)[€]7 dx, & = [q [€]P + a(x)[¢|P log(1 + [€]) dx

(double-phase spaces)

e {— Jo (]f\) dx (Orlicz/Orlicz-Sobolev spaces; also Llog L, exp L)
o {— [o®(&) dx (anisotropic Orlicz-Sobolev spaces)

* {— o ( Jfl)dx,
® £ [o M(x,&) dx.
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* &= o ( Jfl)dx,
® £ [o M(x,&) dx.

reflexivity!

C., A pocket guide to nonlinear differential equations
in Musielak-Orlicz spaces, Nonl. Analysis 2018.
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(Generalized) N-function M : Q x [0,00) — R

1. M is a Carathéodory function, such that M(x,0) =0,
s # 0 = infyecq M(x,s) > 0 and sup,cq M(x,s) < oo
2. s— M(x,s) is a convex function,

M(:’S) =0 fora.e. x €Q,

3. |im5_,0

4. lime_ o M = oo for a.e. x € Q.

Examples of M(x,s)
Is|P, w(x)|s|P, |s|P™), |s|9 + a(x)|s|P, more phases...
Orlicz: B([s[), w(x)B([s]), Bo(ls|) + 22; wi(x)Bi(ls])..-
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M(x,s) _

3. lims_o 0 for a.e. x € Q,

4. lime_ o M = oo for a.e. x € Q.

Examples of M(x,s)
Is|P, w(x)|s|P, |s|P™), |s|9 + a(x)|s|P, more phases...
Orlicz: B([s[), w(x)B([s]), Bo(ls|) + 22; wi(x)Bi(ls])..-

Anisotropy...
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Doubling conditions

We say that an N-function M : Q x [0, 00) — R satisfies
A>-condition if there exists a constant ¢ > 0 and h € L}(Q), h > 0,

such that
M(x,2s) < cM(x,s) + h(x).
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Doubling conditions

We say that an N-function M : Q x [0, 00) — R satisfies
A>-condition if there exists a constant ¢ > 0 and h € L}(Q), h > 0,

such that
M(x,2s) < cM(x,s) + h(x).

Examples of M(x, s)

* in Ag: M(x,s) = [¢]P; a(x)[&|P + [€
e NOT in A2:
(fast) M(x, €) = a(x) (exp(l€]) — 1 + [¢]);
(irregularly increasing) even trapped between tP and tP*¢,
1 < p < o0, cf. C.—Giannetti—Zatorska-Goldstein, JMAA 2019.

9; 1€[PO; 1€]P log™ (1 + [€));
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Musielak-Orlicz spaces

Suppose Q C RV.

e L(R) is defined as the set of all measurable functions v: Q2 — R
such that [o M(x,|u(x)|/A)dx < 400 for some A > 0.

e En(Q) is defined as the set of all measurable functions u: Q — R
such that [ M(x, |u(x)|/A)dx < +oo for all A > 0.

Both are equipped with the Luxemburg norm

- lu(x)|
||uHLM(Q):|nf{)\>O:/QM(X, : )dxgl},

*Then Lp(Q2) is a Banach space and Ep () is its closed subset.
** Epm(QQ) coincides with norm closure of bounded functions, provided

that Veso o M(x, c)dx < oo.
Thus here Ey(2) = L5() 1@ | but Ep(Q) # Li(9).
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Musielak-Orlicz-Sobolev spaces

For a positive integer m, we define the Musielak-Orlicz-Sobolev
spaces W™Lp(Q2) and W™Ep(R2) as follows

WPLiy(Q) = {u € Ly(Q) : D*u € Ly(Q), o] < m},
WTEM(Q) = {u e Ey(Q) : D*u € En(Q), |a| < m},

where oo = (a1, a2, -+ ,an), |of = |aa| + |a2] + -+ - + |an| and D
denote the distributional derivatives.

W™Lp(2) and W™MEp(Q2) are endowed with the Luxemburg norm

lullwotyay = inf {A >0 Z/ (x, 1ID%ul)dx < 1},

|al<m

(W™ Ly (), [|ullwmi,y ) is a Banach space.
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Fenchel-Young conjugate function M*

Fenchel-Young conjugate function (complementary function, the
Legendre transform) to a function M : Q x [0,00) — R is defined by

M*(x,s) = sup(r-s — M(x,r)), s>0, xe.
reR

For M(x,s) = %|s]”, then M*(x,s) = %\s\p/, where %—i— % =1
Fenchel-Young's inequality
[+ €] < M(x; [nl) + M*(x, [£]),
Hélder's inequality ||n - &||1 < 2[[9]|L,, - [I€]|L,,. but in general
(L) # Ly

» spaces (Ly)’ and Ly« are associate, but not dual «
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Doubling condition vs. properties of the spaces

Separability
M e ASO — E/\//(Q) = LM(Q)
Reflexivity

M, M* e AP — (Ly(GRY)) = Ly-(RN)

and Ly is reflexive and separable.
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-
Modular density 1/3

Modular density - Orlicz case (Gossez, Studia Math.’82)
In Orlicz spaces C2° is dense in Wj Lg modularly.

Modular convergence

M . .
* U ——u ((uk)k converges modularly to u in Lp) if
—00

Jys0 /M<x,’“k_“|> dx —— 0
Q A k—o00
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Modular density 1/3

Modular density - Orlicz case (Gossez, Studia Math.’82)

In Orlicz spaces C2° is dense in Wj Lg modularly.

Modular convergence

M . .
* U ——u ((uk)k converges modularly to u in Lp) if
—00

Jys0 /M<x,’“k_“|> dx —— 0
Q

A k—o0

d .
o up % u ((ug)k converges modularly to v in W™Ly)

k—o0

if V|o¢\<m Dauk — D%wu.
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-
Modular density 2/3

Modular density - Orlicz case (Gossez, Studia Math.’82)

In Orlicz spaces CZ° is dense in WolLB with respect to sequential
modular closure, not the norm one.
The closures concide (only) in doubling case (i.e. reflexive).

Modular density - Musielak-Orlicz case
(Ahmida, Chlebicka, Gwiazda, Youssfi, JFA'2018)

In Musielak-Orlicz spaces to get modular density one needs to exclude
Lavrentiev's phenomenon by imposing a condition reflecting
log-Holder continuity of the variable exponent, as well as sharp
closeness of powers in double-phase spaces.

We need to control modulus of continuity of function M(x,s):
balance its asymptotic behaviour for small perturbations of spacial

variable x and big values of s.
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Lavrentiev’s phenomenon 1/2

Consider variational functional
u— Flu]l = /Q F(x,u, Du) dx
with F whose growth is governed by inhomogeneous function M
%M(X,S) < F(x,r,s) < cM(x,s).

Then always

inf Flu] < inf  Flu]
u€ug+WiL(Q) u€uUp+C ()

We deal with Lavrentiev's phenomenon if the inequality is strict.
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Lavrentiev’s phenomenon 2/2

Examples of spaces with functions that cannot be approximated

Variable exponent spaces

WheO) = {f € W> : |DFIPX) € L1}
when the exponent p is not log-Holder continuous
(p € Prog if [p(x) = p(y)| < —c/log|x — y[)
the condition is essentially sharp

Double phase spaces

{f e WL |DfIP + a(x)|Df|9 € L'}
with a: Q — [0,00), a € C%,
when powers do not satisfy g/p < 1+ «a/n
range is sharp due to Colombo & Mingione, ARMA 2015
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Doubling conditions

We say that an N-function M : Q x RN — R satisfies A,-condition
if there exists a constant ¢ > 0 and h € L}(Q), h > 0, such that

M(x,2¢) < cM(x, &) + h(x).

If M, M* € A, then (Lp(2;RV))* = Ly (2 RN)
and Ly is reflexive and separable.

Example-reminder
o in Ag: M(x,€) = [¢]P; a(x)[€]P + [€]% [¢]P); [€]P log® (1 + [€]);

e NOT in A,: 'fast growth’ like exponential or ‘irregular growth'.
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Balance condition in the general setting
Ahmida, Chlebicka, Gwiazda, Youssfi, JFA 2018

For small perturbations of x and sufficiently large s € R we have

<O(]x—yls)
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Balance condition in the general setting
Ahmida, Chlebicka, Gwiazda, Youssfi, JFA 2018

For small perturbations of x and sufficiently large s € R we have

<O(]x—yls)

(M) with limsup;_q©(3,0~ V) < o0
or
(M), if M(x,s) > csP, then we need limsups, .o ©(6,6N/P) < o

* fully anisotropic case involves (inf.cpg, M(x,&))*".
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Examples of well-balanced N-functions

1. [Orlicz] M(x,s) = M(s) is independent of x, then ©(7,s) = 1.
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2. [VarExp] M(x,s) = |s|P*X), then ©(, s) = max {5‘7(7),5_”(7)} ,
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—> Asymptotical log-Holder condition.
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& loc
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Examples of well-balanced N-functions

1. [Orlicz] M(x,s) = M(s) is independent of x, then ©(7,s) = 1.

2. [VarExp] M(x,s) = |s|P*X), then ©(, s) = max {5‘7(7),5_”(7)} ,
where o(7) = —c/log 7.
—> Asymptotical log-Holder condition.

3. [Double phase] M(x,s) = sP + a(x)s9, where 1 < p < g and
nonnegative a € C,g’f‘, then O(7,s) = C,7%|s|97P + 1.
Then lim sup._,o+ ©(g, ce~N/P) < oo forces sharp condition
q/p<1+a/N.

4. [Weighted Orlicz] M(x,s) = S5 ki(x)M;(s) + Mo(x, s),
ki : Q — (0,+00), there exists a nondecreasing function ©;
satisfying ki(x) < ©;(|x — y|)ki(y) with limsup._,o+ ©i(c) < o0,
whereas My(x, s) satisfies is ©-regular with Oy.
Then, we can take ¢(7,s) = S5, ©;(7) + O(r, 5).
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Key ideas of the proof

Construction of approximation

split domain into starshaped regions

shrink support of an approximated function

mollify (re-scaled convolution)

glue domains

We need: / M(x, %ua) dx < C/ M(x, 3 u) dx.
Q Q
For this, using (M) when x, y are close, we control

M(x, 3|ue()]) My, 3|ue(x)])
M(y, 5| u=(x)]) (Mie)™* (5 |u=(x)])

M(x, X|ue(x)]) = (Me)™ (3] u=(x)]).
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References for approximation

Modular approximation in Orlicz spaces

e isotropic: Gossez, Studia Math.'82

e anisotropic: Alberico, C., Cianchi, Zatorska-Goldstein, arXiv

Modular approximation in Musielak-Orlicz spaces

e isotropic: Ahmida, C., Gwiazda, Youssfi, JFA 2018

e anisotropic: C. (Skrzypczak), Gwiazda, Zatorska-Goldstein, 2xJDE 2018
» covering sharply p(x)-case, but not double-phase (but existence does!)

e anisotropic: C., Gwiazda, Swierczewska-Gwiazda, Wréblewska-Kaminska,
book » covering sharply p(x)-case and double-phase

® anisotropic parabolic with M(t, x,¢): C-G-ZG (AIHP 2019 & JDE 2019)
18 of 26



Applications to existence and regularity

Alberico, C., Cianchi, Zatorska-Goldstein, Fully anisotropic elliptic
problems with minimally integrable data, arXiv 2019.

—diva(x,Vu) = p

with fully anisotropic operator and measure data.
We prove the existence and regularity in anisotropic Marcinkiewicz
scale of approximable solutions in particular to

= (bi(X)|ug P 2uy) = in Q
u=20 on 09,

where u,, denotes partial derivative with respect to the variable x;,
the functions b; € L°°(2) are such that bj(x) > 1, and p; > 1.

19(bztét also for problems with slowlier growth like Llog L etc.)
of



Applications to existence
see https://www.mimuw.edu.pl/"ichlebicka/

e Renormalized solutions to elliptic problem —div a(x, Vu) = f € L
Gwiazda, Skrzypczak, Zatorska-Goldstein, JDE 2018

e Renormalized solutions to parabolic problem with M = M(x, Vu)
C., Gwiazda, Zatorska-Goldstein, JDE 2018

e Weak solutions to parabolic problem with M = M(t, x, Vu)
C., Gwiazda, Zatorska-Goldstein, Ann.l.H.Poincaré 2019

e Renormalized solutions to parabolic problem with M = M(t, x, Vu)
C., Gwiazda, Zatorska-Goldstein, JDE 2019
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Applications to existence
see https://www.mimuw.edu.pl/"ichlebicka/

e Renormalized solutions to elliptic problem —div a(x, Vu) = f € L
Gwiazda, Skrzypczak, Zatorska-Goldstein, JDE 2018

e Renormalized solutions to parabolic problem with M = M(x, Vu)
C., Gwiazda, Zatorska-Goldstein, JDE 2018

e Weak solutions to parabolic problem with M = M(t, x, Vu)
C., Gwiazda, Zatorska-Goldstein, Ann.l.H.Poincaré 2019

e Renormalized solutions to parabolic problem with M = M(t, x, Vu)
C., Gwiazda, Zatorska-Goldstein, JDE 2019

book: Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces
C., Gwiazda, Swierczewska-Gwiazda, Wréblewska-Kamiriska (soon)
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Parabolic existence and uniqueness 1/2
Chlebicka, Gwiazda, Zatorska-Goldstein

Oru — div A(t, x, Vu) = f(x,t) € L>/L*
(A1) Ais a Carathéodory function

(A2) "Growth of A(t,x,&) is governed by M(t,x,&)"

(A3) (A(t,x,€) = A(t, x,n)) - (§ —n) > 0

21 of 26
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Parabolic existence and uniqueness 2/2
Chlebicka, Gwiazda, Zatorska-Goldstein

Very weak solutions

Suppose [0, T] is a finite interval, Q is a bounded Lipschitz domain in
RN, N > 1, fe Q1) up € LY(RQ). Let an N-function M satisfy
assumption (M) and function A satisfy assumptions (A1)-(A3). Then
there exists unique renormalized solution to the problem

Oru — divA(t,x, Vu) = f(t,x) in Qr,
u(t,x) =0 on 01,
u(0, x) = up(x) in Q.
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Parabolic existence and uniqueness 2/2
Chlebicka, Gwiazda, Zatorska-Goldstein

Very weak solutions

Suppose [0, T] is a finite interval, Q is a bounded Lipschitz domain in
RN, N > 1, fe Q1) up € LY(RQ). Let an N-function M satisfy
assumption (M) and function A satisfy assumptions (A1)-(A3). Then
there exists unique renormalized solution to the problem

Oru — divA(t,x, Vu) = f(t,x) in Qr,

u(t,x) =0 on 01,

u(0, x) = up(x) in Q.
Remark
Skip balance condition (M) in reflexive spaces if M = M(x, Vu).
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Main examples not covered before
Chlebicka, Gwiazda, Zatorska-Goldstein, JDE 2018, AIHP 2019, JDE 2019

|. Evolutionary equations with growth below a power (s'*)

Oru — div (a(t, x) DT L) = £(t,x) € L1(Qr),
u(t,x) =0 on 09,
u(0,x) = up(x) € LY(Q)
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Main examples not covered before
Chlebicka, Gwiazda, Zatorska-Goldstein, JDE 2018, AIHP 2019, JDE 2019

|. Evolutionary equations with growth below a power (s'*)

Oru — div (a(t, x) DT L) = £(t,x) € L1(Qr),
u(t,x) =0 on 09,
u(0,x) = up(x) € LY(Q)

II. Evolutionary p(t, x)-Laplace equation (1 << p << o0)

Oeu — div(a(t, )| VulPt0-2Vu) = £(t,x) € L}(Qr),
u(t,x) =0 on 09,
u(0,x) = up(x) € LY(Q)

Exponent p can vary around 2 — we only need to have it:

1 << p(+,-) << oo and log-Hélder continuous in Q1
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Main examples not covered before
Chlebicka, Gwiazda, Zatorska-Goldstein, JDE 2018, AIHP 2019, JDE 2019

[1l. Evolutionary double-phase problem

0w — div((IVulP~2 + alt 9)IVulT2) V) = (£,x) € LX(@7),
u(t,x) =0 on 09,
u(0,x) = ug(x) € LX)

We cover it provided a € CO*(Q7) and q/p <1+ a/n
(range is sharp for excluding Lavrentiev's phenomenon)
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Main examples not covered before
Chlebicka, Gwiazda, Zatorska-Goldstein, JDE 2018, AIHP 2019, JDE 2019

[1l. Evolutionary double-phase problem

0w — div((IVulP~2 + alt 9)IVulT2) V) = (£,x) € LX(@7),
u(t,x) =0 on 09,
u(0,x) = ug(x) € LX)

We cover it provided a € CO*(Q7) and q/p <1+ a/n
(range is sharp for excluding Lavrentiev's phenomenon)

IV. Anisotropic problems

* Skip balance condition (M) in reflexive spaces if M = M(x, Vu).
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Summary

Modular density of smooth functions

In Musielak-Orlicz-Sobolev spaces the norm is defined by the means
of functional

& [ M(z.€) oz
z
with typical choice of Z=Q or Z=Q x [0, T].

Smooth functions are not dense in norm (in general) in the spaces,
but in modular topology and only the growth of M with respect to &
is well balanced with small perturbations of z-variable.

Y. Ahmida, |. Chlebicka, P. Gwiazda, A. Youssfi,
Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces,
J. Functional Analysis 275 (9) (2018), 2538-2571.
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see https://wuw.mimuw.edu.pl/ ichlebicka/publications
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Feeling like having a weekend in Musielak-Orlicz spaces?

Don't forget a pocket guide with you!

see https://wuw.mimuw.edu.pl/ ichlebicka/publications
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Feeling like having a weekend in Musielak-Orlicz spaces?

Don't forget a pocket guide with you!

Thank you for your attention!

see https://wuw.mimuw.edu.pl/ ichlebicka/publications
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